
ownCloud Administration Manual

The ownCloud Team

Version 10.6, June 30, 2021

Table of Contents

Introduction. 1

ownCloud Videos and Blogs. 1

Target Audience . 1

Release Notes . 2

Changes in 10.6.0 . 2

Changes in 10.5.0 . 4

Changes in 10.4.1 . 9

Changes in 10.4.0 . 9

Changes in 10.3.2 . 12

Changes in 10.3.1 . 12

Changes in 10.3.0 . 12

Changes in 10.2.1 . 17

Changes in 10.2.0 . 18

Changes in 10.1.1 . 23

Changes in 10.1.0 . 23

Changes in 10.0.10 . 26

Changes in 10.0.9 . 29

Changes in 10.0.8 . 34

Changes in 10.0.7 . 38

Changes in 10.0.6 . 38

Changes in 10.0.5 . 38

Changes in 10.0.4 . 39

Changes in 10.0.3 . 41

Changes in 10.0.1 . 42

Changes in 10.0.0 . 44

Changes in 9.1 . 45

Changes in 9.0 . 47

Changes in 8.2 . 48

Changes in 8.1 . 48

Changes in 8.0 . 49

Changes in 7.0 . 51

Frequently Asked Questions . 54

I want to upgrade from Community Version to Enterprise Version. What are the changes? 54

How do I transfer files from one user to another? . 54

How do I deal with problems caused by using self-signed SSL certificates?. 54

I’m the admin and I lost my password! What do I do now!. 54

What is a Federated System?. 54

Platform-wide known limitations, excluded files . 54

Installation. 55

Manual Installation . 55

Installing With Docker . 55

Example Installation on Ubuntu . 55

Linux Package Manager . 55

installation/manual_installation/index.pdf
installation/docker/index.pdf
installation/quick_guides/index.pdf
installation/linux_packetmanager_install.pdf

Deployment Considerations . 55

Deployment Recommendations . 57

System Requirements. 70

Configuration Notes and Tips . 72

Installation. 76

Troubleshooting. 104

Changing Your ownCloud URL . 104

Installing and Managing Apps . 105

Supported Apps in ownCloud . 108

SELinux Configuration . 110

Let’s Encrypt SSL Certificates. 113

Configuration . 126

Database. 126

Encryption. 135

External Storage . 156

Files and Sharing . 183

General Topics . 210

Full Text Search . 224

Mimetypes Management . 225

Server Configuration. 229

User . 435

Maintenance. 470

How to Upgrade Your ownCloud Server . 470

Backing up ownCloud . 488

Maintenance Mode Configuration . 491

Data Exporter. 491

How To Manually Move a Data Directory . 493

Encryption. 497

Migrating to a Different Server . 499

Restoring ownCloud . 503

What is the Appliance? . 505

How to Install the Appliance . 505

Appliance Configuration. 517

Appliance Maintenance . 555

Troubleshooting. 561

Enterprise Edition . 563

Enterprise Clients . 563

Enterprise Collaboration . 563

External Storage . 567

Enterprise File Management . 594

Enterprise Firewall Configuration . 601

Installing & Upgrading ownCloud Enterprise Edition . 607

Enterprise Logging Configuration. 613

Enterprise Reporting. 613

Enterprise Security . 616

Enterprise Server Branding . 620

Enterprise User Management. 621

Document Classification and Policy Enforcement . 632

Introduction . 632

Classification. 633

General Approach . 635

Policy Enforcement . 637

Access Policies . 638

Logging . 639

Limitations . 639

Troubleshooting. 640

Retrieve Log Files and Configuration Settings . 640

Have You Found a Mistake In The Documentation? . 642

Introduction
Welcome to the ownCloud Server Administration Guide. This guide describes
administration tasks for ownCloud, the flexible open source file synchronization and
sharing solution. ownCloud includes the ownCloud server, which runs on Linux, client
applications for Microsoft Windows, Mac OS X and Linux, and mobile clients for the
Android and Apple iOS operating systems.

Current editions of ownCloud manuals are always available online at doc.owncloud.org
and doc.owncloud.com.

ownCloud server is available in three editions:

• The free community-supported server. This is the core server for all editions.
• The Standard Subscription for customers who want paid support for the core

Server, without Enterprise applications.
• The Enterprise Subscription provides paid support for the Enterprise Edition. This

includes the core Server and Enterprise apps.

ownCloud Videos and Blogs

See the official ownCloud channel and ownClouders community channel on YouTube
for tutorials, overviews, and conference videos. Visit ownCloud Planet for news and
developer blogs.

Target Audience

This guide is for users who want to install, administer, and optimize their ownCloud
servers. To learn more about the ownCloud Web user interface, and desktop and
mobile clients, please refer to their respective manuals:

• ownCloud User Manual
• ownCloud Desktop Client
• ownCloud Android App
• ownCloud iOS App

ownCloud Videos and Blogs | 1

https://doc.owncloud.org/
https://doc.owncloud.com/
https://www.youtube.com/channel/UC_4gez4lsWqciH-otOlXo5w
https://www.youtube.com/channel/UCA8Ehsdu3KaxSz5KOcCgHbw
https://owncloud.org/news/
user_manual:index.pdf
https://doc.owncloud.com/desktop/
https://doc.owncloud.com/android/
https://doc.owncloud.com/ios/

Release Notes
• Changes in 10.6.0
• Changes in 10.5.0
• Changes in 10.4.1
• Changes in 10.4.0
• Changes in 10.3.2
• Changes in 10.3.1
• Changes in 10.3.0
• Changes in 10.2.1
• Changes in 10.2.0
• Changes in 10.1.1
• Changes in 10.1.0
• Changes in 10.0.10
• Changes in 10.0.9
• Changes in 10.0.8
• Changes in 10.0.7
• Changes in 10.0.6
• Changes in 10.0.5
• Changes in 10.0.4
• Changes in 10.0.3
• Changes in 10.0.1
• Changes in 10.0.0
• Changes in 9.1
• Changes in 9.0
• Changes in 8.2
• Changes in 8.1
• Changes in 8.0
• Changes in 7.0

Changes in 10.6.0

Dear ownCloud administrator, please find below the changes and known issues in
ownCloud Server 10.6 that need your attention. You can also read the full ownCloud
Server changelog for further details on what has changed.

Migrations

• To allow sharing files with very long names (> 64 characters) via federation, a
migration step will run. The impact on upgrade duration depends on the number of
federated shares. #37835

PHP 7.2 Deprecation Note

PHP 7.2 recently reached its end of life and is not maintained anymore. ownCloud
Server will, therefore, drop support in one of the next minor versions as well. If you’re
running on PHP lower than 7.3, please make sure to schedule an upgrade to PHP 7.4

2 | Changes in 10.6.0

https://owncloud.com/changelog/server/
https://owncloud.com/changelog/server/
https://github.com/owncloud/core/pull/37835
https://secure.php.net/supported-versions.php

as soon as possible. See the system requirements for more information.

ownCloud Web - The New Web Frontend for ownCloud

ownCloud Server 10.6 comes with the prerequisites to run the new ownCloud Web
frontend as an optional component on top of it.

• The new server version comes with a switcher to the new frontend ("New Design").
It will be available to users in the apps menu if the address of ownCloud Web is
specified in config.php. Likewise, the new frontend comes with a switcher back to
the classic frontend ("Classic Design") to allow users to navigate back and forth.

• Pre-signed URLs allow proper downloading and streaming of files in ownCloud
Web.

• A capability for the Favorites feature makes it available in ownCloud Web.

There are different ways to deploy ownCloud Web with ownCloud Server. We strive to
make it as easy as possible to make the new frontend available to users. For this, there
is the new app for Web on the ownCloud Marketplace. It can be installed on ownCloud
10 servers with the regular tools. The app will make the new frontend available as
described above when deployed and configured correctly.


Deploying ownCloud Web via the Marketplace app is the currently
recommended approach.

Requirements for deploying ownCloud Web as an app for ownCloud Server 10

• ownCloud Server 10.6
• OAuth2 or OpenID Connect is used for client authorization.
• ownCloud Web is installed and enabled.
• ownCloud Server and ownCloud Web are configured as outlined in the

documentation.

Other Notable Changes

• Federated shares can now also have an expiration date (including default and
enforcement options) #37548

• SGI images can now be displayed and have thumbnails #37758
• When sharing public links via mail, the subject will now be translated #37321
• Stability improvements for file checksums with versioning #37934
• Manual file locking on the web UI can now be enabled/disabled in the admin

settings section "Additional" #37720
• Fixes and library updates for the Google Drive external storage integration #25826

#37739 #37912
• When disabling storage encryption, the configuration is now properly cleaned up

#35980
• Many issues around unavailable federated shares have been fixed (e.g., not being

able to remove them) #38042 #37956
• Performance improvements for the "Shared by link" view #38000 #38053
• Files with names up to 255 characters can now be shared via federation (was

limited to 64 before) #36730
• A user’s language preference will not be overriden by locales sent by browsers

anymore #38073

Changes in 10.6.0 | 3

installation/system_requirements.pdf
https://github.com/owncloud/core/pull/37923
https://github.com/owncloud/core/pull/37673
https://marketplace.owncloud.com/apps/web
https://owncloud.github.io/clients/web/deployments/oc10-app/
https://marketplace.owncloud.com/apps/oauth2
https://marketplace.owncloud.com/apps/openidconnect
https://marketplace.owncloud.com/apps/web
https://owncloud.github.io/clients/web/deployments/oc10-app/
https://github.com/owncloud/core/pull/37548
https://github.com/owncloud/core/pull/37758
https://github.com/owncloud/core/issues/37321
https://github.com/owncloud/core/pull/37934
https://github.com/owncloud/core/pull/37720
https://github.com/owncloud/core/issues/25826
https://github.com/owncloud/core/pull/37739
https://github.com/owncloud/core/pull/37912
https://github.com/owncloud/core/pull/35980
https://github.com/owncloud/core/pull/38042
https://github.com/owncloud/core/pull/37956
https://github.com/owncloud/core/pull/38000
https://github.com/owncloud/core/pull/38053
https://github.com/owncloud/core/issues/36730
https://github.com/owncloud/core/pull/38073

• Fixed display of public links and user/group shares in case avatars are disabled
#37945 #37964

• Fixed some translations not working with themes #38072
• Improved output on errors for LDAP user sync #37951
• A new occ command files:troubleshoot-transfer-ownership has been added to help

finding issues with files:transfer-ownership #37950
• Added values to the invalid uid list to prevent creating users with reserved UIDs

#37766
• The log level of "file locked" exceptions has been reduced to "debug" #37907

Bundle and Delivery

Since ownCloud Server 10.5 all supported apps are shipped in the ownCloud Server
Complete bundles. The following changes have been made to the bundle for Server
10.6:

• Added OpenID Connect
• Added File Lifecycle Management
• Added Graph API
• Removed Two-factor Authentication

Known issues

• There is an issue around when using ownCloud Web with ownCloud Server 10.6. By
default when ownCloud Web is enabled, all public links will open in the new
ownCloud Web view. Downloading files from ownCloud Web in public links
currently lacks some capabilities which make it appear strangely to a user. There is
no status indication and progress information until the download has finished in the
background. Server 10.7 will fix this issue. #38376

• There is an issue with themes which causes some themed icons and logos not to be
replaced (the original icon/image will be displayed). The issue will be fixed in the
next release. #38246

This section will be updated when other issues are discovered.

Changes in 10.5.0

Dear ownCloud administrator, please find below the changes and known issues in
ownCloud Server 10.5 that need your attention. You can also read the full ownCloud
Server changelog for further details on what has changed.

Migrations

• To improve the performance of addressbook search queries (e.g., when looking for
federated users to share with), a migration step adds indices for the columns
addressbookid, name and value on the oc_cards_properties table. The impact on
upgrade duration can be high depending on the number of rows of the mentioned
columns.

• To prepare for the new background job for change detection in federated shares
(see below), a migration step adds a new column (lastscan) to the oc_share_external
table. The impact on upgrade duration depends on the number of rows in
oc_share_external.

• To enable storing complex WebDAV properties, a migration step adds a new column
(propertytype) to the oc_properties and oc_dav_properties tables. The impact on

4 | Changes in 10.5.0

https://github.com/owncloud/core/pull/37945
https://github.com/owncloud/core/pull/37964
https://github.com/owncloud/core/pull/38072
https://github.com/owncloud/core/pull/37951
https://github.com/owncloud/core/pull/37950
https://github.com/owncloud/core/pull/37766
https://github.com/owncloud/core/pull/37907
release_notes.pdf#changes-in-delivery
release_notes.pdf#changes-in-delivery
https://marketplace.owncloud.com/apps/openidconnect
https://marketplace.owncloud.com/apps/files_lifecycle
https://marketplace.owncloud.com/apps/graphapi
https://marketplace.owncloud.com/apps/twofactor_totp
https://github.com/owncloud/core/pull/38376
https://github.com/owncloud/core/pull/38246
https://owncloud.com/changelog/server/
https://owncloud.com/changelog/server/
https://github.com/owncloud/core/pull/37152
https://github.com/owncloud/core/pull/37391
https://github.com/owncloud/core/pull/37314

upgrade duration depends on the number of rows in oc_properties and
oc_dav_properties.

• To facilitate the transition to the new licensing mechanism (see below) a migration
step will disable the enterprise_key app during the upgrade. This step does not
have an impact on upgrade duration.

PHP 7.1 Support Discontinued

As announced, in the previous minor release of ownCloud Server, from version 10.5
onward, ownCloud Server no longer supports PHP 7.1. If you’re running on PHP 7.1
or below, it is necessary to upgrade PHP prior to conducting the upgrade to Server
10.5. See the system requirements for more information.


If you’re using the official Docker containers or the Univention
appliance, this has been taken care of already.

Official PHP 7.4 Support

ownCloud Server 10.5 officially supports PHP 7.4. The Server Core and all apps
maintained by ownCloud have received a full QA cycle and are proven to work reliably
with PHP 7.4. If you are still running a PHP version < 7.2, you must upgrade PHP
before upgrading ownCloud Server as lower versions are not supported anymore.

Summarizing, ownCloud Server 10.5 supports the PHP versions 7.2, 7.3 and 7.4.


See the system requirements in the ownCloud Documentation for the
recommended PHP version and for more information.


Upgrade PHP to 7.2 or 7.3 then upgrade ownCloud Server to 10.5, then
upgrade PHP to 7.4


The official ownCloud Docker containers have been updated to Ubuntu
20.04 and are using PHP 7.4.

File Locking in the Web Interface

ownCloud Server 10.5 comes with great enhancements for content collaboration.
Manual file locking allows users to lock files in shared areas while working on them in
order to prevent concurrent changes from other users (check-in/check-out).

The feature builds on the WebDAV Locks backend which has been introduced with
Server 10.1 and is now available in the ownCloud Web Interface. Using the context
menu of files, every user who has access can lock them. Users can recognize locked
files by the means of a new lock indicator. While a file is locked, other users can still
access it but they can not make any changes. Locked files can manually be unlocked
by the lock owner (the user who locked the file; exclusive locking) using the "Locks"
tab in the file details view (right sidebar).



When using the ownCloud clients, file locks will also be respected,
meaning local changes can’t be checked-in to locked files and users will
see an error message. If there are conflicting local changes and the
respective file becomes unlocked, there will be a conflict file that allows
to resolve the concurrent changes.

To prevent files being locked infinitely, there is a mechanism that automatically expires
locks after a certain time. The expiration time of locks can be configured via the

Changes in 10.5.0 | 5

https://github.com/owncloud/core/pull/37512
https://github.com/owncloud/core/pull/37512
installation/system_requirements.pdf
installation/system_requirements.pdf#officially-recommended-supported-options

"Manual File Locking" section in the Settings › Admin › Additional settings or using
occ commands:

• Default timeout for the locks if not specified (in seconds): Maximum lifetime of a
lock set via the web interface (or by not specifying a timeout value when calling
the WebDAV Locks API)
occ config:app:set core lock_timeout_default --value 1800

• Maximum timeout for the locks (in seconds): Maximum lifetime of locks which is
allowed to be set by calling the WebDAV Locks API
occ config:app:set core lock_timeout_max --value 86400

By default locks set in the web interface will expire after 30 minutes. The expiration
time is bound to the individual locks and can’t be changed after locking. The maximum
lock time by default is one day.


Please change the lock expiration settings according to your needs.
Usually you will only need to change the default timeout as that applies
to locks set in the web interface.


The user-facing components in the web interface are disabled by
default. Administrators can enable the feature by executing the
following occ command:
occ config:app:set files enable_lock_file_action --value yes

Changes to the ownCloud Marketplace

The ownCloud Marketplace is opening up. With the release of Server 10.5, all apps
available on the Marketplace (including ownCloud Enterprise apps) are now also
available for download and installation via the Market app. This change facilitates the
process of getting started with ownCloud Server and of evaluating Enterprise
functionality. Additionally, it allows updates for all apps to be obtained from the
ownCloud Marketplace and ensures running up-to-date versions.

Changes in Delivery

In line with the changes to the Marketplace the deliverables for ownCloud Server have
been unified. Previously there were different Tarball bundles, Docker images and
Linux packages for the Community (bare minimum) and Enterprise (all supported
apps) Editions. Starting with Server 10.5 there are the following bundles which are
shipped via tarball, Docker images and Linux packages: - minimal bundle for the
Server and required components, semantically versioned (ownCloud-10.5.0) - complete
bundle for the Server and all supported apps, including the Enterprise features, not
semantically versioned as it always contains the latest versions of all supported apps
(ownCloud-complete-<date>)

The availability of Enterprise features now only depends on the license key. As part of
this process, the former enterprise_key app has been deprecated and is not used
anymore. New versions for all Enterprise apps have been released and included in the
Server 10.5 complete bundle. These are needed to work with PHP 7.4 and the new
licensing mechanism (see below).



When upgrading to Server 10.5 it is mandatory to upgrade all
apps to the latest versions as well to ensure compatibility with
the supported PHP versions and the new licensing mechanism.
Using the Server 10.5 complete bundle for upgrading you will
get the latest versions of all apps.

6 | Changes in 10.5.0



It is mandatory to disable the deprecated enterprise_key app when
upgrading. A migration step will do this automatically during the
upgrade procedure. Additionally, to prevent some corner cases when
accidentally using old versions of the enterprise_key app with the new
server version, the deliverables contain a non-functional enterprise_key
app (new version without any business logic) to avoid such scenarios.
This app will be removed completely in a future release.



Practically, for existing installations the change does not make a big
difference. Community installations will get all supported Community
and Enterprise apps in addition but they are disabled. For Enterprise
installations the bundles stay equal. After upgrading it is recommended
to check whether the desired apps are enabled/disabled.

New Enterprise Trial Mechanism

To facilitate the evaluation of ownCloud Enterprise functionality, Server 10.5 comes
with a new trial mechanism. Previously, the process to upgrade from a Community
installation to an Enterprise trial was not that easy.

With Server 10.5 this process has been changed and made easier: Along with the
changes to the Marketplace and in delivery, Enterprise functionality is available in
every installation after upgrading or installing, respectively. The apps can be enabled
like other apps which will start a grace period if no valid license key is present. During
this time the functionality can be fully used and the admin has some time to start a
trial. To start 30 days of Enterprise trial, a demo license key can be obtained from a
new landing page. As usual, if you do not have a valid license key after the grace
period or the 30 day trial, all Enterprise apps will become disabled again. The
administrator will be informed and guided to obtain the demo license and can enter it
in the web interface. If desired, the location of the landing page can be customized
using the config.php option 'grace_period.demo_key.link' ⇒ 'https://owncloud.com/try-
enterprise/'.

New Admin UI to Supply License Keys

As mentioned above, Server 10.5 adds new UI elements to set license keys in the
Settings › Admin › General settings. Keys added this way will be stored in the
database, not in config.php as before. Still, there is legacy support taking into account
when keys have been stored in config.php or license.config.php.

New Background Job for Change Detection in Federated Shares

With ownCloud Server 10.2.0 a background job for change detection of nested
federated shares was added (occ incoming-shares:poll) to allow ownCloud Server to
discover changes in federated shares in order to make them available for
synchronization with the ownCloud Clients. Based on feedback a new, improved
background job with more configuration options was added to Server 10.5. It replaces
the former occ command which is now deprecated and should not be used anymore
after upgrading to 10.5.

In addition to discovering changes ("check"), the new background job also
synchronizes meta data changes between involved servers ("scan") making them
available without requiring users to actively browse them.

The new background job provides some configuration options to optimize its
performance, especially for larger environments: - Minimum amount of hours since the
last login of a user that a scan is triggered (limits the execution of discovery & meta
data sync to active users which have logged in during the configured time frame)

Changes in 10.5.0 | 7

https://owncloud.com/try-enterprise/

(default: 24h)

occ config:app:set files_sharing cronjob_scan_external_min_login --value <integer-
seconds>

• Minimum amount of hours since the last scan of a federated share for the next scan
to be triggered (avoids frequently scanning the same federated share when it is in
active use) (default: 3h)

occ config:app:set files_sharing cronjob_scan_external_min_scan --value <integer-
seconds>

• Maximum amount of federated shares scanned per execution (scan is only
performed if changes in federated shares are discovered) (default: 100)

occ config:app:set files_sharing cronjob_scan_external_batch --value <integer-number>

The new background job is disabled by default and can be enabled/disabled in the
Settings › Admin › Sharing settings (Periodically synchronize outdated federated
shares for active users) or using
occ config:app:set files_sharing cronjob_scan_external_enabled --value yes.
If enabled, it will be executed as part of the regular ownCloud background job queue
and therefore does not need to be added to crontab.


If your instance provides federated sharing, activate the new
background job as explained above. TIP: Remove the occ incoming-
shares:poll command from crontab if you have set it.

Other Notable Changes

• The [Add to your ownCloud] feature on public link pages is now hidden if an
instance has outgoing federated shares disabled (specifically, if Allow users on this
server to send shares to other servers is disabled in Settings › Admin › Sharing
settings) #37232

• Improvements for Oracle DB support #37314
• Folder download (as ZIP/TAR archive) now preserves the modification times of the

contained files #37222
• Users with certain special names (UIDs) reserved by the system can’t be created

anymore #37268
• Performance improvements for SMB external storages #37451
• Strict LDAP login only using LDAP user name and password (instead of e.g., email

and password) can now be enforced using occ config:system:set --type boolean
--value true strict_login_enforced #37569

• Server 10.5 comes with a new background image on the login page and colors have
been adapted to ownCloud CI #37650

Solved Known Issues

• The known issue around sharing with numeric UIDs in 10.4.0 and 10.4.1 has been
fixed. #37336

Known issues

Currently there are no known issues with ownCloud Server 10.5.0. This section will be
updated when issues are discovered.

8 | Changes in 10.5.0

https://github.com/owncloud/core/pull/37232
https://github.com/owncloud/core/pull/37314
https://github.com/owncloud/core/pull/37222
https://github.com/owncloud/core/pull/37268
https://github.com/owncloud/core/pull/37451
https://github.com/owncloud/core/pull/37569
https://github.com/owncloud/core/pull/37650
https://github.com/owncloud/core/pull/37336

Changes in 10.4.1

ownCloud Server 10.4.1 is a bug fix and maintenance release. You can read the full
ownCloud Server changelog for further details on what has changed.

Notable changes

• The 10.4.0 known issue between Password Policy and user/group share expiration
is fixed. Server 10.4.1 and Password Policy 2.1.2 are required to resolve it. #37135

• Reshared public links are now shown to the share owner. #36865
• Externally encrypted files can now be downloaded. #36921
• Improvements have been added to make long-running downloads more stable.

#36978
• Pending federated shares are now also shown in the "Shared with you" tab and can

be accepted/declined there. #37022
• The files:transfer-ownership occ command can now also be executed for users who

have never logged in. #37038
• File download for files without a file extension from Google Drive external storages

now works. #37044
• The calculation of the remaining upload time in public links has been improved.

#37053
• E-mail notifications (e.g., for sharing) now respect the default_language config.php

option. #37039
• A new occ command (files:check-cache) is now available. It checks if a target file

can be read from the storage and cleans up stored information in ownCloud’s
filecache, in case a file disappears from the primary storage. This is mainly
important for object stores and should only be utilized in rare cases. #37067

Known issues

Sharing with Numeric UIDs

With Server 10.4.0 and 10.4.1, sharing resources with users that have numeric user
ids (e.g., "123") does not work in some cases. #37324

Apart from this patch release, please consider the ownCloud Server 10.4.0 release
notes, below.

Changes in 10.4.0

Dear ownCloud administrator, please find below the changes and known issues in
ownCloud Server 10.4 that need your attention. You can also read the full ownCloud
Server changelog for further details on what has changed.

Migrations

Upgrading from ownCloud Server 10.3.x to 10.4.0 does not involve database
migrations. The upgrade duration is, therefore, expected to be short.

PHP 7.0 Support Discontinued

As announced, in the previous release of ownCloud Server, from version 10.4 onward,
ownCloud no longer supports PHP 7.0. If you’re running on PHP 7.0, it is necessary
to upgrade PHP prior to conducting the upgrade to Server 10.4. We strongly

Changes in 10.4.1 | 9

https://owncloud.org/changelog/server/
https://owncloud.org/changelog/server/
https://github.com/owncloud/core/pull/37135
https://github.com/owncloud/core/pull/36865
https://github.com/owncloud/core/pull/36921
https://github.com/owncloud/core/pull/36978
https://github.com/owncloud/core/pull/37022
https://github.com/owncloud/core/pull/37038
https://github.com/owncloud/core/issues/37044
https://github.com/owncloud/core/pull/37053
https://github.com/owncloud/core/issues/37039
https://github.com/owncloud/core/pull/37067
https://github.com/owncloud/core/issues/37324
https://owncloud.com/changelog/server/
https://owncloud.com/changelog/server/

recommend upgrading to PHP 7.2 or 7.3. See the system requirements for more
information.


If you’re using the official Docker containers or the Univention
appliance, this has been taken care of already.

PHP 7.1 Deprecation Note

PHP 7.1 recently reached its end of life and is not maintained anymore. ownCloud
Server will, therefore, drop support in one of the next minor versions as well. If you’re
running on PHP < 7.2, please make sure to schedule an upgrade to PHP 7.2 or 7.3 as
soon as possible. See the system requirements for more information.

Expiration Date for User and Group Shares

To give users and administrators more control of access to resources, Server 10.4
introduces an expiration date for user and group shares, just like in public links. With
this new feature, users can control the lifetime of shares with other users or groups.
Administrators can choose to set a default maximum lifetime and to enforce it. To
integrate this change, the UI in the user/group sharing tab of the sidebar has been
adapted. When a resource is shared, the user and group entries are expandable and
collapsible using the cogwheel next to the trash bin icon to show/hide the permissions
and the expiration date field to maintain an overview. Additionally, to allow users to
recognize expiring shares at a glance, a new clock indicator will be shown next to the
cogwheel.

Administrators can configure the feature in the 'Sharing' section of the admin settings.

Sharing Information in Subfolders

ownCloud Server 10.4 puts the focus on user awareness for shared areas to prevent
accidentally sharing data or changing other users' data, as well as to make it easier for
users to recognize who has access to shared areas. Practically, users are better able to
recognize shared resources using a new share overlay indicator on file and folder
icons. The indicators are also applied to resources that are not directly shared but are
part of a share (when working in a shared folder).

Apart from that, the sharing sidebar panels have been improved to also show
users/groups and public links which have access through shares on parent folders.
These will be shown as static entries with a "via" indicator that allows users to jump to
the parent folder and to change the share properties, if desired.

This sharing information is only shown to share owners (users that created shares) as
other share recipients are not entitled to get detailed information about who else has
access.

MariaDB 10.4 and PostgreSQL 10 Support

The discontinuation of PHP 7.0 enables support for MariaDB up to version 10.4 and
PostgreSQL 10. Server 10.4 is thoroughly tested against these database versions and
proven to work stable.

Other Notable Changes

• External storages can now be mounted in read-only mode. #36397
• Filter options (--enabled and --disabled) have been added to the occ app:list

command to only show enabled or disabled apps, respectively. #36520
• Support for Oracle DB connection strings has been added to be able to use Oracle-

10 | Changes in 10.4.0

installation/system_requirements.pdf
https://secure.php.net/supported-versions.php
installation/system_requirements.pdf
https://github.com/owncloud/core/pull/36397
https://github.com/owncloud/core/pull/36520

specific configuration settings like failover. #36489
• Two new config.php options (blacklisted_files_regex and excluded_directories_regex)

have been added to allow excluding files and folders from ownCloud using regular
expressions (e.g., to prevent creating/renaming/scanning certain file types like
".pst"). See config.sample.php for more information. #36360

• Previously, when a settings section did not have any panels to display, an "Error"
was shown. This has been changed to be more user-friendly. #36776

• The memory consumption of the occ files:checksums:verify command has been
optimized, and the command will now show progress information. #36787

• The memory consumption of the trash bin expiration background job has been
optimized. #36565

Solved Known Issues

• Folder download via the web interface now works in macOS Catalina. #36722
• User creation now allows "" characters in the user id (e.g., to invite guests with

mail addresses containing ""). For the change to take effect, you also need to
upgrade the guests and/or user_ldap apps to the latest version. #36613

• File locking actions are not available for public link endpoints anymore. #36402
• occ files:transfer-ownership now works in S3 multi-bucket setups. #36464
• The "Notify by email" button in users/groups sharing now also works when the

initiator does not have an email address set. #36505
• Remaining .part files from unfinished uploads via public links will now be cleaned

up. #36761
• The quota usage calculation of the trash bin retention has been fixed. Previously, it

mistakenly counted the space usage of incoming shares toward the user’s quota
usage leading to undesired behavior, e.g., when trashbin_retention_obligation was
set to auto, the user had a quota set and incoming shares exceeded 50% of this
quota. #36494

• The command to sync single users from external user backends like LDAP (occ
user:sync -u 'username') does not abort anymore if multiple users matching the
search term are returned (e.g., 'alice' could return 'alice' and 'alice1'). It will only
abort if none of the results matches the search term (e.g., 'alice' returns 'alice1'
and 'alice2'). #36576

• When sharing with both a user and a group with the same name, adjusting the
permissions of the second entry works again. #36813

For Developers

• The WebDAV Trash bin API and the WebDAV endpoint for public links (introduced
with 10.3.0) have left the tech preview state. They are considered stable and are
enabled by default.

• The config.php option to enable/disable tech preview APIs
('dav.enable.tech_preview' ⇒ true) has been removed as it’s obsolete. #36815

• A new OCS User Sync API to trigger user sync from external user backends has
been added. This allows external user provisioning systems to push new users to
ownCloud on demand and removes the necessity to do full user sync. #36428

Known Issues

Changes in 10.4.0 | 11

https://github.com/owncloud/core/pull/36489
https://github.com/owncloud/core/pull/36360
https://github.com/owncloud/core/pull/36776
https://github.com/owncloud/core/pull/36787
https://github.com/owncloud/core/pull/36565
https://github.com/owncloud/core/pull/36722
https://github.com/owncloud/core/pull/36613
https://github.com/owncloud/core/pull/36402
https://github.com/owncloud/core/pull/36464
https://github.com/owncloud/core/pull/36505
https://github.com/owncloud/core/pull/36761
https://github.com/owncloud/core/pull/36494
https://github.com/owncloud/core/pull/36576
https://github.com/owncloud/core/issues/36813
developer_manual:webdav_api/trashbin.pdf
developer_manual:webdav_api/public_files.pdf
https://github.com/owncloud/core/pull/36815
developer_manual:developer_manual/core/apis/ocs/user-sync-api.pdf
https://github.com/owncloud/core/pull/36428

Password Policy App

If the public link expiration policy "days maximum until link expires if password is not
set" is enabled, sharing with users and groups will not work. A fix for this issue is
currently being developed. If you have already upgraded to ownCloud 10.4.0, please
disable this option until the fix is available and deployed on your system. #287

This issue has been resolved with ownCloud Server 10.4.1.

Sharing with Numeric UIDs

With Server 10.4.0 and 10.4.1, sharing resources with users that have numeric user
ids (e.g., "123") does not work in some cases. #37324

Changes in 10.3.2

ownCloud Server 10.3.2 is a bug fix and maintenance release. You can read the full
ownCloud Server changelog for further details on what has changed.

Notable changes

• Guest sharing works now even when the sharing restriction Restrict users to only
share with users in their groups is enabled #36384

• When creating a public link on a received shared resource (reshare), users can now
send the public link via mail using the web interface if the feature is enabled
#36386

• occ system:cron now only shows output when errors occur or when the --progress
option is added #36298

• occ files:transfer-ownership does not collect shares outside of the given path
anymore preventing errors #36222

• The accounts.enable_medial_search config.php setting now also respects federated
user search #36225

• When using multi-bucket object storage, versioning information is now stored on
the object storage instead of the database #36329

• When using the share_folder config.php option, the defined folder and its parents
can’t be shared anymore #36241

• Files/folders can again be shared when a user and a group have the same name
#35488

• occ files_external:list can now list mount options by adding --mount-options #36420

Apart from this patch release, please consider the ownCloud Server 10.3.0 release
notes, below.

Changes in 10.3.1

ownCloud Server 10.3.1 is a bug fix and maintenance follow-up release. You can read
the full ownCloud Server changelog for further details on what has changed. It is
recommended to schedule an upgrade to this version soon.

Apart from this patch release, please consider the ownCloud Server 10.3.0 release
notes, below.

Changes in 10.3.0

Dear ownCloud administrator, please find, below, the changes and known issues in

12 | Changes in 10.3.2

https://github.com/owncloud/password_policy/issues/287
https://github.com/owncloud/core/issues/37324
https://owncloud.org/changelog/server/
https://owncloud.org/changelog/server/
https://github.com/owncloud/core/pull/36384
https://github.com/owncloud/core/issues/36386
https://github.com/owncloud/core/issues/36298
https://github.com/owncloud/core/pull/36222
https://github.com/owncloud/core/pull/36225
https://github.com/owncloud/core/pull/36329
https://github.com/owncloud/core/issues/36241
https://github.com/owncloud/core/issues/35488
https://github.com/owncloud/core/pull/36420
https://owncloud.org/changelog/server/

ownCloud Server 10.3 that need your attention. You can also read the full ownCloud
Server changelog for further details on what has changed.

Migrations

• For improved compliance with the OpenCloudMesh protocol specification
(Federation) a migration step will convert the fields of the remoteId column of the
federated_reshares and share_external tables from int to string. This migration
might increase the upgrade duration depending on the number of federated shares.

• A repair step has been added that drops the deprecated contacts_cards_properties
table. This migration is not expected to increase the upgrade duration significantly.

• A housekeeping repair step for the oc_properties table removes existing entries
which have fileid with value null and restrict the further creation of such. This
repair step is not expected to increase the upgrade duration significantly.

Official PHP 7.3 support

ownCloud Server 10.3 officially supports PHP 7.3. The Server Core and all apps
maintained by ownCloud have received a full QA cycle and are proven to work reliably
with PHP 7.3. If you are still using version 5.6, you must upgrade PHP before
upgrading ownCloud Server as it’s not supported anymore since ownCloud Server
10.2. If you are still running PHP 7.0 or 7.1, please plan an upgrade soon as these
versions are or will soon be unsupported, respectively. See the system requirements in
the ownCloud Documentation for more information.

PHP 7.0 deprecation note

As announced with ownCloud Server 10.0.8 and 10.2.0, support for PHP 7.0 is
discontinued. The next minor version of ownCloud Server (around the end of 2019) no
longer supports PHP 7.0. If you are still running on PHP 7.0, please make sure to
plan an upgrade to PHP >= 7.2 to stay compatible.

Changes to background job execution

For code cleanup reasons, the execution of background jobs (e.g., for public link
expiration, trash bin emptying, cleanup of old file versions) has been changed.

The following changes require manual interaction in your installation:

• If you’re using System cron to trigger background job execution, there is a new occ
command (occ system:cron) which executes the background jobs. To make use of it,
you have to change the entry in crontab. Instead of executing cron.php (e.g.,
/usr/bin/php -f /path/to/your/owncloud/cron.php), cron should use occ system:cron
(e.g., sudo -u www-data php occ system:cron). As a fallback, cron.php will continue
to work with Server 10.3 but will be removed in a later version.

• If you’re using Webcron to trigger background job execution you now have to call
the new route ../cron instead of ../cron.php. As a fallback, ../cron.php will continue
to work with Server 10.3 but will be removed in a later version.

 See the occ System documentation for more information.


In a later version of ownCloud Server, cron.php will be removed. Please
apply the changes to ensure that background jobs continue to work.

Changes in 10.3.0 | 13

https://owncloud.org/changelog/server/
https://owncloud.org/changelog/server/
https://github.com/owncloud/core/pull/35122
https://github.com/owncloud/core/pull/35721
https://github.com/owncloud/core/pull/36084
https://www.php.net/supported-versions.php
installation/system_requirements.pdf#officially-recommended-supported-options
installation/system_requirements.pdf#officially-recommended-supported-options
admin_manual/configuration/server/background_jobs_configuration.pdf#cron
admin_manual/configuration/server/background_jobs_configuration.pdf#webcron
configuration/server/occ_command.pdf#system


If your ownCloud deployment is based on the official Docker images or
the Univention appliance, these changes have already been applied for
you.

Media Viewer replaces Gallery and Video Player

The Media Viewer app has recently been released. The Media Viewer is the next
generation image and video file viewer for ownCloud. It provides a foundation based
on new technologies and officially supersedes the former gallery and files_videoplayer
apps. ownCloud Server 10.3 does not bundle gallery and files_videoplayer anymore.
Instead, it bundles files_mediaviewer. With this change, support and maintenance for
gallery and files_videoplayer are discontinued. More details on the Media Viewer can
be found in the release blog post.

• For a clean transition to Media Viewer, it is necessary to disable both deprecated
apps before the upgrade using either the admin "Apps" panel in the web
interface or via occ (e.g., occ app:disable gallery followed by occ app:disable
files_videoplayer).

• After the upgrade, enable the Media Viewer app via the admin panel or occ
app:enable files_mediaviewer.

• It is not recommended to continue with the deprecated apps. However, if you want
to do so, you can copy over the files_videoplayer directory from the apps/ folder of
the previous ownCloud Server directory and obtain gallery from the ownCloud
Marketplace.


Please do not enable gallery/files_videoplayer and files_mediaviewer
simultaneously, as these apps are mutually exclusive.

For more information on the Media Viewer app, visit the ownCloud Documentation.

OAuth2 and session handling improvements

Server 10.3 comes with improvements for session handling with Redis. These are
designed to cope with issues encountered around duplicate session tokens, which
make the ownCloud Clients lose their OAuth2 authorization from time to time, and
force users to re-authenticate.

The session handling in ownCloud 10.3.0 has been generally improved, making user
and client sessions more stable. If Redis is used for session handling, it is necessary to
enable Session Locking to ensure that the mentioned issues no longer occur.


You can find out if Redis session handling is configured in your web
server if you generate an ownCloud Configreport in the web interface.
You will find the value session.save_handler set to redis.

• It is recommended to use Redis Session Locking if Redis is used for session
handling (minimum required version for php-redis is 4.1.0)

• Enable Redis Session Locking by setting redis.session.locking_enabled = 1 in
php.ini


If Redis is just used as a memory cache or not in use at all, you do not
have to apply changes.


Please note that Redis Session Locking is not supported in clustered
Redis environments.

14 | Changes in 10.3.0

https://marketplace.owncloud.com/apps/files_mediaviewer
https://owncloud.org/news/good-bye-gallery-say-hi-to-the-new-media-viewer/
https://marketplace.owncloud.com/apps/gallery
https://marketplace.owncloud.com/apps/gallery
admin_manual/installation/apps/mediaviewer/index.pdf


If your ownCloud deployment is based on the official Docker images or
the Univention appliance, you do not have to apply changes as Redis is
not used for session handling (unless you configured it differently using
ENV variables).

Restructured user/group sharing autocompletion

To cope for long user names or additional user information and to provide a better
overview for users, the user/group sharing autocompletion dropdown has been
restructured. The available information is now distributed vertically to improve space
usage and user experience. Screenshots are available in the pull request. Other
ownCloud clients will align with this behavior with the next releases.

SWIFT object storage as primary & secondary storage removed

Following the deprecation announcement with ownCloud Server 10.0.9, support for
primary and secondary storage via the OpenStack SWIFT protocol has been removed.
Please get in contact with ownCloud Support if you’re still using OpenStack SWIFT
and want to upgrade.

S3 object storage as secondary storage is now a separate app

The extension to integrate S3 object storages as secondary storages (files_external_s3)
has been updated, unbundled from ownCloud Server (was previously part of
files_external) and released to the ownCloud Marketplace. If you’re using S3 external
storage mounts, you have to conduct some steps to ensure continuous operation after
upgrading to Server 10.3:

• After the upgrade to Server 10.3 has finished successfully, keep the maintenance
mode activated and install/enable files_external_s3 (either manually or via the
Market app) as the app is not bundled with ownCloud Server anymore.

• If users were allowed to configure personal mount points before the upgrade,
switch from maintenance mode into single user mode (occ maintenance:singleuser
--on) and enable the option again by ticking the respective checkbox (Amazon S3)
below "Allow users to mount external storage" (in Admin settings ⇒ Storage).

• Existing storage mount points will remain and do not have to be touched.
• Make sure that everything works and disable maintenance/single-user mode to put

the installation back into normal operations (occ maintance:mode --off / occ
maintenance:singleuser --off).

New HTTP APIs

ownCloud Server is being prepared for Phoenix, the upcoming web frontend for
ownCloud. As Phoenix is separated from the backend and communicates only via
HTTP APIs, it is necessary to complete the API coverage.

The following new HTTP APIs have been added with Server 10.3:

• WebDAV Trash bin API.
• OCS API for public link share email notifications
• WebDAV endpoint for public links.

All new endpoints are currently in tech preview state and are mainly used for Phoenix
development. For this reason, they are disabled by default and have to be explicitly
enabled using the new config.php option: 'dav.enable.tech_preview' ⇒ true,.

Changes in 10.3.0 | 15

https://github.com/owncloud/core/pull/35397
https://marketplace.owncloud.com/apps/files_external_s3
https://owncloud.org/news/owncloud-phoenix-rebirth-of-the-owncloud-user-interface/
developer_manual:webdav_api/trashbin.html
developer_manual:core/apis/ocs-notify-public-link-by-email.pdf
developer_manual:webdav_api/public_files.pdf

Other notable changes

• The previews_path config option has been added to allow customization of the
thumbnail storage path (by default those reside in the user storage). #35131

• An Activity entry is now shown when a share receiver unshares a share. #35193
• The WebUI experience on mobile devices has been improved. #35919 #35813

#35347 #34803
• The config.php options proxy and proxyuserpwd will now be respected to enable

federation when an instance needs to go through an authenticated proxy to reach a
federated instance. See config.sample.php and the Federated Cloud Sharing
Configuration documentation for more information.

• The occ files:scan command is now case-insensitive for the userid. #35324
• A new config.php option (dav.enable.tech_preview) has been added to disable tech

preview APIs by default. #36124
• [PHOENIX] Support for redirecting links to ownCloud Phoenix frontend has been

added by introducing a new config.php option which stores the address where
Phoenix is reachable (e.g., 'phoenix.baseUrl' ⇒ 'http://phoenix.example.tld:port').
#35819

• The performance when loading groups of users has been improved. #35822
• Memory handling for the trashbin expiry background job has been improved.

#35708

Solved known issues

• A new occ command, encryption:fix-encrypted-version, has been introduced to
address issues related to encrypted files no longer being accessible. This originated
from a security measure to avoid that encrypted files with the same content look
identical. In some cases, users get a Bad Signature error when trying to access
files. The new command corrects this behavior, making files accessible again. The
command only needs to be run if users report the mentioned error. #115

• If an instance uses the share_folder config.php option to gather incoming user
shares in a specific folder, this folder cannot be deleted by users anymore. #35998

• The share_folder config.php option now also respects federated shares. #35396
• The user.min_search_length config.php option now also respects federated users.

#35977
• Issues with database conversions using the db:convert-type occ command (e.g.,

SQLite to MySQL) have been fixed. This is still in an experimental state and should
be tested thoroughly. Please provide feedback if you encounter issues. #35390

• File integrity checking has been improved to prevent issues: If a checksum
mismatch occurs after uploading a file, the uploaded file and its checksum is
deleted to prepare for a clean re-upload. #35294

• User/group sharing permission handling
◦ When a share recipient shared a resource with a group the resource owner was

a member of (reshare), the resource owner was unable to increase the
permissions of the initial share. This has now been fixed. #35884

◦ When a user shared a resource with a group, share recipients (members of the
group) were able to remove the share altogether (instead of just unsharing from
themselves). This has been fixed. #36120

• External storages now return StorageNotAvailable correctly on temporary network
failures to prevent associated issues (e.g., Desktop clients will not delete local
folders anymore when the storage is temporarily not available). #35707

16 | Changes in 10.3.0

https://github.com/owncloud/core/pull/35131
https://github.com/owncloud/core/pull/35193
https://github.com/owncloud/core/pull/35919
https://github.com/owncloud/core/pull/35813
https://github.com/owncloud/core/pull/35347
https://github.com/owncloud/core/pull/34803
configuration/files/federated_cloud_sharing_configuration.pdf#working-with-proxies
configuration/files/federated_cloud_sharing_configuration.pdf#working-with-proxies
https://github.com/owncloud/core/pull/35324
https://github.com/owncloud/core/issues/36124
https://github.com/owncloud/core/pull/35819
https://github.com/owncloud/core/pull/35822
https://github.com/owncloud/core/pull/35708
https://github.com/owncloud/encryption/pull/115
https://github.com/owncloud/core/pull/35998
https://github.com/owncloud/core/pull/35396
https://github.com/owncloud/core/pull/35977
https://github.com/owncloud/core/pull/35390
https://github.com/owncloud/core/pull/35294
https://github.com/owncloud/core/pull/35884
https://github.com/owncloud/core/pull/36120
https://github.com/owncloud/core/pull/35707

• External storage: Multiple Google Drive external storages can be added again.
#34987

• The input fields in user administration are not captured by password manager
autocompletion anymore. #35931

• Storage encryption with a master key in an HSM: Recreating a master key works
again. #128

For developers

• Tech preview for WebDAV Trash bin API (disabled by default). #35716 #35879
• Tech preview for OCS API for public link share email notifications (disabled by

default). #36063
• Tech preview DAV endpoint for public shares (disabled by default). #35932
• Two-factor providers may now display custom challenge messages. #34848
• The theming capabilities have been improved by allowing HTML for Name and

LogoClaim. Please check the changes to owncloud/theme-example if you are
interested in making use of this in your theme. #35273

• A new Roles API has been added to allow clients to query the server for available
permissions/roles for user/group sharing and public links. In future client releases,
this endpoint will be used to dynamically display roles/permissions depending on
the server’s capabilities. You can find out more about it in the Roles API
documentation.

• A new, improved version of the "Advanced Sharing Permissions" JavaScript API (v2)
has been added to allow ownCloud apps to register additional
permissions/restrictions in user/group sharing. Version 1 of the API is still available
in parallel. #35863

Known issues

 This section will be updated if further issues become known.

• WebDAV Locks: When a file in a folder is locked, exclusively locking the parent
folder currently still works ("conflicting lock"; divergent from RFC 4918))

Changes in 10.2.1

ownCloud Server 10.2.1 is a bug fix and maintenance release taking care of several
bugs and known issues. Please find, below, the changes in ownCloud Server 10.2.1
that need your attention. You can also read the full ownCloud Server changelog for
further details on what has changed. It is recommended to schedule an upgrade to this
version soon, especially if you’re running 10.2.0 already.

 No occ upgrade is required when upgrading from 10.2.0.

Improved Performance For Storage Encryption With Master Key

ownCloud Server offers two ways for key management with storage encryption. Either
a central master key pair or individual user key pairs are used to encrypt/decrypt data.
Previously both modes used the same mechanisms which resulted in potentially
significant overhead when master key encryption was used as user key encryption
relies on so-called share keys which are necessary to allow share recipients to decrypt
shared files.

With master key encryption, share keys are redundant as you have one central key

Changes in 10.2.1 | 17

https://github.com/owncloud/core/pull/34987
https://github.com/owncloud/core/pull/35931
https://github.com/owncloud/encryption/pull/128
https://github.com/owncloud/core/pull/35716
https://github.com/owncloud/core/pull/35879
https://github.com/owncloud/core/pull/36063
https://github.com/owncloud/core/pull/35932
https://github.com/owncloud/core/issues/34848
https://github.com/owncloud/theme-example/pull/7/files
https://github.com/owncloud/core/pull/35273
developer_manual:core/apis/roles-api.pdf
developer_manual:core/apis/roles-api.pdf
https://github.com/owncloud/core/pull/35836
https://tools.ietf.org/html/rfc4918#section-7.4)
https://owncloud.org/changelog/server/

that can be used to decrypt all files. Version 10.2.1 corrects this behavior by dropping
share keys for master key encryption, thereby increasing the performance
dramatically, especially when sharing folders with many files as said keys do not have
to be generated anymore for each file.

Solved Issues

• Fixed reshare permission issue
An issue in the Sharing API allowed users to increase sharing permissions beyond
their own permissions in a reshare scenario: When user A shares a folder "Project"
with user B, granting only read and share permission, then the Sharing API allowed
user B to reshare a subfolder of "Project" with user C granting full permissions or
to create a public link on the shared folder, respectively. This undesired behavior is
fixed with 10.2.1.

• Fixed issue with Sharing API and enforced public link expiration dates
An issue in the Sharing API caused the ownCloud clients to prevent users from
creating public links when the option "Enforce expiration date" for public links is in
use. This is now solved.

• Fixed known issue with user avatar paths
Version 10.2.0 accidentally changed the location of user avatars making them
unavailable and storing uploaded avatar images in the wrong location. 10.2.1
restores the earlier behavior and provides a repair step to move back the avatar
images uploaded with 10.2.0 to the right location. As it is not necessary nor
possible to run occ upgrade when upgrading from 10.2.0 to this patch release, if
you are already running 10.2.0 then after installing 10.2.1 you need to run occ
maintenance:repair -s 'OC\Repair\MoveAvatarIntoSubFolder' manually to
trigger the repair step.

• Fixed known issue with "Password changed" HTML emails rendered in plain
text

• Fixed use of invalid token on password reset
Password reset links sent to a user were invalid, if the user attempted to login
using their e-mail address and an invalid password prior to filling out and
submitting the Reset Password form.

• Fixed issue when removing a user from a group
Removing a user from a group using the user management UI resulted in an error
that required the page to be refreshed to show the changes. This has been
corrected.

• Added -y option to occ encryption:encrypt-all command
The occ command encryption:encrypt-all now offers a -y option that can be used to
automatically answer potential questions with "yes" which is particularly important
for automated deployments with Ansible or similar tools.

• Fixed an issue with loading JS files when multiple apps folders are in use
Previously ownCloud would have taken the files from the apps/ folder even though
there might be newer versions in e.g. apps-external. This has been changed so that
ownCloud will always take the files from the most recent app version.


Apart from this patch release, please consider the ownCloud Server
10.2.0 release notes.

Changes in 10.2.0

Dear ownCloud administrator, please find, below, the changes and known issues in
ownCloud Server 10.2 that need your attention. You can also read the full ownCloud
Server changelog for further details on what has changed.

18 | Changes in 10.2.0

https://doc.owncloud.com/server/admin_manual/release_notes.html#known-issues
https://owncloud.org/changelog/server/
https://owncloud.org/changelog/server/

Migrations

Please note that this minor release contains database migrations which impact the
upgrade duration. Specifically:

• The oc_share table has a new column. The time the upgrade takes for this change
depends on the number of shares in your ownCloud installation.

• The oc_authtoken table’s login name column size has been increased. The time the
upgrade takes for this change depends on the number of recently logged in users,
and the number of app passwords that have been created.

PHP 5.6 Deprecation

Following up the PHP 5.6/7.0 deprecation notice in the ownCloud Server 10.0.8
releases ownCloud Server 10.2 does not support PHP 5.6 and some apps no longer
support older PHP versions. Additionally, PHP 7.3 support will be available in an
upcoming version.

If you’re still running PHP 5.6, you must upgrade to PHP 7 before upgrading to
ownCloud Server 10.2. Please be aware that apps that do not support outdated PHP
versions will not upgrade.

 See the system requirements in the ownCloud documentation.

To allow for additional upgrade time, version 10.2 still supports PHP 7.0, because
some of the major Linux distributions continue to support it. However, support for PHP
7.0 will be discontinued in an upcoming version of ownCloud 10, to enhance both
security and performance. To prepare for this change, we strongly encourage you to
begin planning an upgrade as soon as possible.

Advanced Sharing Permissions

The new server version introduces the means for extensions to implement additional,
advanced permissions for user and group sharing. This feature increases sharing
flexibility and opens the doors for extension developers to introduce new functionality
based on sharing permissions.

Especially, considering collaborative editing solutions, this addition provides the
foundation for mode-based document sharing, such as "view-only", "comments-only" or
"enforce change tracking". In the future, such advanced permissions should
significantly improve the security as well as the usability of review processes, working
on Office documents collaboratively, or exchanging information securely.

Based on the new capabilities a set of features has been developed together with
Collabora Online, called Secure View. Secure View is designed to enable information
distribution processes for sensitive data, meaning that information can be provided
securely yet can — under no circumstances — leave the platform.

Practically, it enables users to share documents (such as docx, xlsx, pptx, and PDF
files) in such a way that the recipient can’t edit, download, copy and paste, nor print
them. Additional protection for screenshots and photos is provided by watermarks
which display user information. What’s more, users can decide to allow printing and
exporting of documents protected by watermarks as well.

More Granular Permissions for Public Links on Folders

With ownCloud Server 10.2, the former "Download / View / Upload" permission has
been renamed to "Download / View / Edit", as this better reflects its behavior (full
permissions). Additionally, a new permission ("Download / View / Upload") has been

Changes in 10.2.0 | 19

installation/system_requirements.pdf#officially-recommended-supported-options
https://github.com/owncloud/core/issues/34951

introduced which allows recipients to view, download, and upload contents but not to
make any changes to existing content (e.g., rename, move, delete, update). Another
way of looking at it is as a public file drop folder for distributing and gathering
information with a single link, yet which prevents recipients from altering the existing
content.

Storage Encryption with Master Key in HSM

With version 10.2, ownCloud Server officially supports storage encryption with master
keys stored in hardware security modules (HSM). In contrast to regular master key-
based storage encryption, which stores the keys on the storage, storage encryption
with keys in an HSM allows administrators to completely prevent anyone with access
to the storage from accessing the data stored in ownCloud.

As a result, the bundled encryption app has been updated to support HSM, and a
standalone service (hsmdaemon) that connects ownCloud Server and the HSM device
is now available within ownCloud Enterprise Edition. To get started with storage
encryption and HSM, please get in touch with us. For more information around the
different encryption types ownCloud offers, consider this whitepaper.

Background Job for Change Detection of Nested Federated Shares

When using federation to share data across ownCloud instances, deeply nested folders
(e.g., folders with many sub-items) are not discovered automatically for performance
reasons. This leads to several issues such as the ownCloud Desktop Client not being
able to synchronize newly added or changed content unless the user navigates down
the hierarchy using the web interface, which manually triggers content discovery.

Also, the size of such folders can’t be calculated, showing "Pending" instead, until the
discovery is manually triggered. To help alleviate this problem, a new occ command
has been introduced. It can be executed regularly as a background job to discover
federated shares (occ incoming-shares:poll). This is aimed at handling this issue while
providing the means for administrators to control resource usage.

When using federation, it is recommended to execute occ incoming-shares:poll
regularly using Cron jobs. The time interval to choose between executions is a trade-
off between the availability of changes in federated shares and resource consumption,
which naturally depends a lot on the number of federated shares and the frequency of
changes within those shares.

Executing the command once per 12 hours should be safe enough for any instance.
However, the interval could be reduced to once per 2 hours for instances with a low
number of federated shares.

Depending on the desired resource consumption this value should be lowered or
increased based on individual expectations. To find a value that fits a specific setup, it
is recommended to execute the command once, measure the execution time and set
the interval so that the background job can finish before the next execution is
triggered.

New Option to Automatically Accept Federated Shares from Trusted
Servers

ownCloud Server 10.0.9 introduced the Pending Shares feature which allows users
to decide whether or not they want to accept local user shares instead of just making
the decision for them, giving more control thereby. In contrast, Federated shares
always had to be accepted as they can originate from external, potentially untrusted,
sources.

20 | Changes in 10.2.0

https://owncloud.com/contact/
https://oc.owncloud.com/rs/038-KRL-592/images/Whitepaper_Data_Protection_and_Data_Secrecy_in_ownCloud_EN.pdf
https://github.com/owncloud/docs/issues/856
https://github.com/owncloud/docs/issues/856
configuration/server/background_jobs_configuration.pdf#cron-jobs
release_notes.pdf#pending-shares
release_notes.pdf#pending-shares
release_notes.pdf#pending-shares

ownCloud Server 10.2 introduces a global option to automatically accept federated
shares originating from trusted servers. This option enables providers of several
instances (e.g., an external and an internal instance) to facilitate or automate data
exchange between them, not requiring users to accept shares.


For security reasons, federated shares from untrusted servers will
never be accepted automatically.

New Privacy and Self-Service Options for Users

In the spirit of self-service, ownCloud Server 10.2 introduces new options for users
that previously were reserved for global admin settings:

• As discussed in the section above, there are global options for Pending Shares
regarding federated as well as regular user/group shares. To give users more
control over the sharing behavior in the scope of their account, user-based override
options were introduced that allow users to enable/disable Pending Shares for
themselves if the instance’s global setting is disabled (when "Automatically accept
new incoming local user shares" is enabled). The two new checkboxes can be found
in the 'Sharing' settings panel of personal settings.

• In addition to the option "Allow username autocompletion in share dialog" in the
global 'Sharing' settings, users can now autonomously decide to opt-out of
autocompletion to protect their privacy. When enabled, other users need to enter a
user’s full identifier to be able to share with them. This option is not a general
override but an opt-out, meaning it can only be used when "Allow username
autocompletion in share dialog" is enabled. The new checkbox is available in the
'Sharing' settings panel of personal settings.

Other Notable Changes

• Added email footer with motto in email for changing passwords. If you use
customized email templates, it is necessary to adapt those to incorporate the footer.
Please compare the original templates with your custom templates
(core/templates/lostpassword/notify.php and
core/templates/lostpassword/altnotify.php).

• Repair steps can now be executed individually in case one would need to be
run again. Repair steps are employed to clean up and resolve issues from former
versions. Usually, they run during upgrades, but some scenarios make it necessary
to rerun them. To save time when only specific steps need to be taken,
administrators can now individually execute them using occ maintenance:repair
--list and occ maintenance:repair --single "<repair step>".

• Command for the first run wizard to reset for all users. In some cases,
administrators customize the First Run Wizard in order to distribute information to
users. Using occ firstrunwizard:reset-all you can reset the popup so that it will
appear for each user upon their next login.

• Added checkboxes to hide quota and password in user management. The
columns in user management have been made more flexible. Using the bottom left
cog wheel you can now show/hide the columns for Quota and Password.

• By default, the "apps-external" directory is included in config.php during
installation. For new installations, there will be two apps directories so that the
bundled apps are distinguishable from the apps that were installed or updated by
the administrator. Existing installations will not change but, generally, this
separation is recommended in all scenarios, as it makes upgrading easier and less
error-prone.

• Update the occ files:scan --group and --groups options. The occ files:scan
command is used to scan resources on the storage and make them available in

Changes in 10.2.0 | 21

admin_manual/configuration/files/federated_cloud_sharing_configuration.pdf#configuring-trusted-owncloud-servers
admin_manual/configuration/files/federated_cloud_sharing_configuration.pdf#configuring-trusted-owncloud-servers
installation/apps_management_installation.pdf#using-custom-app-directories
installation/apps_management_installation.pdf#using-custom-app-directories

ownCloud. While previously it could only be used for all or single users and groups
of users, you can now also execute it for groups where the group name contains a
comma.

• Allow administrators to enable/disable medial search for users and groups.
Medial search is used to get search results when typing keys within a search term
in autocomplete fields (e.g. when typing "ter" you’ll find "Peter"). Depending on the
configuration of available search terms (e.g., attributes from LDAP), search results
can deliver better results without medial search. For these reasons medial search
can now be enabled/disabled for user ('accounts.enable_medial_search') and group
('groups.enable_medial_search') search. See config.sample.php for more
information.

• Added a new occ command, background:queue:execute, for running cron jobs
manually.

• Added two new occ background:queue commands: status and delete.
◦ status lists the current background job queue status
◦ delete removes a single background job, identified by its id.

Solved Known Issues

• Fixed public link share default expiration behavior #34971. Previously, when a
default expiration date for public links had been set by an administrator (without
enforcement option), the default value has been applied upon link creation even
when a user removed it. The only way to create a link without expiration date was
to subsequently edit it and remove the expiration date. This has been fixed to work
as expected.

• Better support for international email addresses after Swiftmailer update #34759
• Improved speed of apps list settings page by caching integrity check results

#34584
• Improved upgrade speed when migrating avatars from oC < 10 #34592
• Improved performance and memory usage of account sync service #34546
• Store quota overrides in the oc_preferences table #34467. In former versions,

functionality has been introduced to preserve quota values either imported via
LDAP attributes against manual changes by the administrator in ownCloud user
management, or via the provisioning API. This functionality works again properly. If
you sync accounts from LDAP and have a quota attribute specified in LDAP, each
user:sync run will set the quota values to the ones from LDAP, no matter if they
were changed manually.

• Images are again properly rotated now based on EXIF rotation, also affects gallery
app #34356

• An exception is logged when a background job class is not found - 34723

Known Issues

 This section will be updated if further issues become known.

• Server 10.2 accidentally changes the location of user avatars on the storage from
data/avatars/.. to data/.., making existing avatars unavailable and storing uploaded
avatar images in the wrong location. The next release will correct the behavior.

• The HTML email that confirms a successful password change is rendered in plain
text. Please apply this patch to fix the issue.

• WebDAV Locks: When a file in a folder is locked, exclusively locking the parent
folder currently still works ("conflicting lock"; divergent from RFC 4918))

22 | Changes in 10.2.0

https://github.com/owncloud/core/blob/stable10/config/config.sample.php#L285
https://github.com/owncloud/core/issues/34971
https://github.com/owncloud/core/issues/34759
https://github.com/owncloud/core/issues/34584
https://github.com/owncloud/core/issues/34592
https://github.com/owncloud/core/issues/34546
https://github.com/owncloud/core/issues/34467
https://github.com/owncloud/core/issues/34356
https://github.com/owncloud/core/issues/34723
https://github.com/owncloud/core/issues/35311
https://patch-diff.githubusercontent.com/raw/owncloud/core/pull/35260.patch
https://tools.ietf.org/html/rfc4918#section-7.4)

For Developers

• It is now possible for apps to specify extra permissions for shares #34951
• Add before-after share link auth events #34399
• Add events for user preference changes #34820
• Added CORS headers for many existing API calls, required for Phoenix #34476
• Remove classes that were deprecated since OC 8.0.0: OCP\Config,

OCP\PERMISSION_XXX, OCP\Template #34927
• A capability has been added to the Capabilities API to allow clients to check

whether the server supports the details parameter for private links, e.g., as a direct
link to a resource’s sharing or versions tab in the web interface #35104

Changes in 10.1.1

ownCloud Server 10.1.1 is a hotfix follow-up release that takes care of an issue with
loading updated apps. Instead of updating the app versions to their new values in the
database, the old version value is written causing the process to repeat with every
request.

This issue can cause high load on the database, especially in large installations. If you
have already upgraded to 10.1.0, we strongly recommend upgrading to 10.1.1. You can
expect minimal downtime for the upgrade to this patch release.

Apart from this patch release, please consider the ownCloud Server 10.1.0 release
notes.

Changes in 10.1.0

Dear ownCloud administrator, please find below the changes and known issues in
ownCloud Server 10.1 that need your attention. You can also read the full ownCloud
Server changelog for further details on what has changed.

Semantic Versioning

Starting with this release, ownCloud Server and the app ecosystem will follow the
principles of Semantic Versioning. This step was taken to benefit operators by clearly
indicating the contents and upgrade procedures of new releases via version numbers.
Practically, the versioning scheme will follow the "Major.Minor.Patch" (or
"Breaking.Feature.Fix") format. App developers need to re-release their apps to make
them compatible with the new version. For details, please refer to this blog post.

Change Management for Server Updates

occ upgrade pulls app updates from the ownCloud Marketplace to make sure that not
only the Server itself but also the installed apps are kept up-to-date. In line with the
new versioning principles occ upgrade as well as the Market App now make a
difference between major and minor app updates. Practically, this means that during a
minor Server upgrade only new minor app versions will be installed. This is to make
sure that apps with breaking changes will not be automatically installed when
upgrading the Server. The --major option for occ upgrade and occ market:install
provides the means for administrators to force installing new major app versions.
Additionally, the Market App now includes a version picker to enable administrators to
choose which version of an app they want to install or upgrade to.

Changes in 10.1.1 | 23

https://github.com/owncloud/core/issues/34951
https://github.com/owncloud/core/issues/34399
https://github.com/owncloud/core/issues/34820
https://github.com/owncloud/core/issues/34476
https://github.com/owncloud/core/issues/34927
https://github.com/owncloud/core/issues/35104
https://github.com/owncloud/core/issues/34851
https://github.com/owncloud/core/issues/34851
https://owncloud.org/changelog/server/
https://owncloud.org/changelog/server/
https://semver.org/
https://owncloud.org/news/switching-owncloud-to-semantic-versioning/
https://marketplace.owncloud.com/apps/market
https://marketplace.owncloud.com/apps/market

MS Office Online Server Compatibility

Version 10.1 delivers all the prerequisites to be compatible with the Microsoft Office
Online Server Integration (WOPI) that is about to become available. This enables
providers to integrate ownCloud Server with Microsoft’s Office Online Server which
brings users the benefits of working on Office documents in the browser as well as
collaboratively with other users. The integration will work with MS Office Online
Server (on-premise) out-of-the-box. We kindly ask you to get in touch with us if you
want to make use of the Office 365 (cloud) version of Office Online.

WebDAV Locks

ownCloud Server 10.1 introduces WebDAV Locks that allow clients to lock and unlock
resources to prevent other users from making changes. The feature has been
implemented as a prerequisite for manual file locking and MS Office Online Server
compatibility. In the current state, file locking is only available via API. Users can
recognize locked files via the "lock" icon in the file list. Additionally a lock owner (the
user who locked the file) can manually unlock them via the "Locks" tab in the right
sidebar. The "Locks" tab will only appear for files that have active locks.

Foreign Keys in Database

Please note that foreign keys have been added with the :WebDAV Locks feature. This
is the first time ownCloud implements foreign keys.

How Does This Affect Each Database

MySQL

MySQL supports foreign keys. They are enabled by default.

MariaDB

MariaDB supports foreign keys. They are enabled by default.

PostgreSQL

PostgreSQL supports foreign keys. They are enabled by default.

SQLite

Foreign keys are, by default, disabled in SQLite. You must ensure that foreign keys are
enabled in your SQLite installation. Here is what the current documentation says
about enabling foreign key support:

To enable foreign key support, the library must be compiled with
neither SQLITE_OMIT_FOREIGN_KEY or SQLITE_OMIT_TRIGGER
defined. If SQLITE_OMIT_TRIGGER is defined but
SQLITE_OMIT_FOREIGN_KEY is not, then SQLite behaves as it did
prior to version 3.6.19 (2009-10-14) - foreign key definitions are
parsed and may be queried using PRAGMA foreign_key_list, but
foreign key constraints are not enforced. The PRAGMA
foreign_keys command is a no-op in this configuration. If
SQLITE_OMIT_FOREIGN_KEY is defined, then foreign key definitions
cannot even be parsed (attempting to specify a foreign key
definition is a syntax error).
— Enabling Foreign Key Support

24 | Changes in 10.1.0

https://sqlite.org/foreignkeys.html

 SQLite is not recommended for production deployments.

Oracle

Oracle supports foreign keys. They are enabled by default.

Federation: Compliance with proposed OpenCloudMesh 1.0
specification

Federation enables instances of ownCloud and other supporting platforms to exchange
information. It allows users to share data across installations building a worldwide
collaboration network of decentralized nodes - each under the full control of it’s
provider. Together with the other vendors the underlying OpenCloudMesh API
specification has been shifted to a new level to clean up the interface, improve its
stability and to set the foundation for future feature improvements. ownCloud Server
10.1 is compliant with the new specification proposal. The introduction of the new
specification does not involve changes in functionality for users.

New Collaborative Tags Scope: Static Tags

Version 10.1 comes with a new scope for Collaborative Tags called "Static Tags". In
addition to the other tag scopes, these tags are intended to be supplied by
administrators and linked with policies in the File Firewall, Document Classification or
Workflows, for example. Every user will be able to see these tags assigned to files but
only users in specified groups have the permission to assign or unassign them. This
makes it possible to equip certain users with the means to impose pre-defined policies
upon files. To create such tags administrators need to use the Collaborative Tags
Management extension.

Other notable changes

• The user/group deletion in the users page now has a confirmation dialog to prevent
unintentional user deletion

• The default public link share name has been changed to be "Public link" instead of
formerly the file or folder’s name

• Allow loading JSON files in setups with pretty URLs. Please check that the
.htaccess file has updated automatically. If not, see https://github.com/owncloud/
core/pull/32718/files for the required change.

Solved known issues

• LDAP users can upload avatars again #33369
• Versions list performance improvements #33291
• Improved compatibility with third party WebDAV applications (fixed PROPFIND

with depth infinity requests through Sabre update) #28341
• Fixed occ encrypt-all command to not attempt re-encrypting already encrypted files

#33206

Known issues

• WebDAV Locks: When a file in a folder is locked, exclusively locking the parent
folder currently still works ("conflicting lock"; divergent from RFC 4918))

Changes in 10.1.0 | 25

https://doc.owncloud.com/server/10.0/user_manual/files/webgui/tagging.html#filter-by-tag
https://marketplace.owncloud.com/apps/firewall
https://marketplace.owncloud.com/apps/files_classifier
https://marketplace.owncloud.com/apps/workflow
https://marketplace.owncloud.com/apps/systemtags_management
https://marketplace.owncloud.com/apps/systemtags_management
https://github.com/owncloud/core/pull/32718/files
https://github.com/owncloud/core/pull/32718/files
https://github.com/owncloud/core/issues/33369
https://github.com/owncloud/core/issues/33291
https://github.com/owncloud/core/issues/28341
https://github.com/owncloud/core/issues/33206
https://tools.ietf.org/html/rfc4918#section-7.4)

For developers

• Added "getBucket" method to HomeObjectStore to fix S3 issue #33513
• Public JS utility function for email validation #33699
• If only the patch level of an app’s version changes no migrations will run when

updating #33218
• Deprecated Sharing 1.0 PHP APIs which will be removed in ownCloud 11 #33220
• Add "uid" argument to Symfony login events for consistency #33470

Changes in 10.0.10

Dear ownCloud administrator, please find below the changes and known issues in
ownCloud Server 10.0.10 that need your attention. You can also read the full
ownCloud Server changelog for further details on what has changed.

Official PHP 7.2 Support

After announcing the future deprecation of PHP 5.6 and 7.0 with the 10.0.8 release,
ownCloud Server now follows up by officially adding PHP 7.2 support. The Server Core
and all apps maintained by ownCloud have received a full QA cycle and are proven to
work reliably with PHP 7.2. ownCloud Server is also being prepared for PHP 7.3,
which is scheduled to become available by the end of 2018.

If you are still using versions 5.6 or 7.0, please plan an upgrade to 7.2 soon. See the
system requirements in the ownCloud Documentation.


With PHP 7.2 some extensions have changed. If you have not yet
upgraded, you need to install php-openssl. See #30337 for more
information.

New Local User Creation Flow

In previous versions, administrators created local users by entering a username and a
password. In many cases this is undesirable, as administrators set the password for
new users and need to provide it via a second communication channel. For this reason
the local user creation flow has been changed to expect a username and an email
address, which will be used to send an activation link to new users.

This way user creation is easier and more secure as new users are informed
automatically and can choose a password in self-service. For cases where
administrators want to set the initial password, it’s possible to deviate from the default
by setting the option "Set a password for new users" on the bottom left settings cog.
The former option "Send email to new users" has been removed, as this change
made it obsolete.

HTTP API for Search

ownCloud Server 10.0.10 introduces an HTTP API for search functionality. It enables
the use of search terms to query the server and the delivery of search results via HTTP
(WebDAV). In upcoming releases, ownCloud clients will make use of it to search
content on the server, without the need to have them available locally.

In combination with the Full-Text Search integration, which is soon to be released as
an ownCloud Server extension (Community Edition), HTTP API for Search will boost
usability and productivity for users. For example, they will be able to search through
all the content which they store in their account and quickly find files on their
smartphones.

26 | Changes in 10.0.10

https://github.com/owncloud/core/issues/33513
https://github.com/owncloud/core/issues/33699
https://github.com/owncloud/core/issues/33218
https://github.com/owncloud/core/issues/33220
https://github.com/owncloud/core/issues/33470
https://owncloud.org/changelog/server/
https://owncloud.org/changelog/server/
https://wiki.php.net/todo/php73
installation/system_requirements.pdf#officially-recommended-supported-options
https://github.com/owncloud/core/issues/30337

Native Brute-Force Protection

Together with the new server version, another security-enhancing extension is
available, Brute Force Protection. This extension is tasked with preventing attackers
from guessing user passwords (brute-force attack) by delaying subsequent failed login
attempts for a user account from the same IP address.

While in the past similar functionality was only achievable via third party applications,
such as Fail2Ban, this extension provides the functionality natively, configurable by
ownCloud administrators on the Security settings section.

The new extension supersedes the former Security extension together with the ne
Password Policy extension, which has been released with ownCloud Server 10.0.9.
This community-contributed extension is well-tested, but out of ownCloud’s general
support scope. However, individual support can be obtained on request.

Improved Reliability for Uploads Via Web Interface on Unreliable
Connections

The reliability of the file upload feature in the ownCloud web interface has been
improved. When uploading larger amounts of data on unreliable connections (e.g., on
the train or with mobile data) you have to deal with interruptions and timeouts, which
in the past required users to restart stalled uploads from the beginning in the worst
case.

On top of ownCloud’s chunking mechanism, which splits large files into pieces and
uploads them separately, there’s new logic that takes care of retrying stalled chunks.
With this, uploads can now continue from the point they froze when a connection
becomes available again.

New Option to Prevent Sharing With Specific System Groups

System groups in ownCloud can have many purposes. They can be used for sharing
with many users at once, for feature and access restrictions, or for storage mounts to
specific users - just to name a few. In some cases, especially in larger deployments, it’s
undesirable that groups which are used for other purposes are also available for
sharing. To prevent users from sharing with such groups, administrators can now
blacklist the respective system groups using the option "Exclude groups from
receiving shares" in the administration settings "Sharing" section.

New Options for the occ Command to Reset User Passwords

The occ command user:resetpassword allows system administrators to reset or change
user passwords. It has been extended to provide the additional options --send-email
and --output-link, which can be used to send a password reset link to the user via mail
and output the password reset link to the command line, respectively. This change is in
line with the new local user creation flow, which is explained above, and can also be
used for further processing with scripts. See the ownCloud Documentation and the
--help option for more information.

New Default Minimum Supported Desktop Client Version

To ensure clean and reliable operation of the ownCloud platform it is important to stay
up-to-date with the latest releases for the server as well as the clients. To take care of
compatibility between the server and desktop clients, the minimum version the server
will accept connections from has been raised to version 2.3.3.

While it’s recommended to keep up with later versions, this is the new default value. It
can be changed by altering the config.php parameter

Changes in 10.0.10 | 27

https://marketplace.owncloud.com/apps/brute_force_protection
https://marketplace.owncloud.com/apps/security
https://marketplace.owncloud.com/apps/password_policy
release_notes.pdf#password-history-and-expiration

'minimum.supported.desktop.version' ⇒ '2.3.3', if absolutely necessary.

New Option to Configure the Language of Mail Notifications for Public
Links

Usually ownCloud renders mail notifications in the language of the recipients, when
they are known. For the recently improved feature to send public links with a personal
note directly from the user interface, the recipients' language can’t be determined
automatically, it just knows the recipients' mail addresses.

ownCloud therefore uses the language of the user who sent the notification, which can
have the drawback that recipients can’t understand them. This is still the default
behavior but administrators can now change it via a dropdown menu "Language used
for public mail notifications for shared files" in the settings "Sharing" section.

Theming Changes

Mail templates for share notifications do not strip line breaks from the personal note
anymore. This affects the HTML (core/templates/mail.php) and plain text
(core/templates/altmail.php) mail templates. The default templates shipped with
ownCloud Server 10.0.10 have been modified to accommodate these changes. If your
custom theme overrides these templates, you have to follow up with the changes:

• Replace the following line of the HTML template p($l→t("Personal note from the
sender: %s.", [$['personal_note']])); with print_unescaped($l→t("Personal note from
the sender:
 %s.", $['personal_note']));.

• Replace the following line of the plain text template print_unescaped($l→t("Personal
note from the sender: %s.", [$['personal_note']])); with
print_unescaped($l→t("Personal note from the sender: \n %s.", $['personal_note']));.

Other Notable Changes

• Allow automated SSL certificate verifications for CAs other than Let’s Encrypt. See
#31858 for further details.

• "/" and "%" are now valid characters in group names. See #31109 for further
details.

• New audit events for login action with token or Apache. See #31985 for further
details.

• Log entries for exceeding user quota: Loglevel changed to "debug" (Insufficient
storage exception is now logged with "debug" log level).

• The app for embedding external sites to the app launcher ("external") now
supports icons that originate from theme apps.

• The occ command to deactivate storage encryption (occ encryption:decrypt-all) has
received stability improvements and can now read the required recovery key from
an environment variable which is very helpful for a scripted per-user decryption
process.

Solved Known Issues

ownCloud Server 10.0.10 takes care of 10.0.9 known issues and provides remedies for
several others:

• The Password Policy extension now works with two- or multi-factor authentication
extensions. See #32058 for further details.

• The Versions feature now works also when the Comments app is disabled. See
#32208 for further details.

28 | Changes in 10.0.10

release_notes.pdf#personal-note-for-public-link-mail-notification
https://github.com/owncloud/core/issues/31858
https://github.com/owncloud/core/issues/31109
https://github.com/owncloud/core/issues/31985
release_notes.pdf#changes-in-10-0-9
https://github.com/owncloud/core/issues/32058
https://github.com/owncloud/core/issues/32208

• E-mail addresses with subdomains with hyphens are now also accepted for public
link emails. See #32281 for further details.

• Allow null in "Origin" header for third party clients that send it with WebDAV. See
#32189 for further details.

• Properly log failed message when token based authentication is enforced
(Fail2Ban). See #31948 for further details.

• Deleting a user now also properly deletes their external storages and storage
assignations. See #32069 for further details.

• Lockout issues with wrong passwords for Windows Network Drives are mitigated:
Fixed mount config in front-end to only load once to avoid side effects. See #32095
for further details.

• Fixed update issue related to oc_jobs when automatically enabling market app to
assist for update in OC 10. See #32573 for further details.

• Fixed missing migrations in files_sharing app and add indices to improve
performance. See #32562 for further details.

• Fixed issue with spam filters when sending public link emails. See #32542 for
further details.

Known Issues

Currently there are no known issues with ownCloud Server 10.0.10. This section will
be updated in the case that issues become known.

For Developers

• Search API for files using WebDAV REPORT and an underlying search provider. See
#31946 and #32328 for further details.

• Add information whether user can share to capabilities API. See #31824 for further
details.

• Hook loadAdditionalScripts now also available for public link page. See #31944 for
further details.

• Added URL parameter to files app which opens a specific sidebar tab. See #32202
for further details.

• Allow slashes in generated resource routes in app framework. See #31939 for
further details.

• The app for embedding external sites to the app launcher ("external") has been
moved to a separate repository. It is still bundled with ownCloud Server releases
and can be used normally.

Changes in 10.0.9

Dear ownCloud administrator, please find below the changes and known issues in
ownCloud Server 10.0.9 that need your attention. You can also read the full ownCloud
Server changelog for further details on what has changed.

New Features

Pending Shares

ownCloud Server 10.0.9 introduces new features to close usability gaps and to give
users more control over incoming shares. Previously, shared contents would appear,
unannounced, in the receiving user’s file hierarchy, and clients would start
synchronizing.

Changes in 10.0.9 | 29

https://github.com/owncloud/core/issues/32281
https://github.com/owncloud/core/issues/32189
https://github.com/owncloud/core/issues/31948
https://github.com/owncloud/core/issues/32069
https://github.com/owncloud/core/issues/32095
https://github.com/owncloud/core/pull/32573
https://github.com/owncloud/core/issues/32562
https://github.com/owncloud/core/issues/32542
https://github.com/owncloud/core/issues/31946
https://github.com/owncloud/core/issues/32328
https://github.com/owncloud/core/issues/31824
https://github.com/owncloud/core/issues/31944
https://github.com/owncloud/core/issues/32202
https://github.com/owncloud/core/issues/31939
https://github.com/owncloud/external
https://owncloud.org/changelog/server/
https://owncloud.org/changelog/server/

Incoming shares can now have a pending state, offering the ability to accept or decline
(as known from federated sharing). We anticipate that this will provide a better user
experience.

In addition, the recently introduced notifications framework is being used to inform
users via mail.

The bell icon in the web interface and the ownCloud Desktop Client can additionally be
used to take action. To switch to the new behavior administrators need to disable the
configuration option Automatically accept new incoming local user shares in the
Sharing settings section. By default the option will be enabled to preserve the known
behavior.

Mail notifications do not, currently, support asynchronous batch processing. For this
reason, ownCloud will send notification emails directly when initiating shares between
users. Due to this limitation, sharing with large groups (> 50 users) can take some
time and might cause load peaks. When operating installations with large groups, it is,
therefore, not yet recommended to enable the feature.

Overview of pending & rejected shares

In addition to the "Pending Shares" feature, ownCloud Server now provides the means
to view "accepted", "pending" and "rejected" incoming shares. Leveraging the
"Shared with you" filter in the left sidebar of the files view users can now list all
incoming shares, their respective states and have the ability to switch between the
states easily.

This improvement not only empowers users to accept rejected shares subsequently but
also to restore shares that have been unshared before without requiring the owner to
share it again.

Password history and expiration

To prepare ownCloud Server for new capabilities in the authentication process, we
have introduced an authentication middleware, and a new major version of the
Password Policy extension is now available.

The Authentication Middleware

It:

• Offers a defined way of inserting mandatory functionality between user
authentication and user account access. For example, forcing users to accept legal
agreements.

• Affords the ability to interact with the user during the login process, such as
retrieving user details like their email address.


The authentication middleware is currently focused on offering new
features for the Password Policy extension.

The Password Policy Extension

The Password Policy Extension has got a new major release and has been relicensed
(OCL ⇒ GPLv2) to be available for community and standard subscription users as well.
It now supports password expiration and history policies for user accounts.


These features don’t apply to users imported from LDAP or other
backends but only for local users created by administrators or the
Guests extension.

30 | Changes in 10.0.9

release_notes.pdf#new-mail-notifications-feature
https://marketplace.owncloud.com/apps/password_policy
https://marketplace.owncloud.com/apps/password_policy
https://marketplace.owncloud.com/apps/guests

Imposing password expiration and history policies enhances security for a number of
reasons. For example, by forcing users to choose a new password, they can be
prevented from using one or more of their previous passwords. In doing this, it
encourages them to not use a previous password, which may be known to attackers.

Two further examples are manually expiring passwords and configuring the number of
days that have to pass since the last change before the password expires. These help
ensure that users change their passwords on a semi-regular basis, making them
harder to crack.

However, we encourage administrators to always consider the implication of their
password policies, so that they strike an appropriate balance between security and
usability. For example, a high frequency of password changes, for instance, might
increase security but could also decrease user satisfaction.

To help ensure a good user experience it is possible to configure:

• Email notifications.
• Internal notifications (they appear on the web interface and clients).
• The password history count.
• The days before reminder notification are sent.

Users will always be informed when passwords have expired.


Although the above two password practices are discouraged by NIST,
ownCloud is now fully compliant with common password guidelines in
enterprise scenarios.


When users employ tokens for client authentication, which can be
configured on the user settings page ("App passwords"), those are not
affected from password policies.


When imposing password expiration policies on an existing installation
it is necessary to take some further actions. Please consult `the
ownCloud documentation`_ for guidance.

Technology preview for new S3 Objectstore implementation

ownCloud Server 10.0.9 comes with the prerequisites to be ready for the new S3
Objectstore implementation "files_primary_s3", which will massively improve
performance, reliability and protocol-related capabilities. The new extension is
available as a technology preview via the ownCloud Marketplace and will supersede
the current Objectstore extension.

It has received extensive testing and is in very good shape. However, there is no out-
of-the-box migration from the current Objectstore to files_primary_s3 as this will
require individual guidance.

Due to changes to the Versioning API, the ownCloud Ransomware Protection is not yet
compatible with files_primary_s3. For now the Objectstore extension will continue to
work as usual. Once the new implementation leaves the technology preview state and
migrations have been taken care of, the current implementation will be deprecated.

SWIFT Objectstore Deprecation

As the markets are moving in the direction of the S3 protocol to communicate with
object storages, ownCloud will follow this path with a clear focus. To do this, it will be

Changes in 10.0.9 | 31

https://pages.nist.gov/800-63-3/sp800-63b.html
https://marketplace.owncloud.com
https://marketplace.owncloud.com/apps/objectstore
https://marketplace.owncloud.com/apps/ransomware_protection
https://marketplace.owncloud.com/apps/objectstore
https://aws.amazon.com/documentation/s3/

a necessity to deprecate object storage via the OpenStack SWIFT protocol.

The extension will still be available as part of ownCloud Server, but it will neither be
maintained nor developed any further by ownCloud, and support will be discontinued.
Please make sure to move to the S3 protocol to use object storage as primary storage
with future ownCloud Server versions.

New options to display Imprint and Privacy Policy

To enable GDPR and legal compliance in various jurisdictions for ownCloud providers,
it is now possible to specify links to Imprint and Privacy Policy:

• In the "General" Administration settings section
• Via the following OCC commands:

◦ sudo -u www-data php occ config:app:set core legal.imprint_url <link>
◦ sudo -u www-data php occ config:app:set core legal.privacy_policy_url <link>

These links can be displayed on all pages of the ownCloud web interface and in the
footer of mail notifications. When using one of the default themes provided by
ownCloud, as well as the default mail templates, configured links will be automatically
included.

For customized themes or mail templates, actions are required to include the links.
These are:

Add the following at the end of each HTML template to add the footer:

<?php print_unescaped($this→inc('html.mail.footer', ['app' ⇒ 'core'])); ?>

Add the following at the end of each plain text template to add the footer:

<?php print_unescaped($this→inc('plain.mail.footer', ['app' ⇒ 'core'])); ?>

In a custom theme, change getShortFooter and getLongFooter in defaults.php without
links to include the links

Changed behavior of "Exclude groups from sharing" option

The option "Exclude groups from sharing", in the administration settings "Sharing"
section, enables administrators to exclude groups of users from the ability to initiate
file shares. In previous versions this restriction only applied to users who were
members of exactly these groups (membership of one or more non-excluded groups
bypassed the restriction).

This behavior has been changed to be both more restrictive and to better cover the
expectations of administrators. With ownCloud Server 10.0.9, it will apply to all users
who are members of at least one of the excluded groups.

Changes to the sharing autocomplete mechanism

In ownCloud Server 10.0.8, the value for minimum characters to trigger the sharing
autocomplete mechanism <min-chars-for-sharing-autocomplete-label> has been made
configurable and set to 4 by default. As this security-enhancing change came at the
expense of usability, and might only be required in special scenarios, the default value
has been reverted to 2.

For increased security requirements, the config.php option 'user.search_min_length' ⇒
2 can be adjusted. To further improve usability, a hint has been added to inform users
about the required character count, to get suggestions.

32 | Changes in 10.0.9

https://docs.openstack.org/swift/latest/
https://github.com/owncloud/theme-example/blob/master/defaults.php#L124
https://github.com/owncloud/theme-example/blob/master/defaults.php#L124
https://github.com/owncloud/core/blob/master/lib/private/legacy/defaults.php#L256

Improvements for occ user:list

To improve the usability of the occ user:list command, the output has been made
configurable by using the -a option, for including certain attributes. This change has
mainly been introduced to facilitate automation tasks. Check the --help option for more
information.

Additional events for audit logging

New events are available for audit logging, among others. These include:

• Changes in user specific settings
• Sending public links via mail; and
• Accepting and rejecting shares

When logs are forwarded to external analyzers, like Splunk, administrators can check
to add the new events. The latest version of the Auditing extension (admin_audit) is
required.

Theming improvements and changes

• HTML templates for lost password mails have been added. This is important in case
a custom theme is used and it needs manual adjustments.

• The mail notifications framework, introduced with ownCloud Server 10.0.8 <new-
mail-notifications-feature-label>, has been extended to provide a basic framework
and notification structure, which can be used by ownCloud features and third party
extensions. To support this, mail template wording and structure have been
updated. Please review the templates in apps/notifications/templates/mail/ to align
them with your needs.

• Mail templates can now include a footer for HTML
(core/templates/html.mail.footer.php) and plain text mails
(core/templates/plain.mail.footer.php). The default templates shipped with
ownCloud Server 10.0.9 contain the respective references. For customized mail
templates, it is necessary to manually add the references. To do so:

• Add the following at the end of each HTML template: :

<?php print_unescaped($this->inc('html.mail.footer', ['app' => 'core'])); ?>

• Add the following at the end of each plain text template: :

<?php print_unescaped($this->inc('plain.mail.footer', ['app' => 'core'])); ?>

• The ownCloud example theme (theme-example), which can be used as a solid base
to create custom themes, is no longer bundled with ownCloud Server. It now lives
in it’s own repository on GitHub.

Solved known issues

ownCloud Server 10.0.9 takes care of 10.0.8 known issues, and provides remedy for
several others:

• Issues with multiple theme apps and the Mail Template Editor #31478
• OCC command to transfer data between users (occ transfer:ownership) works as

expected again. Previously, public link shares were not transferred. See #31176 for

Changes in 10.0.9 | 33

https://github.com/owncloud/theme-example
release_notes.pdf#changes-in-10-0-9
https://github.com/owncloud/core/issues/31478
https://github.com/owncloud/core/issues/31176

further details.
• OCC commands to encrypt (occ encryption:encrypt-all) and decrypt (occ

encryption:decrypt-all) user data work correctly again. Previously, shares might
have been lost during the encryption process. See #31600 and #31590 for further
details.

• Files larger than 10 MB can now properly be uploaded by guest users. See #31596
for further details.

• Issues with public link dialog when collaborative tags app is disabled has been
resolved. See #31581 for further details.

• Enabling/disabling of users by group administrators in the web UI works again. See
#31489 for further details.

• Issues with file upload using Microsoft EDGE are now circumvented (hard memory
limit of 5 GB causing uploads to fail randomly as garbage collection for file chunks
did not work properly). See #31884 for further details.

Known issues

The new Password Policy feature "Password Expiration":

• Does not work together with Multi-Factor Authentication (e.g. twofactor_totp,
twofactor_privacyidea). Please do not deploy expiration policies yet when having
Two- or Multi-Factor Authentication extensions in place. This issue will be solved
with the next ownCloud Server release. See #32059 for more information.

• The new Password Policy feature "Password Expiration" includes an occ command
to manually force password expiration. Please run it directly after imposing
expiration policies on an instance with existing users. Currently the command will
only work when the policy X days until user password expires has been enabled.
This might be confusing and will be solved with the next release of the extension.
See #66 for more information.

For developers

• The symfony event for logging has been extended to include the original exception
when applicable: #31623

• Added Symfony event for whenever user settings are changed #31266
• Added Symfony event for whenever a public link share is sent by email #31632
• Added Symfony event for whenever local shares are accepted or rejected #31702
• Added public WebDAV API for versions using a new meta DAV endpoint #31729

#29637
• Added support for retrieving file previews using WebDAV endpoint #29319 #30192

Changes in 10.0.8

Dear ownCloud administrator, please find below the changes and known issues in
ownCloud Server 10.0.8 that need your attention. You can also read the full ownCloud
Server changelog for further details on what has changed.

PHP 5.6 deprecation

PHP 5.6/7.0 active support has ended on January 19th 2017 / December 3rd 2017 and
security support will be dropped by the end of 2018. Many libraries used by ownCloud
(including the QA-Suite PHPUnit) will therefore not be maintained actively anymore
which forces ownCloud to drop support in one of the next minor server versions as
well. Please make sure to upgrade to PHP 7.1 as soon as possible. See the system

34 | Changes in 10.0.8

https://github.com/owncloud/core/issues/31600
https://github.com/owncloud/core/issues/31590
https://github.com/owncloud/core/issues/31596
https://github.com/owncloud/core/issues/31581
https://github.com/owncloud/core/issues/31489
https://github.com/owncloud/core/pull/31825
release_notes.pdf#the-password-policy-extension
https://github.com/owncloud/core/issues/32059
release_notes.pdf#the-password-policy-extension
https://github.com/owncloud/password_policy/issues/66
https://github.com/owncloud/core/issues/31623
https://github.com/owncloud/core/issues/31266
https://github.com/owncloud/core/issues/31632
https://github.com/owncloud/core/issues/31702
https://github.com/owncloud/core/pull/29207
https://github.com/owncloud/core/pull/29637
https://github.com/owncloud/core/pull/29319
https://github.com/owncloud/core/pull/30192
https://owncloud.org/changelog/server/
https://owncloud.org/changelog/server/
https://secure.php.net/supported-versions.php
installation/system_requirements.pdf#officially-recommended-supported-options

requirements in the ownCloud documentation.

Personal note for public link mail notification

One of the usability enhancements of ownCloud Server 10.0.8 is the possibility for
users to add a personal note when sending public links via mail. When using
customized mail templates it is necessary to either adapt the shipped original template
to the customizations or to add the code block for the personal note to customized
templates in order to display the personal note in the mail notifications.

New mail notifications feature

ownCloud Server 10.0.8 introduces a new extensible notification framework. Apart
from technical changes under the hood the Notifications app can now also send mails
for all notifications that previously were only displayed within the web interfaces
(notification bell) or on the Desktop client (notifications API) like incoming federated
share or Custom Group notifications, for example. In the "General" settings section
users can configure whether they want to receive mails for all notifications, only for
those that require an action or decide not to get notifications via mail (by default users
will only receive notifications when an action is required).

LDAP-related improvements

• When disabling or deleting user accounts in LDAP, the administrator can choose to
either delete or disable respective accounts in ownCloud when executing occ
user:sync (-m, --missing-account-action=MISSING-ACCOUNT-ACTION). User accounts
that are disabled in ownCloud can now be re-enabled automatically when running
occ user:sync if they are enabled in LDAP. When this behavior is desired
administrators just need to add the -r, --re-enable option to their cron jobs or when
manually executing occ user:sync.

• Furthermore it is now possible to execute occ user:sync only for single (-u,
--uid=UID) or seen (-s, --seenOnly) users (users that are present in the database
and have logged in at least once). These new options provide more granularity for
administrators in terms of managing occ user:sync performance.

• Another notable change in behavior of occ user:sync is that administrators now
have to explicitly specify the option -c, --showCount to display the number of users
to be synchronized.

New events for audit logging

New events have been added to be used for audit logging, among others. These
include configuration changes by administrators and users, file comments
(add/edit/delete) and updating existing public links. When logs are forwarded to
external analyzers like Splunk, administrators can check to add the new events. The
latest version of the Auditing extension (admin_audit) is required.

New command to verify and repair file checksums

With ownCloud 10 file integrity checking by computing and matching checksums has
been introduced to ensure that transferred files arrive at their target in the exact state
as their origin. In some rare cases wrong checksums can be written to the database
leading to synchronization issues with e.g. the Desktop Client. To mitigate such
situations a new command occ files:checksums:verify has been introduced. The
command recalculates checksums either for all files of a user or for files within a
specified path, and compares them with the values in the database. Naturally the
command also offers an option to repair incorrect checksum values (-r, --repair). Please
check the available options by executing occ files:checksums:verify --help. Note:
Executing this command might take some time depending on the file count.

Changes in 10.0.8 | 35

installation/system_requirements.pdf#officially-recommended-supported-options
https://github.com/owncloud/core/blob/stable10/core/templates/mail.php#L21-L25

New config setting to specify minimum characters for sharing
autocomplete

For security reasons the default value for minimum characters to trigger the sharing
autocomplete mechanism has been set to "4" (previously it was set to "2"). This is to
prevent people from easily downloading lots of email addresses or user names by
requesting their first letters through the API. As it is a trade-off between security and
usability for some scenarios this high security level might not be desirable. Therefore
the value now is configurable via the config.php option 'user.search_min_length' ⇒ 4,.
Please check which value fits your needs best.

New option to granularly configure public link password enforcement

With ownCloud 10 the File Drop feature has been merged with public link permissions.
This kind of public link does not give recipients access to any content, but it gives
them the possibility to drop files. As a result, it might not always be desirable to
enforce password protection for such shares. Given that, passwords for public links
can now be enforced based on permissions (read-only, read & write, upload only/File
Drop). Please check the administration settings `Sharing` section and configure as
desired.

New option to exclude apps from integrity check

By verifying signature files the integrity check ensures that the code running in an
ownCloud instance has not been altered by third parties. Naturally this check can only
be successful for code that has been obtained from official ownCloud sources. When
providing custom apps (like theme apps) that do not have a signature, the integrity
check will fail and notify the administrator. These apps can now be excluded from the
integrity check by using the config.php option 'integrity.ignore.missing.app.signature' ⇒
['app_id1', 'app_id2', 'app_id3'],. See config.sample.php for more information.

New occ command to modify user details

It is now possible to modify user details like display names or mail addresses via the
command occ user:modify. Please append --help for more information.

occ files:scan can now be executed for groups

Apart from using the occ files:scan command for single users and whole instances it
can now be executed for groups using -g, --groups=GROUPS. Please append --help for
more information.

New configurable default format for syslog

When using syslog as the log type ('log_type' ⇒ 'syslog', in config.php) the default
format has been changed to include request IDs for easier debugging. Additionally the
log format has been made configurable using 'log.syslog.format' in config.php. If you
require a certain log format, please check the new format and config.sample.php on
how to change it.

New config option to enable fallback to HTTP for federated shares

For security reasons federated sharing (sharing between different ownCloud
instances) strictly requires HTTPS (SSL/TLS). When this behavior is undesired the
insecure fallback to HTTP needs to be enabled explicitly by setting
'sharing.federation.allowHttpFallback' ⇒ false, to true in config.php.

36 | Changes in 10.0.8

Migration related to auth_tokens (app passwords)

Upgrading to 10.0.8 includes migrations related to auth_tokens (app passwords).
When users have created app passwords as separate passwords for their clients the
upgrade duration will increase depending on user count. Please consider this when
planning the upgrade.

Changed behavior of e-mail autocomplete for public link share dialog

When the "Sharing" settings option Allow users to send mail notifications for shared
files for public links is enabled, users can send public links via mail from within the
web interface. The behavior of the autocomplete when entering mail addresses in the
public link share dialog has been changed. Previously the autocomplete queried for
local users, users from federated address books and contacts from CardDAV/Contacts
App. As public links are not intended for sharing between ownCloud users
(local/federated), those have been removed. Contacts synchronized via CardDAV or
created in the Contacts app will still appear as suggestions.

Notifications sent by occ can now include links

The command occ notifications:generate can be used to send notifications to individual
users or groups. With 10.0.8 it is also capable of including links to such notifications
using the -l, --link=LINK option. Please append --help for more information. There is
also Announcement center to conduct such tasks from the web interface but it is
currently limited to send notifications to all users. For now administrators can use the
occ command if more granularity is required.

Global option for CORS domains

For security reasons ownCloud has a Same-Origin-Policy that prevents requests to
ownCloud resources from other domains than the domain the backend server is hosted
on. If ownCloud resources should be accessible from other domains, e.g. for a separate
web frontend operated on a different domain, administrators can now globally specify
policy exceptions via CORS (Cross-Origin Resource Sharing) using 'cors.allowed-
domains' in config.php. Please check config.sample.php for more information.

Mail Template Editor is now unbundled

The Mail Template Editor has been unbundled from the default apps and is not
shipped with the Server anymore. When upgrading ownCloud will try to automatically
install the latest version from the ownCloud Marketplace in case the app was installed
before.

If this is not possible (e.g. no internet connection or clustered setup) you will either
need to disable the app (occ app:disable templateeditor) or download and install it
manually.

Solved known issues

• Bogus Login failed log entries have been removed (see 10.0.7 known issues)
• The Provisioning API can now properly set default or zero quota
• User quota settings can be queried through Provisioning API
• A regression preventing a user from setting their e-mail address in the settings

page has been fixed
• File deletion as a guest user works correctly (trash bin permissions are checked

correctly)

Changes in 10.0.8 | 37

https://marketplace.owncloud.com/apps/announcementcenter
https://marketplace.owncloud.com/apps/templateeditor
installation/apps_management_installation.pdf#manually-installing-apps
installation/apps_management_installation.pdf#manually-installing-apps
release_notes.pdf#changes-in-10-0-7

Known issues

• Issues with multiple theme apps and Mail Template Editor

As of ownCloud Server 10.0.5 it is only possible to have one theme app enabled
simultaneously. When a theme app is enabled and the administrator attempts to enable
a second one this will result in an error. However, when also having the Mail Template
Editor enabled in this scenario the administrators "General" settings section will be
displayed incorrectly. As a remedy administrators can either uninstall the second
theme app or disable the Mail Template Editor app.

• occ transfer:ownership does not transfer public link shares if they were created by
the target user (reshare).

For developers

• The global JS variable oc_current_user was removed. Please use the public method
OC.getCurrentUser() instead.

• Lots of new Symfony events have been added for various user actions, see
changelog for details, or the documentation ticket.

• When requesting a private link there is a new HTTP response header Webdav-
Location that contains the WebDAV path to the requested file while the Location still
points at the frontend URL for viewing the file.

Changes in 10.0.7

ownCloud Server 10.0.7 is a hotfix follow-up release that takes care of an issue
regarding OAuth authentication.

Please consider the ownCloud Server 10.0.5 release notes.

Known issues

• When using application passwords, log entries related to Login Failed will appear
and can be ignored. For people using fail2ban or other account locking tools based
on log parsing, please apply this patch with patch -p1 <
50c78a4bf4c2ab4194f40111b8a34b7e9cc17a14.patch (original pull request here).

Changes in 10.0.6

ownCloud Server 10.0.6 is a hotfix follow-up release that takes care of an issue during
the build process (https://github.com/owncloud/core/pull/30265). Please consider the
ownCloud Server 10.0.5 release notes.

Changes in 10.0.5

Dear ownCloud administrator, please find below the changes and known issues in
ownCloud Server 10.0.5 that need your attention. You can also read the full ownCloud
Server changelog for further details on what has changed.

Technology preview for PHP 7.2 support

ownCloud catches up with new web technologies. This has mainly been introduced for
the open-source community to test and give feedback. PHP 7.2 is not yet supported
nor recommended for production scenarios. ownCloud is going to fully support PHP
7.2 with the next major release.

38 | Changes in 10.0.7

https://github.com/owncloud/core/issues/31134
https://github.com/owncloud/core/issues/31134
https://github.com/owncloud/core/issues/31150
https://github.com/owncloud/core/issues/31150
https://github.com/owncloud/documentation/issues/3738
https://github.com/owncloud/core/issues/30157
https://github.com/owncloud/core/issues/30157
https://github.com/owncloud/core/issues/30157
https://github.com/owncloud/core/issues/30157
https://github.com/owncloud/core/issues/30157
https://github.com/owncloud/core/commit/50c78a4bf4c2ab4194f40111b8a34b7e9cc17a14.patch
https://github.com/owncloud/core/pull/30591
https://github.com/owncloud/core/pull/30265
https://owncloud.org/changelog/server/
https://owncloud.org/changelog/server/

php-intl now is a hard requirement

Please make sure to have the PHP extension installed before upgrading.

Changed: Only allow a single active theme app

The theming behavior has been changed so that only a single theme can be active
concurrently. This change ensures that themes can not interfere in any way (e.g.,
override default theming in an arbitrary order). Please make sure to have the desired
theme enabled after upgrading.

Removed old Dropbox external storage backend (Dropbox API v1)

Please switch to the new External Storage: Dropbox app with Dropbox API v2 support
to continue providing Dropbox external storages to your users.

Fixed: Only set CORS headers on WebDAV endpoint when Origin header
is specified

ownCloud Server 10.0.4 known issue is resolved.

Fixes and improvements for the Mail Template Editor

• Known issues are resolved: Mail Template Editor works again, got support for app
themes and additional templates were added for customization.

• Mail Template Editor is still bundled with ownCloud Server but will soon be
released as a separate app to ownCloud Marketplace.

• Changelog: https://github.com/owncloud/templateeditor/blob/master/
CHANGELOG.md#02---2018-02-28

Known issues

• When using application passwords, log entries related to Login Failed will appear,
please upgrade to 10.0.7 and check the fix mentionned in its release notes.

Changes in 10.0.4

Dear ownCloud administrator, please find below the changes and known issues in
ownCloud Server 10.0.4 that need your attention. You can also read the full ownCloud
Server 10.0.4 changelog for further details on what has changed.

More granular sharing restrictions

The "Restrict users to only share with users in their groups" option, in the Sharing
settings, restricts users to only share with groups which they are a member of, while
simultaneously prohibiting sharing with single users that do not belong to any of the
users’ groups.

To make this more granular, we split this option into two parts and added "Restrict
users to only share with groups they are member of", which differentiates between
users and groups. Doing so makes it possible to restrict users from sharing with all
users of an installation, limiting them to only being able to share with groups which
they are a member of, and vice versa.

Configurable solution for indistinguishable user display names

The ownCloud sharing dialog displays users according to their display name. As users

Changes in 10.0.4 | 39

https://marketplace.owncloud.com/apps/files_external_dropbox
https://marketplace.owncloud.com/apps/files_external_dropbox
https://marketplace.owncloud.com/apps/files_external_dropbox
https://github.com/owncloud/templateeditor/blob/master/CHANGELOG.md#02---2018-02-28
https://github.com/owncloud/templateeditor/blob/master/CHANGELOG.md#02---2018-02-28
https://github.com/owncloud/core/issues/30157
https://github.com/owncloud/core/issues/30157
https://github.com/owncloud/core/issues/30157
https://github.com/owncloud/core/blob/stable10/CHANGELOG.md
https://github.com/owncloud/core/blob/stable10/CHANGELOG.md

can choose their display name in self-service (which can be disabled in config.php) and
display names are not unique, it is possible that a user can’t distinguish sharing
results.

To cover this case the displayed user identifiers are now configurable. In the Sharing
settings administrators can now configure the display of either mail addresses or user
ids.

Added occ files:scan repair mode to repair filecache inconsistencies

We recommend to use this command when directed to do so in the upgrade process.
Please refer to the occ command’s files:scan –repair documentation for more
information.

Detailed mode for occ security:routes
Administrators can use the output of this command when using a network firewall, to
check the appropriateness of configured rules or to get assistance when setting up.

Added mode of operations to differentiate between single-instance or
clustered setup

As ownCloud needs to behave differently when operating in a clustered setup versus a
single instance setup, the new config.php option operation.mode has been added. It
can take one of two values: single-instance and clustered-instance. For example:
'operation.mode' ⇒ 'clustered-instance',.

Currently the Market App (ownCloud Marketplace integration) does not support
clustered setups and can do harm when used for installing or updating apps. The new
config setting prevents this and other actions that are undesired in cluster mode.

When operating in a clustered setup, it is mandatory to set this option. Please
check the config_sample_php_parameters documentation for more information.

Added occ dav:cleanup-chunks command to clean up expired uploads

When file uploads are interrupted for any reason, already uploaded file parts (chunks)
remain in the underlying storage so that the file upload can resume in a future upload
attempt. However, resuming an upload is only possible until the partial upload is
expired and deleted, respectively.

To clean up chunks (expire and delete) originating from unfinished uploads,
administrators can use this newly introduced command. The default expiry time is two
days, but it can be specified as a parameter to the command.


It is recommended to configure CRON to execute this
background job regularly.

It is not included in the regular ownCloud background jobs so that the administrators
have more flexibility in scheduling it. Please check the background jobs configuration
documentation for more information.

Administrators can now exclude files from integrity check in config.php

When administrators did intentional changes to the ownCloud code they now have the
ability to exclude certain files from the integrity checker. Please check
config.sample.php for the usage of 'integrity.excluded.files'.

40 | Changes in 10.0.4

configuration/server/occ_command.pdf#the-repair-option
configuration/server/config_sample_php_parameters.pdf
configuration/server/background_jobs_configuration.pdf#cleanupchunks
configuration/server/background_jobs_configuration.pdf#cleanupchunks

Modification time value of files is now 64 bits long

When upgrading to 10.0.4 migrations may increase update duration dependent on
number of files.

Updated minimum supported browser versions

Users with outdated browsers might get warnings. See the list of supported browser
versions.

Known issues

• When using application passwords, log entries related to Login Failed will appear,
please upgrade to 10.0.7 and check the fix mentioned in its release notes.

10.0.3 resolved known issues

• SFTP external storages with key pair mode work again
• Added support for MariaDB 10.2.7+
• Encryption panel in admin settings fixed to properly detect current mode after

upgrade to ownCloud 10
• Removed double quotes from boolean values in status.php output

Known issues

• Impersonate app 0.1.1 does not work with ownCloud Server 10.0.4. Please update
to Impersonate 0.1.2 to be able to use the feature with ownCloud 10.0.4.

• Mounting ownCloud storage via davfs does not work

Changes in 10.0.3

Dear ownCloud administrator, please find below the changes and known issues of
ownCloud Server 10.0.3 that need your attention:

The full ownCloud Server 10.0.3 changelog can be found here:
https://github.com/owncloud/core/blob/stable10/CHANGELOG.md

• It is now possible to directly upgrade from 8.2.11 to 10.0.3 in a single upgrade
process.

• Added occ command to list routes which can help administrators setting up
network firewall rules.

• occ upgrade is now verbose by default. Administrators may need to adjust scripts
for automated setup/upgrade procedures that rely on `occ upgrade' outputs.

• Reenabled medial search by default::
◦ Enables partial search in sharing dialog autocompletion (e.g. a user wants to

share with the user "Peter": Entering "pe" will find the user, entering "ter" will
only find the user if the option is enabled)

◦ New default is set to enabled as there is no performance impact anymore due to
the introduction of the user account table in ownCloud Server 10.0.1.

◦ Please check the setting. You need to disable it explicitly if the functionality is
undesired.

• All database columns that use the fileid have been changed to bigint (64-bits). For
large instances it is therefore highly recommended to upgrade in order to avoid
reaching limits.

Changes in 10.0.3 | 41

installation/system_requirements.pdf#web-browser
installation/system_requirements.pdf#web-browser
https://github.com/owncloud/core/issues/30157
https://github.com/owncloud/core/issues/30157
https://github.com/owncloud/core/issues/30157
https://github.com/owncloud/core/issues/29156
https://github.com/owncloud/core/issues/29240
https://github.com/owncloud/core/issues/29049
https://github.com/owncloud/core/issues/29049
https://github.com/owncloud/core/pull/29261
https://marketplace.owncloud.com/apps/impersonate
https://github.com/owncloud/core/issues/29793
https://github.com/owncloud/core/blob/stable10/CHANGELOG.md

• Upgrade and Market app information::
◦ Removed appstoreenabled setting from config.php. If you want to disable the

app store / Marketplace integration, please disable the Market app.
◦ Added setting `upgrade.automatic-app-update' to config.php to disable

automatic app updates with `occ upgrade' when Market app is enabled
◦ On upgrade from OC < 10 the Market app won’t be enabled if appstoreenabled

was false in config.php.
• Clustering: Better support of read only config file and apps folder
• Default minimum desktop client version in config.php is now 2.2.4.

Known issues

• Added quotes in boolean result values of yourdomain/status.php output
• Setting up SFTP external storages with keypairs does not work. https://github.com/

owncloud/core/issues/28669
• If you have storage encryption enabled, the web UI for encryption will ask again

what mode you want to operate with even if you already had a mode selected
before. The administrator must select the mode they had selected before.
https://github.com/owncloud/core/issues/28985

• Uploading a folder in Chrome in a way that would overwrite an existing folder can
randomly fail (race conditions). https://github.com/owncloud/core/issues/28844

• Federated shares can not be accepted in WebUI for SAML/Shibboleth users
• For MariaDB users: Currently, Doctrine has no support for the breaking changes

introduced in MariaDB 10.2.7, and above. If you are on MariaDB 10.2.7 or above,
and have encountered the message 1067 Invalid default value for `lastmodified,
please apply this patch to Doctrine. We expect this bug to be fixed in ownCloud
10.0.4. For more information on the bug, check out the related issue.

• When updating from ownCloud < 9.0 the CLI output may hang for some time
(potentially up to 20 minutes for big instances) whilst sharing is updated. This can
happen in a variety of places during the upgrade and is to be expected. Please be
patient as the update is performed and the output will continue as normal.

Changes in 10.0.1

Hello ownCloud administrator, please read carefully to be prepared for updates and
operations of your ownCloud setup.

• A new update path: ownCloud 10.0.1 contains migration logic to allow upgrading
directly from 9.0 to 10.0.1.

• Marketplace: Please create an account for `the new marketplace`_. Access to
optional ownCloud extensions and enterprise apps will be provided by the
marketplace from now on. Currently some apps are still shipped with the tarballs /
packages and will be moved to the marketplace in the near future.

• Apps: LDAP, gallery, activity, PDF viewer, and text editor were moved to the
marketplace.

• Updates with marketplace: During the upgrade, enabled apps are also updated
by fetching new versions directly from the marketplace. If during an update,
sources for some apps are missing, and the ownCloud instance has no access to the
marketplace, the administrator needs to disable these apps or manually download
and provide the apps before updating.

• App updates: Third party apps are not disabled anymore when upgrading.
• Upgrade migration test: The upgrade migration test, --skip-migration-tests, has

42 | Changes in 10.0.1

https://github.com/owncloud/core/issues/28669
https://github.com/owncloud/core/issues/28669
https://github.com/owncloud/core/issues/28985
https://github.com/owncloud/core/issues/28844
https://gist.github.com/VicDeo/bb0689104baeb5ad2371d3fdb1a013ac/raw/04bb98e08719a04322ea883bcce7c3e778e3afe1/DoctrineMariaDB102.patch
https://github.com/owncloud/core/issues/28695

been removed.


The template editor app is not included in the 10.0.1 release due to
technical reasons, but will be distributed via the marketplace. However,
you can still edit template files manually.

Settings

• Settings design: Admin, personal pages, and app management are now merged
together into a single "Settings" entry.

• Disable users: The ability to disable users in the user management panel has been
added.

• Password Policy: Rules now apply not only to link passwords but also to user
passwords.

Infrastructure

• Client: You need to update to the latest desktop client version.
• Cron jobs: The user account table has been reworked. As a result the Cron job for

syncing user backends, e.g., LDAP, needs to be configured.
• Logfiles: App logs, e.g., auditing and owncloud.log, can now be split, see:

xref:configuration/server/config_sample_php_parameters.adoc#logging.

Known Issues

Converting the Database Type doesn’t work

Converting a Database from e.g. SQLite to MySQL or PostgreSQL with the occ
db:convert-type currently doesn’t work. See https://github.com/owncloud/core/issues/
27075 for more info.

Installing the LDAP user backend will trigger the installation twice

This causes an SQL error such as the following:

sudo -u www-data php occ market:install user_ldap

user_ldap: Installing new app ...
user_ldap: An exception occurred while executing 'CREATE TABLE
`ldap_user_mapping` (`ldap_dn` VARCHAR(255) DEFAULT '' NOT NULL,
`owncloud_name` VARCHAR(255) DEFAULT '' NOT NULL, `directory_uuid`
VARCHAR(255) DEFAULT '' NOT NULL, UNIQUE INDEX ldap_dn_users (`ldap_dn`),
PRIMARY KEY(`owncloud_name`)) DEFAULT CHARACTER SET utf8mb4 COLLATE
utf8mb4_bin ENGINE = InnoDB ROW_FORMAT = compressed':

SQLSTATE[42S01]: Base table or view already exists: 1050 Table
'ldap_user_mapping' already exists

This can be safely ignored. And the app can be used after enabling it. Please be aware
that when upgrading an existing ownCloud installation that already has user_ldap this
error will not occur. It was fixed by https://github.com/owncloud/core/pull/27982.
However, this could happen for other apps as well that use database.xml. If it does
please use the same workaround.

Changes in 10.0.1 | 43

configuration/server/email_configuration.pdf#using-email-templates
https://doc.owncloud.com/desktop/latest/
configuration/server/occ_command.pdf#syncing-user-accounts
https://github.com/owncloud/core/issues/27075
https://github.com/owncloud/core/issues/27075
https://github.com/owncloud/core/pull/27982

SAML authentication only works for users synced with occ user:sync

We will re-enable SSO for LDAP users with an update of the app in the market after
completing internal testing.

The web UI prevents uninstalling apps marked as shipped, e.g., user_ldap

To uninstall, disable the app with occ and rm the app directory.

Moving files around in external storages outside of ownCloud will invalidate the
metadata

All shares, comments, and tags on the moved files will be lost.

Existing LDAP users only show up in the user management page and the share dialog
after being synced

The account table introduced in ownCloud 10.0.0 significantly reduces LDAP
communication overhead. Password checks are yet to be accounted for. LDAP user
metadata in the account table will be updated when users log in or when the
administrator runs occ user:sync "OCA\User_LDAP\User_Proxy". We recommend setting
up a nightly Cron job to keep metadata of users not actively logging in up to date.

Error pages will not use the configured theme but will instead fall back to the
community default

Changes in 10.0.0

• PHP 7.1 support added (supported PHP versions are 5.6 and 7.0+)
• The upgrade migration test has been removed; (Option "--skip-migration-tests"

removed from update command)
• Requires to use the latest desktop client version 2.3
• Third party apps are not disabled anymore when upgrading
• User account table has been reworked. CRON job for syncing with e.g., LDAP

needs to be configured (see Syncing User Accounts for more information)
• LDAP app is not released with ownCloud 10.0.0 and will be released on the

marketplace after some more QA
• files_drop app is not shipped anymore as it’s integrated with core now. Since

migrations are not possible you will have to reconfigure your drop folders (in the
`Public Link' section of the sharing dialog of the respective folders).

• SAML/Shibboleth with device-specific app passwords: No migration possible; Users
need to regenerate device-specific app passwords in the WebUI and enter those in
their clients.

• For security reasons status.php can now be configured in config.php to not return
server version information anymore (`version.hide'; default `false'). As clients still
depend on version information this is not yet recommended. The default will
change to `true' with 10.0.2 once clients are ready.

• Order of owncloud.log entries changed a bit, please review any application (e.g.
fail2ban rules) relying on this file

• External storages::
◦ FTP external storage moved to a separate app

(https://marketplace.owncloud.com/apps/files_external_ftp)
◦ "Local" storage type can now be disabled by sysadmin in config.php (to prevent

users mounting the local file system)

44 | Changes in 10.0.0

configuration/server/background_jobs_configuration.pdf
configuration/server/occ_command.pdf#user-commands
https://marketplace.owncloud.com/apps/files_external_ftp

Full changelog: https://github.com/owncloud/core/wiki/ownCloud-10.0-Features

Changes in 9.1

General

• Background jobs (cron) can now run in parallel
• Update notifications in client via API - You can now be notified in your desktop

client about available updates for core and apps. The notifications are made
available via the notifications API.

• Multi-bucket support for primary objectstore integration
• Support for Internet Explorer below version 11 was dropped
• Symlinks pointing outside of the data directory are disallowed. Please use the

configuration/files/external_storage_configuration_gui with the
configuration/files/external_storage/local storage backend instead.

• Removed dav:migrate-calendars and dav:migrate-addressbooks commands for occ.
Users planning to upgrade from ownCloud 9.0 or below to ownCloud 9.1 needs to
make sure that their calendars and address books are correctly migrated before
continuing to upgrade to 9.1.

Authentication

• Pluggable authentication: plugin system that supports different authentication
schemes

• Token-based authentication
• Ability to invalidate sessions
• List connected browsers/devices in the personal settings page. Allows the user to

disconnect browsers/devices.
• Device-specific passwords/tokens, can be generated in the personal page and

revoked
• Disable users and automatically revoke their sessions
• Detect disabled LDAP users or password changes and revoke their sessions
• Log in with email address
• Configuration option to enforce token-based login outside the web UI
• Two Factor authentication plug-in system
• OCC command added to (temporarily) disable/enable two-factor authentication for

single users


The current desktop and mobile client versions do not support two-
factor yet, this will be added later. It is already possible to generate a
device specific password and enter that in the current client versions.

Files app

• Ability to toggle displaying hidden files
• Remember sort order
• Permalinks for internal shares
• Visual cue when dragging in files app
• Autoscroll file list when dragging files
• Upload progress estimate

Changes in 9.1 | 45

https://github.com/owncloud/core/wiki/ownCloud-10.0-Features

Federated sharing

• Ability to create federated shares with CRUDS permissions
• Resharing a federated share does not create a chain of shares any more but

connects the share owner’s server to the reshare recipient

External storage

• UTF-8 NFD encoding compatibility support for NFD file names stored directly on
external storages (new mount option in external storage admin page)

• Direct links to the configuration pages for setting up a GDrive or Dropbox
application for use with ownCloud

• Some performance and memory usage improvements for GDrive, stream download
and chunk upload

• Performance and memory usage improvements for Dropbox with stream download
• GDrive library update provides exponential backoff which will reduce rate limit

errors

Shibboleth

• The WebDAV endpoint was changed from /remote.php/webdav to /remote.php/dav.
You need to check your Apache configuration if you have exceptions or rules for
WebDAV configured.

Minor additions

• Support for print style sheets
• Command line based update will now be suggested if the instance is bigger to avoid

potential timeouts
• Web updater will be disabled if LDAP or shibboleth are installed
• DB/application update process now shows better progress information
• Added occ files:scan --unscanned to only scan folders that haven’t yet been

explored on external storages
• Chunk cache TTL can now be configured
• Added warning for wrongly configured database transactions, helps prevent

database is locked issues
• Use a capped memory cache to reduce memory usage especially in background

jobs and the file scanner
• Allow login by email
• Respect CLASS property in calendar events
• Allow addressbook export using VCFExportPlugin
• Birthdays are also generated based on shared addressbooks

For developers

• New DAV endpoint with a new chunking protocol aiming to solve many issues like
timeouts (not used by clients yet)

• New webdav property for share permissions
• Background repair steps can be specified info.xml
• Background jobs (cron) can now be declared in info.xml
• Apps can now define repair steps to run at install/uninstall time

46 | Changes in 9.1

• Export contact images via Sabre DAV plugin
• Sabre DAV’s browser plugin is available in debug mode to allow easier

development around webdav

Technical debt

• PSR-4 autoloading forced for OC\ and OCP\, optional for OCA\ docs at
xref:developer_manual/app/classloader.adoc

• More cleanup of the sharing code (ongoing)

Changes in 9.0

9.0 requires .ico files for favicons. This will change in 9.1, which will use .svg files. See
Changing favicon in the Developer Manual.

Home folder rule is enforced in the user_ldap application in new ownCloud
installations; see configuration/user/user_auth_ldap. This affects ownCloud 8.0.10,
8.1.5 and 8.2.0 and up.

The Calendar and Contacts apps have been rewritten and the CalDAV and CardDAV
backends of these apps were merged into ownCloud core. During the upgrade existing
Calendars and Addressbooks are automatically migrated (except when using the IMAP
user backend). As a fallback for failed upgrades, when using the IMAP user backend or
as an option to test a migration dav:migrate-calendars and/or dav:migrate-
addressbooks scripts are available (only in ownCloud 9.0) via the occ command. See
configuration/server/occ_command.



After upgrading to ownCloud 9.0 and before continuing to upgrade to
9.1 make sure that all of your and your users Calendars and
Addressbooks are migrated correctly. Especially when using the IMAP
user backend (other user backends might be also affected) you need to
manually run the mentioned occ migration commands described above.

Updates on systems with large datasets will take longer, due to the addition of
checksums to the ownCloud database. See https://github.com/owncloud/core/issues/
22747.

Linux packages are available from our official download repository. New in 9.0: split
packages. owncloud installs ownCloud plus dependencies, including Apache and PHP.
owncloud-files installs only ownCloud. This is useful for custom LAMP stacks, and
allows you to install your own LAMP apps and versions without packaging conflicts
with ownCloud. See installation/linux_installation.

New option for the ownCloud admin to enable or disable sharing on individual external
mountpoints (see External Storage GUI Mount Options). Sharing on such mount points
is disabled by default.

Enterprise 9.0

owncloud-enterprise packages are no longer available for CentOS 6, RHEL6, Debian 7,
or any version of Fedora. A new package, owncloud-enterprise-files, is available for all
supported platforms, including the above. This new package comes without
dependencies, and is installable on a larger number of platforms. System
administrators must install their own LAMP stacks and databases. See
https://owncloud.org/blog/time-to-upgrade-to-owncloud-9-0/.

Changes in 9.0 | 47

developer_manual:core/theming.pdf
https://github.com/owncloud/core/issues/22747
https://github.com/owncloud/core/issues/22747
https://download.owncloud.org/download/repositories/stable/owncloud/
configuration/files/external_storage/configuration.pdf#mount-options
https://owncloud.org/blog/time-to-upgrade-to-owncloud-9-0/

Changes in 8.2

New location for Linux package repositories; ownCloud admins must manually change
to the new repos. See maintenance/upgrade

PHP 5.6.11+ breaks the LDAP wizard with a `Could not connect to LDAP' error. See
https://github.com/owncloud/core/issues/20020.

filesystem_check_changes in config.php is set to 0 by default. This prevents
unnecessary update checks and improves performance. If you are using external
storage mounts such as NFS on a remote storage server, set this to 1 so that ownCloud
will detect remote file changes.

XSendFile support has been removed, so there is no longer support for serving static
files from your ownCloud server.

LDAP issue: 8.2 uses the memberof attribute by default. If this is not activated on your
LDAP server your user groups will not be detected, and you will see this message in
your ownCloud log: Error PHP Array to string conversion at
/var/www/html/owncloud/lib/private/template/functions.php#36. Fix this by disabling
the memberof attribute on your ownCloud server with the occ command, like this
example on Ubuntu Linux:

sudo -u www-data php occ ldap:set-config "s01" useMemberOfToDetectMembership
0

Run sudo -u www-data php occ ldap:show-config to find the correct sNN value; if there
is not one then use empty quotes, "". (See configuration/server/occ_command.)

Users of the Linux Package need to update their repository setup as described in this
blogpost.

Changes in 8.1

Use APCu only if available in version 4.0.6 and higher. If you install an older version,
you will see a APCu below version 4.0.6 is installed, for stability and performance
reasons we recommend to update to a newer APCu version warning on your ownCloud
admin page.

SMB external storage now based on php5-libsmbclient, which must be downloaded
from the ownCloud software repositories (installation instructions).

Download from link feature has been removed.

The .htaccess and index.html files in the data/ directory are now updated after every
update. If you make any modifications to these files they will be lost after updates.

The SabreDAV browser at /remote.php/webdav has been removed.

Using ownCloud without a trusted_domain configuration will not work anymore.

The logging format for failed logins has changed and considers now the proxy
configuration in config.php.

A default set of security and privacy HTTP headers have been added to the ownCloud
.htaccess file, and ownCloud administrators may now customize which headers are
sent.

48 | Changes in 8.2

https://github.com/owncloud/core/issues/20020
https://owncloud.org/blog/upgrading-to-owncloud-server-8-2/
https://software.opensuse.org/download.html?project=isv%3AownCloud%3Acommunity%3A8.1&package=php5-libsmbclient

More strict SSL certificate checking improves security but can result in cURL error 60:
SSL certificate problem: unable to get local issuer certificate errors with certain broken
PHP versions. Please verify your SSL setup, update your PHP or contact your vendor if
you receive these errors.

The persistent file-based cache (e.g. used by LDAP integration) has been dropped and
replaced with a memory-only cache, which must be explicitly configured. See
configuration/user/user_auth_ldap. Memory cache configuration for the ownCloud
server is no longer automatic, requiring installation of your desired cache backend and
configuration in config.php (see configuration/server/caching_configuration.)

The OC_User_HTTP backend has been removed. Administrators are encouraged to use
the user_webdavauth application instead.

ownCloud ships now with its own root certificate bundle derived from Mozilla’s root
certificates file. The system root certificate bundle will not be used anymore for most
requests.

When you upgrade from ownCloud 8.0, with encryption enabled, to 8.1, you must
enable the new encryption backend and migrate your encryption keys.

Encryption can no longer be disabled in ownCloud 8.1. It is planned to re-add this
feature to the command line client for a future release.

It is not recommended to upgrade encryption-enabled systems from ownCloud Server
8.0 to version 8.1.0 as there is a chance the migration will break. We recommend
migrating to the first bugfix release, ownCloud Server 8.1.1.

Due to various technical issues, by default desktop sync clients older than 1.7 are not
allowed to connect and sync with the ownCloud server. This is configurable via the
minimum.supported.desktop.version switch in config.php.

Previews are now generated at a maximum size of 2048 x 2048 pixels. This is
configurable via the preview_max_x and preview_max_y switches in config.php.

The ownCloud 8 server is not supported on any version of Windows.

The 8.1.0 release has a minor bug which makes application updates fail at first try.
Reload the apps page and try again, and the update will succeed.

The forcessl option within the config.php and the Enforce SSL option within the Admin-
Backend was removed. This now needs to be configured like described in Hardening
and Security Guidance.

WebDAV file locking was removed in ownCloud 8.1 which causes Finder on macOS to
mount WebDAV read-only.

Enterprise 8.1

The SharePoint Drive application does not verify the SSL certificate of the SharePoint
server or the ownCloud server, as it is expected that both devices are in the same
trusted environment.

Changes in 8.0

Manual LDAP Port Configuration

When you are configuring the LDAP user and group backend application, ownCloud
may not auto-detect the LDAP server’s port number, so you will need to enter it
manually.

Changes in 8.0 | 49

configuration/server/occ_command.pdf#encryption
configuration/server/harden_server.pdf#use-https
configuration/server/harden_server.pdf#use-https

No Preview Icon on Text Files

There is no preview icon displayed for text files when the file contains fewer than six
characters.

Remote Federated Cloud Share Cannot be Reshared With Local Users

When you mount a Federated Cloud share from a remote ownCloud server, you cannot
re-share it with your local ownCloud users. (See Federated Cloud Sharing
Configuration to learn more about federated cloud sharing)

Manually Migrate Encryption Keys after Upgrade

If you are using the Encryption application and upgrading from older versions of
ownCloud to ownCloud 8.0, you must manually migrate your encryption keys.

Windows Server Not Supported

Windows Server is not supported in ownCloud 8.

PHP 5.3 Support Dropped

PHP 5.3 is not supported in ownCloud 8, and PHP 5.4 or better is required.

Disable Apache Multiviews

If Multiviews are enabled in your Apache configuration, this may cause problems with
content negotiation, so disable Multiviews by removing it from your Apache
configuration. Look for lines like this:

<Directory /var/www/owncloud>
Options Indexes FollowSymLinks Multiviews

Delete Multiviews and restart Apache.

ownCloud Does Not Follow Symlinks

ownCloud’s file scanner does not follow symlinks, which could lead to infinite loops. To
avoid this do not use soft or hard links in your ownCloud data directory.

No Commas in Group Names

Creating an ownCloud group with a comma in the group name causes ownCloud to
treat the group as two groups.

Hebrew File Names Too Large on Windows

On Windows servers Hebrew file names grow to five times their original size after
being translated to Unicode.

Google Drive Large Files Fail with 500 Error

Google Drive tries to download the entire file into memory, then write it to a temp file,
and then stream it to the client, so very large file downloads from Google Drive may
fail with a 500 internal server error.

50 | Changes in 8.0

configuration/files/federated_cloud_sharing_configuration.pdf
configuration/files/federated_cloud_sharing_configuration.pdf
configuration/server/occ_command.pdf#encryption

Encrypting Large Numbers of Files

When you activate the Encryption application on a running server that has large
numbers of files, it is possible that you will experience timeouts. It is best to activate
encryption at installation, before accumulating large numbers of files on your
ownCloud server.

Enterprise 8.0

Sharepoint Drive SSL Not Verified

The SharePoint Drive application does not verify the SSL certificate of the SharePoint
server or the ownCloud server, as it is expected that both devices are in the same
trusted environment.

No Federated Cloud Sharing with Shibboleth

Federated Cloud Sharing (formerly Server-to-Server file sharing)does not work with
Shibboleth .

Direct Uploads to SWIFT do not Appear in ownCloud

When files are uploaded directly to a SWIFT share mounted as external storage in
ownCloud, the files do not appear in ownCloud. However, files uploaded to the SWIFT
mount through ownCloud are listed correctly in both locations.

SWIFT Objectstore Incompatible with Encryption App

The current SWIFT implementation is incompatible with any application that uses
direct file I/O and circumvents the ownCloud virtual filesystem. Using the Encryption
application on a SWIFT object store incurs twice as many HTTP requests and
increases latency significantly.

application Store is Back

The ownCloud application Store has been re-enabled in ownCloud 8. Note that third-
party apps are not supported.

Changes in 7.0

Manual LDAP Port Configuration

When you are configuring the LDAP user and group backend application, ownCloud
may not auto-detect the LDAP server’s port number, so you will need to enter it
manually.

LDAP Search Performance Improved

Prior to 7.0.4, LDAP searches were substring-based and would match search attributes
if the substring occurred anywhere in the attribute value. Rather, searches are
performed on beginning attributes. With 7.0.4, searches will match at the beginning of
the attribute value only. This provides better performance and a better user
experience.

Substring searches can still be performed by prepending the search term with *. For
example, a search for te will find Terri, but not Nate:

Changes in 7.0 | 51

occ ldap:search "te"

If you want to broaden the search to include Nate, then search for *te:

occ ldap:search "*te"

Refine searches by adjusting the User Search Attributes field of the Advanced tab in
your LDAP configuration on the Admin page. For example, if your search attributes are
givenName and sn you can find users by first name + last name very quickly. For
example, you’ll find Terri Hanson by searching for te ha. Trailing whitespaces are
ignored.

Protecting ownCloud on IIS from Data Loss

Under certain circumstances, running your ownCloud server on IIS could be at risk of
data loss. To prevent this, follow these steps.

• In your ownCloud server configuration file, owncloud\config\config.php, set
config_is_read_only to true.

• Set the config.php file to read-only.
• When you make server updates config.php must be made writeable. When your

updates are completed re-set it to read-only.

Antivirus Application Modes

The Antivirus application offers three modes for running the ClamAV anti-virus
scanner: as a daemon on the ownCloud server, a daemon on a remote server, or an
executable mode that calls clamscan on the local server. We recommend using one of
the daemon modes, as they are the most reliable.

Enable Only for Specific Groups Fails

Some ownCloud applications have the option to be enabled only for certain groups.
However, when you select specific groups they do not get access to the app.

Changes to File Previews

For security and performance reasons, file previews are available only for image files,
covers of MP3 files, and text files, and have been disabled for all other filetypes. Files
without previews are represented by generic icons according to their file types.

4GB Limit on SFTP Transfers

Because of limitations in phpseclib, you cannot upload files larger than 4GB over SFTP.

Not Enough Space Available on File Upload

Setting user quotas to unlimited on an ownCloud installation that has unreliable free
disk space reporting– for example, on a shared hosting provider– may cause file
uploads to fail with a Not Enough Space Available error. A workaround is to set file
quotas for all users instead of unlimited.

52 | Changes in 7.0

No More Expiration Date On Local Shares

In older versions of ownCloud, you could set an expiration date on both local and
public link shares. Now you can set an expiration date only on public link shares, and
local shares do not expire when public link shares expire.

Zero Quota Not Read-Only

Setting a user’s storage quota should be the equivalent of read-only, however, users
can still create empty files.

Enterprise 7.0

No Federated Cloud Sharing with Shibboleth

Federated Cloud Sharing (formerly Server-to-Server file sharing) does not work with
Shibboleth .

Windows Network Drive

Windows Network Drive runs only on Linux servers because it requires the Samba
client, which is included in all Linux distributions.

php5-libsmbclient is also required, and there may be issues with older versions of
libsmbclient; see Using External Storage > Installing and Configuring the Windows
Network Drive application in the Enterprise Admin manual for more information.

By default CentOS has activated SELinux, and the httpd process can not make
outgoing network connections. This will cause problems with curl, LDAP and samba
libraries. Again, see Using External Storage > Installing and Configuring the Windows
Network Drive application in the Enterprise Admin manual for instructions.

Sharepoint Drive SSL

The SharePoint Drive application does not verify the SSL certificate of the SharePoint
server or the ownCloud server, as it is expected that both devices are in the same
trusted environment.

Shibboleth and WebDAV Incompatible

Shibboleth and standard WebDAV are incompatible, and cannot be used together in
ownCloud. If Shibboleth is enabled, the ownCloud client uses an extended WebDAV
protocol

No SQLite

SQLite is no longer an installation option for ownCloud Enterprise Edition, as it not
suitable for multiple-user installations or managing large numbers of files.

No Application Store

The application Store is disabled for the Enterprise Edition.

LDAP Home Connector Linux Only

The LDAP Home Connector application requires Linux (with MySQL, MariaDB, or
PostgreSQL) to operate correctly.

Changes in 7.0 | 53

Frequently Asked Questions

I want to upgrade from Community Version to
Enterprise Version. What are the changes?

In ownCloud Enterprise you will get access to new apps and features, mainly targeted
towards enterprises; apps and features that ensure security, for example.

You can upgrade to the Enterprise version without concern, as your existing files,
shares, and users remain as they are.

How do I transfer files from one user to another?

See transferring files to another user.

How do I deal with problems caused by using self-
signed SSL certificates?

See the security section of the OCC command.

I’m the admin and I lost my password! What do I do
now!

See the reset admin password documentation.

What is a Federated System?

A Federated System is another ownCloud or OpenCloudMesh supporting cloud
service.

Platform-wide known limitations, excluded files

There are known file names that can not be synced with ownCloud, these are:

• Folders and files with a trailing space.
• .htaccess.
• *.part files.
• File names that exceed 253 characters.
• client/sync-exclude.list.
• Desktop.ini in the root directory.
• UNIX/Linux hidden files (files whose names have a leading dot, e.g., .12345.pdf).

Users must activate "sync hidden files" to sync them.

54 | I want to upgrade from Community Version to Enterprise Version. What are the changes?

configuration/files/file_sharing_configuration.pdf#transferring-files-to-another-user
configuration/server/occ_command.pdf#security
configuration/user/reset_admin_password.pdf
https://oc.owncloud.com/opencloudmesh.html
https://github.com/owncloud/client/blob/master/sync-exclude.lst

Installation
You can install ownCloud in multiple ways, here are our trusted guides:

Manual Installation

This is a thorough guide to installing ownCloud, containing all the information needed
for the prerequisites, the dependencies, the actual installation and the configuration
afterwards.

Installing With Docker

This guide will show you how to install ownCloud with Docker Compose using our
YAML file.

Example Installation on Ubuntu

This is an example installation on an Ubuntu Server. This guide takes you from a clean
Ubuntu server to a finished ownCloud installation in the minimal steps required. All
commands are written down and are easy to copy paste in to your terminal.

Linux Package Manager

This guide shows you how to install ownCloud with the Ubuntu Package Manager.

Deployment Considerations

Hardware

• Solid-state drives (SSDs) for I/O.
• Separate hard disks for storage and database, SSDs for databases.
• Multiple network interfaces to distribute server synchronisation and backend

traffic across multiple subnets.

Single Machine / Scale-Up Deployment

The single-machine deployment is widely used in the community.

Pros:

• Easy setup: no session storage daemon, use tmpfs and memory caching to enhance
performance, local storage.

• No network latency to consider.
• To scale buy a bigger CPU, more memory, larger hard drive, or additional hard

drives.

Cons:

• Fewer high availability options.
• The amount of data in ownCloud tends to continually grow. Eventually a single

machine will not scale; I/O performance decreases and becomes a bottleneck with
multiple up- and downloads, even with solid-state drives.

Manual Installation | 55

installation/manual_installation/index.pdf
installation/docker/index.pdf
installation/quick_guides/index.pdf
installation/linux_packetmanager_install.pdf
installation/manual_installation/index.pdf

Scale-Out Deployment

Provider setup:

• DNS round robin to HAProxy servers (2-n, SSL offloading, cache static resources)
• Least load to Apache servers (2-n)
• Memcached/Redis for shared session storage (2-n)
• Database cluster with single primary, multiple replicas and proxy to split requests

accordingly (2-n)
• GPFS or Ceph via phprados (2-n, 3 to be safe, Ceph 10+ nodes to see speed

benefits under load)
• In case of clustering, your cluster nodes must have the same ownCloud

configuration including an identical config.php to avoid any potential issues.

Pros:

• Components can be scaled as needed.
• High availability.
• Test migrations easier.

Cons:

• More complicated to setup.
• Network becomes the bottleneck (10GB Ethernet recommended).
• Currently DB filecache table will grow rapidly, making migrations painful in case

the table is altered.

A Single primary DB is Single Point of Failure, Does Not Scale

When primary fails another replica can become primary. However, the increased
complexity carries some risks: Multi-primary has the risk of split brain, and deadlocks.
ownCloud tries to solve the problem of deadlocks with high-level file locking.

Software

Operating System

We are dependent on distributions that offer an easy way to install the various
components in up-to-date versions. ownCloud has a partnership with RedHat and
SUSE for customers who need commercial support. Canonical, the parent company of
Ubuntu Linux, also offers enterprise service and support. Debian and Ubuntu are free
of cost, and include newer software packages. CentOS is the community-supported
free-of-cost Red Hat Enterprise Linux clone. openSUSE is community-supported, and
includes many of the same system administration tools as SUSE Linux Enterprise
Server.

Web server

Apache with mod_php is currently the best option. Mod_php is recommended instead
of PHP_FPM, because in scale-out deployments separate PHP pools are not necessary.

Relational Database

More often than not the customer already has an opinion on what database to use. In
general, the recommendation is to use what their database administrator is most
familiar with. Taking into account what we are seeing at customer deployments, we

56 | Deployment Considerations

recommend MySQL/MariaDB in a primary-replica deployment with a MySQL proxy in
front of them to send updates to primary, and selects to the replica(s).

The second best option is PostgreSQL (alter table does not lock table, which makes
migration less painful) although we have yet to find a customer who uses a primary-
replica setup.

What about the other DBMS?

• Sqlite is adequate for simple testing, and for low-load single-user deployments. It is
not adequate for production systems.

• Microsoft SQL Server is not a supported option.
• Oracle DB is the de facto standard at large enterprises and is fully supported with

ownCloud Enterprise Edition only.

File Storage

While many customers are starting with NFS, sooner or later that requires scale-out
storage. Currently the options are GPFS or GlusterFS, or an object store protocol like
S3. S3 also allows access to Ceph Storage.

Session Storage

• Redis is required for transactional file locking Transactional File Locking, provides
session persistence, and graphical inspection tools available.

• If you need to scale out Shibboleth you must use Memcached, as Shibboleth does
not provide an interface to Redis. Memcached can also be used to scale-out shibd
session storage (see Memcache StorageService).

Deployment Recommendations

Introduction

What is the best way to install and maintain ownCloud? The answer to that is, as
always: 'it depends'.

This is because every ownCloud customer has their own particular needs and IT
infrastructure. However, both ownCloud and the LAMP stack are highly-configurable.
Given that, in this document we present a set of general recommendations, followed
by three typical scenarios, and finish up with making best-practice recommendations
for both software and hardware.



The recommendations presented here are based on a standard
ownCloud installation, one without any particular apps, themes, or code
changes. But, server load is dependent upon the number of clients,
files, and user activity, as well as other usage patterns. Given that,
these recommendations are only a rule of thumb based on our
experience, as well as that of one of our customers.

General Recommendations

• Operating system: Linux.
• Web server: Apache 2.4.
• Database: MySQL/MariaDB with InnoDB storage engine (MyISAM is not supported,

see: MySQL / MariaDB storage engine)
• And a recent PHP Version. See System Requirements

Deployment Recommendations | 57

configuration/files/files_locking_transactional.pdf
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPStorageService#NativeSPStorageService-MemcacheStorageService
configuration/database/linux_database_configuration.pdf#mysql-mariadb-storage-engine
installation/system_requirements.pdf

• Consider setting up a scale-out deployment, or using Federated Cloud Sharing to
keep individual ownCloud instances to a manageable size.


Whatever the size of your organization, always keep one thing in mind:
The amount of data stored in ownCloud will only grow. So plan ahead.

ownCloud Administrators Must Have Command Line or Cron Access

We only recommend using hosts that provide command-line or Cron access (ideally
both) to ownCloud administrators, for three key reasons:

1. Without command-line access, OCC commands, required for administrative tasks
such as repairs and upgrades, are not available.

2. Without Crontab access, you cannot run background jobs reliably. ajax/cron.php is
available, but it is not reliable enough, because it only runs when people are using
the web UI. Additionally, ownCloud relies heavily on background jobs especially for
long-running operations, which will likely cause PHP timeouts.

3. PHP timeout values are often low. Having low timeout settings can break long-
running operations, such as moving a huge folder.

Scenario 1: Small Workgroups and Departments

This recommendation applies if you meet the following criteria:

Option Value

Number of users Up to 150 users

Storage size 100 GB to 10TB

High availability level Zero-downtime backups via Btrfs
snapshots, component

failure leads to interruption of service.
Alternate

backup scheme on other filesystems:
nightly backups

— with service interruption.

Recommended System Requirements

One machine running the application, web, and database server, as well as local
storage. Authentication via an existing LDAP or Active Directory server.

58 | Deployment Recommendations

user_manual:files/federated_cloud_sharing.pdf
configuration/server/occ_command.pdf
configuration/server/background_jobs_configuration.pdf#ajax
developer_manual:app/fundamentals/backgroundjobs.pdf

Components

One server with at least 2 CPU cores, 16GB RAM, and local storage as needed.

Operating system

Enterprise-grade Linux distribution with full support from an operating system vendor.
We recommend both RedHat Enterprise Linux and SUSE Linux Enterprise Server 12.

SSL Configuration

The SSL termination is done in Apache. A standard SSL certificate is required to be
installed according to the official Apache documentation.

Load Balancer

None.

Database

MySQL, MariaDB, or PostgreSQL. We currently recommend MySQL / MariaDB, as our
customers have had good experiences when moving to a Galera cluster to scale the
DB. If using either MySQL or MariaDB, you must use the InnoDB storage engine as
MyISAM is not supported, see: MySQL / MariaDB storage engine



If you are using MaxScale/Galera, then you need to use at least version
1.3.0. In earlier versions, there is a bug where the value of last_insert_id
is not routed to the primary node. This bug can cause loops within
ownCloud and corrupt database rows. You can find out more
information in the issue documentation.

Backup

Install ownCloud, the ownCloud data directory, and database on a Btrfs filesystem.
Make regular snapshots at desired intervals for zero downtime backups. Mount DB
partitions with the "nodatacow" option to prevent fragmentation.

Alternatively, you can make nightly backups — with service interruption — as follows:

1. Shut down Apache.
2. Create database dump.
3. Push data directory to backup.
4. Push database dump to backup.
5. Start Apache.

After these steps have been completed, then, optionally, rsync the backup to either an
external backup storage or tape backup. See the Maintenance section of the
Administration manual for tips on backups and restores.

Authentication

User authentication via one or several LDAP or Active Directory (AD) servers. See
User Authentication with LDAP for information on configuring ownCloud to use LDAP
and AD.

Session Management

Local session management on the application server. PHP sessions are stored in a
temporary filesystem, mounted at the operating system-specific session storage
location. You can find out where that is by running grep -R 'session.save_path'

Deployment Recommendations | 59

https://httpd.apache.org/docs/2.4/ssl/ssl_howto.html
configuration/database/linux_database_configuration.pdf#mysql-mariadb-storage-engine
https://jira.mariadb.org/browse/MXS-220
https://en.wikipedia.org/wiki/Btrfs
maintenance/index.pdf
admin_manual:configuration/user/user_auth_ldap.pdf

/etc/php* and then add it to the /etc/fstab file, for example:

Retrieve the session save path setting (default or explicit value) for PHP 7.4
Please change the file path to match your server configuration
session_path=$(\
 awk 'match($0, /^;?session.save_path = "(.*)"/, a) { print a[1] }' \
 /etc/php/7.4/**/php.ini \
 | uniq)

Set the session save path in /etc/fstab
echo "tmpfs $session_path tmpfs defaults,noatime,mode=1777 0 0" >> /etc/fstab

Memory Caching

A memory cache speeds up server performance, and ownCloud supports four of them.
Refer to Configuring Memory Caching for information on selecting and configuring a
memory cache.

Storage

Local storage.

ownCloud Edition

Standard Edition. See ownCloud Server or Enterprise Edition for comparisons of the
ownCloud editions.

Scenario 2: Mid-Sized Enterprises

These recommendations apply if you meet the following criteria:

Option Value

Number of users 150 to 1,000 users.

Storage size Up to 200TB.

High availability level Every component is fully redundant and
can fail

without service interruption. Backups
without

service interruption

Recommended System Requirements

• 2 to 4 application servers.
• A cluster of two database servers.
• Storage on an NFS server.
• Authentication via an existing LDAP or Active Directory server.
• A Redis server for file locking

60 | Deployment Recommendations

admin_manual:configuration/server/caching_configuration.pdf
https://owncloud.com/owncloud-server-or-enterprise-edition/

Components

• 2 to 4 application servers with four sockets and 32GB RAM.
• 2 DB servers with four sockets and 64GB RAM.
• 1 HAproxy load balancer with two sockets and 16GB RAM.
• NFS storage server as needed.

Operating System

Enterprise grade Linux distribution with full support from an operating system vendor.
We recommend both RedHat Enterprise Linux and SUSE Linux Enterprise Server 12.

SSL Configuration

The SSL termination is done in the HAProxy load balancer. A standard SSL certificate
is needed, installed according to the HAProxy documentation.

Load Balancer

HAProxy running on a dedicated server in front of the application servers. Sticky
session needs to be used because of local session management on the application
servers.

Database

MySQL/MariaDB Galera cluster with primary-replica replication. InnoDB storage
engine, MyISAM is not supported, see: MySQL / MariaDB storage engine. For mariadb
consider: MariaDB Monitor to configure your setup for a failover Scenario.

Backup

Minimum daily backup without downtime. All MySQL/MariaDB statements should be
replicated to a backup MySQL/MariaDB replica instance.

• Create a snapshot on the NFS storage server.
• At the same time stop the MySQL replication.
• Create a MySQL dump of the backup replica.
• Push the NFS snapshot to the backup.
• Push the MySQL dump to the backup.
• Delete the NFS snapshot.

Deployment Recommendations | 61

https://www.digitalocean.com/community/tutorials/an-introduction-to-haproxy-and-load-balancing-concepts
https://www.digitalocean.com/community/tutorials/an-introduction-to-haproxy-and-load-balancing-concepts
http://www.haproxy.org/#docs
https://mariadb.com/kb/en/setting-up-replication/
configuration/database/linux_database_configuration.pdf#mysql-mariadb-storage-engine
https://mariadb.com/kb/en/mariadb-maxscale-22-automatic-failover-with-mariadb-monitor

• Restart MySQL replication.

Authentication

User authentication via one or several LDAP or Active Directory servers. See User
Authentication with LDAP for information on configuring ownCloud to use LDAP and
AD.

Session Management

Session management on the application server. PHP sessions are stored in a
temporary filesystem, mounted at the operating system-specific session storage
location. You can find out where that is by running grep -R 'session.save_path'
/etc/php* and then add it to the /etc/fstab file, for example:

Retrieve the session save path setting (default or explicit value) for PHP 7.4
Please change the file path to match your server configuration
session_path=$(\
 awk 'match($0, /^;?session.save_path = "(.*)"/, a) { print a[1] }' \
 /etc/php/7.4/**/php.ini \
 | uniq)

Set the session save path in /etc/fstab
echo "tmpfs $session_path tmpfs defaults,noatime,mode=1777 0 0" >> /etc/fstab

Memory Caching

A memory cache speeds up server performance, and ownCloud supports four memory
cache types. Refer to Configuring Memory Caching for information on selecting and
configuring a memory cache.

Storage

For accessing a backend storage system via NFS, you can use a dedicated storage
system like NetApp Hybrid Flash Storage Systems, or other systems like IBM Elastic
Storage based on their Power8 servers or RedHat Ceph with their NFS-Ceph gateway.

You may take a look on the NetApp NFS Best Practice and Implementation Guide for
best NFS configuring practices, especially section 9.4 Mount Option Best Practices
with NFS on page 111 and MySQL Database on NetApp ONTAP which also includes
performance measurements.

ownCloud Edition

Enterprise Edition. See ownCloud Server or Enterprise Edition for comparisons of the
ownCloud editions.

Scenario 3: Large Enterprises and Service Providers

Option Value

Number of users 5,000 to >100,000 users.

Storage size Up to 1 petabyte.

High availability level Every component is fully redundant and
can fail

62 | Deployment Recommendations

admin_manual:configuration/user/user_auth_ldap.pdf
admin_manual:configuration/user/user_auth_ldap.pdf
admin_manual:configuration/server/caching_configuration.pdf
https://www.netapp.com/us/products/storage-systems/hybrid-flash-array/index.aspx
https://www.ibm.com/us-en/marketplace/ibm-elastic-storage-server
https://www.ibm.com/us-en/marketplace/ibm-elastic-storage-server
https://www.redhat.com/en/technologies/storage/ceph
https://www.netapp.com/us/media/tr-4067.pdf
https://www.netapp.com/us/media/tr-4722.pdf
https://owncloud.com/owncloud-server-or-enterprise-edition/

Option Value

without service interruption. Backups
without

service interruption.

Recommended System Requirements

• 4 to 20 application/Web servers.
• A cluster of two or more database servers.
• Storage is an NFS server or an object store that is S3 compatible.
• Cloud federation for a distributed setup over several data centers.
• Authentication via an existing LDAP or Active Directory server, or SAML.

Components

• 4 to 20 application servers with four sockets and 64GB RAM.
• 4 DB servers with four sockets and 128GB RAM. 2 Hardware load balancer, for

example, BIG IP from F5.
• NFS storage server as needed.

Operating system

RHEL 7 with latest service packs.

SSL Configuration

The SSL termination is done in the load balancer. A standard SSL certificate is needed,
installed according to the load balancer documentation.

Deployment Recommendations | 63

https://f5.com/products/big-ip

Load Balancer

A redundant hardware load-balancer with heartbeat, for example, F5 Big-IP. This runs
two load balancers in front of the application servers.

Database

MySQL/MariaDB Galera Cluster with primary-replica replication. InnoDB storage
engine, MyISAM is not supported, see: MySQL / MariaDB storage engine. For mariadb
consider: MariaDB Monitor to configure your setup for a failover Scenario.

Backup

Minimum daily backup without downtime. All MySQL/MariaDB statements should be
replicated to a backup MySQL/MariaDB replica instance. To do this, follow these
steps:

1. Create a snapshot on the NFS storage server.
2. At the same time stop the MySQL replication.
3. Create a MySQL dump of the backup replica.
4. Push the NFS snapshot to the backup.
5. Push the MySQL dump to the backup.
6. Delete the NFS snapshot.
7. Restart MySQL replication.

Authentication

User authentication via one or several LDAP or Active Directory servers, or
SAML/Shibboleth. See User Authentication with LDAP and Shibboleth Integration.

LDAP

Read-only replicas should be deployed on every application server for optimal
scalability.

Session Management

Redis should be used for the session management storage.

Caching

Redis for distributed in-memory caching.

Storage

For accessing a backend storage system via NFS, you can use a dedicated storage
system like NetApp Hybrid Flash Storage Systems, or other systems like IBM Elastic
Storage based on their Power8 servers or RedHat Ceph with their NFS-Ceph gateway.
Optionally, an S3 compatible object store can also be used.

You may take a look on the NetApp NFS Best Practice and Implementation Guide for
best NFS configuring practices, especially section 9.4 Mount Option Best Practices
with NFS on page 111 and MySQL Database on NetApp ONTAP which also includes
performance measurements.

ownCloud Edition

Enterprise Edition. See ownCloud Server or Enterprise Edition for comparisons of the
ownCloud editions.

64 | Deployment Recommendations

https://f5.com/products/big-ip
configuration/database/linux_database_configuration.pdf#mysql-mariadb-storage-engine
https://mariadb.com/kb/en/mariadb-maxscale-22-automatic-failover-with-mariadb-monitor
configuration/user/user_auth_ldap.pdf
enterprise/user_management/user_auth_shibboleth.pdf
configuration/server/caching_configuration.pdf#redis
configuration/server/caching_configuration.pdf#redis
https://www.netapp.com/us/products/storage-systems/hybrid-flash-array/index.aspx
https://www.ibm.com/us-en/marketplace/ibm-elastic-storage-server
https://www.ibm.com/us-en/marketplace/ibm-elastic-storage-server
https://www.redhat.com/en/technologies/storage/ceph
https://www.netapp.com/us/media/tr-4067.pdf
https://www.netapp.com/us/media/tr-4722.pdf
https://owncloud.com/owncloud-server-or-enterprise-edition/

Redis Configuration

Redis in a primary-replica configuration is a hot failover setup, and is usually
sufficient. A replica can be omitted if high availability is provided via other means. And
when it is, in the event of a failure, restarting Redis typically occurs quickly enough.
Regarding Redis cluster, we don’t, usually, recommend it, as it requires a greater level
of both maintenance and management in the case of failure. A single Redis server,
however, just needs to be rebooted, in the event of failure.

Known Issues

Deadlocks When Using MariaDB Galera Cluster

If you’re using MariaDB Galera Cluster with your ownCloud installation, you may
encounter deadlocks when you attempt to sync a large number of files. You may also
encounter database errors, such as this one:

SQLSTATE[40001]: Serialization failure: 1213 Deadlock found when trying to get
lock; try restarting transaction

The issue, identified by Michael Roth, is caused when MariaDB Galera cluster sends
write requests to all servers in the cluster; here is a detailed explanation. The solution
is to send all write requests to a single server, instead of all of them.

Set wsrep_sync_wait to 1 on all Galera Cluster nodes

What the parameter does

When enabled, the node triggers causality checks in response to certain types of
queries. During the check, the node blocks new queries while the database server
catches up with all updates made in the cluster to the point where the check begun.
Once it reaches this point, the node executes the original query.

Why enable it

A Galera Cluster write operation is sent to the primary while reads are retrieved from
the replicas. Since Galera Cluster replication is, by default, not strictly synchronous it
could happen that items are requested before the replication has actually taken place.


This setting is disabled by default. See the Galera Cluster WSREP
documentation for more details.

References

• Database High Availability
• Performance enhancements for Apache and PHP
• How to Set Up a Redis Server as a Session Handler for PHP on Ubuntu 18.04

Network File System (NFS) Deployment Recommendations

ownCloud recommends using NFS for any scenario other than local storage. It has
solid performance and is very stable. This document contains ownCloud’s official
deployment recommendations.

There can be different scenarios where ownCloud’s storage is located on an NFS
mount (primary/secondary). In some scenarios, multiple application servers can use
the same NFS mount point.

Deployment Recommendations | 65

http://searchwindowsserver.techtarget.com/definition/cold-warm-hot-server
http://galeracluster.com
https://github.com/owncloud/core/issues/14757#issuecomment-223492913
http://severalnines.com/blog/avoiding-deadlocks-galera-set-haproxy-single-node-writes-and-multi-node-reads
http://galeracluster.com/documentation-webpages/
http://galeracluster.com/documentation-webpages/
http://www.severalnines.com/blog/become-mysql-dba-blog-series-database-high-availability
http://blog.bitnami.com/2014/06/performance-enhacements-for-apache-and.html
https://ubuntuhowtoo.blogspot.com/2019/10/linux-ubuntu-1804-use-redis-for-cache.html


It is advised to use network storage like NFS only in un-routed,
switched Gigabit or higher environments.


This guide only covers the NFS client side where ownCloud runs.
Follow the storage vendors recommendations to configure the NFS
server (storage backend).

General Performance Considerations

Please consider that a network stack runs in ranges of µs while a storage backend
usually runs in ranges of ms. Any tuning considerations should therefore first be
attempted on the backend storage layout side, especially under high loads.

NFS Version Comparison Overview

NFSv3

Exports All exports are mounted separately

Protocol Numerous protocols for different aspects collected
together. MOUNT, LOCK, STATUS…

Locking Permanent locks in yet another protocol

Security UNIX based. SecureNFS. Mode Bit Locking

Communication One operation per RPC

I18N All locales must match

Parallel high bandwidth
access

None native. (Addition such as MPFS)

NFSv4

Exports All exports can be mounted together in a directory tree
structure as part of a pseudo-filesystem

Protocol A single protocol with the addition of OPEN and CLOSE for
security auditing

Locking Lease based locking in the same protocol

Security Kerberos and ACL based

Communication Multiple operations per RPC. (Improves performance)

I18N UTF-8

Parallel high bandwidth
access

pNFS

NFSv4

ownCloud recommends using NFSv4 over previous versions for a number of key
reasons. These are:

• Improved Security: It mandates a strong security architecture. It does not require
rpc.statd or lockd. As a result, it only uses port 2049.

• Improved Reliability: Uses TCP by default.
• Improved Performance: It uses Multi-Component Messages, which reduce

66 | Deployment Recommendations

https://tools.ietf.org/html/rfc7530#section-3
https://linux.die.net/man/8/rpc.statd
https://docs.oracle.com/cd/E19455-01/806-0916/rfsrefer-9/index.html

network traffic. It is capable of using a 32KB page size, compared to the default,
1024 bytes.

• Use of Read/Write Delegations.

NFS Mount Options

Please see the Ubuntu man pages for a detailed description of the NFS mount options.

Dependent on the NFS version used, consider following mount options:

_netdev

Use this option to ensure that the network is enabled, before NFS attempts to mount
these filesystem. This setting is essential when database files are located on an NFS
storage. The database could error or not start correctly, if the mount is not ready
before attempting to access its data files.


You can also use autofs, to ensure that mounts are always available
before attempting to access them.

bg

ownCloud recommends using this option. Determines how the mount command
behaves if an attempt to mount an export fails. If the bg option is specified, a timeout
or failure triggers the mount command to fork a child, which will continue to attempt
mounting the export. The parent immediately returns with a zero exit code. This is
known as a "background" mount. This option is useful for continuous operation
without manual intervention if the network connectivity is temporarily down or the
storage backend must be rebooted.

hard

Default value is hard. For business-critical NFS exports, ownCloud recommends using
hard mounts. ownCloud strongly discourages the use of soft mounts.

retrans

Default value is 3. This option can be tuned when using option soft.

timeo

Default value is 600 (60 seconds). This option can be tuned when using option soft.

sync/async

With the default value of async, the NFS client may delay sending application writes to
the NFS server. In other words, under normal circumstances, data written by an
application may not immediately appear on the server that hosts the file. sync
provides greater data cache coherence among clients, but at a significant
performance cost. Having the database like MySQL or Mariadb on NFS, the default
database option value for innodb_flush_method is fsync, even if it is not explicitly set.
This database option forces the mount to immediately write to the NFS server without
generally setting the mount sync option and avoiding this performance penalty. You
may consider further tuning when using clustederd server environments.

tcp

ownCloud recommends using this option. Force using TCP as transport protocol.
Alternatively you can use proto=tcp.

Deployment Recommendations | 67

https://tools.ietf.org/html/rfc7530#section-1.4.6
http://manpages.ubuntu.com/manpages/bionic/man5/nfs.5.html
https://help.ubuntu.com/community/Autofs
https://mariadb.com/kb/en/library/innodb-system-variables/#innodb_flush_method

Tune the Read and Write Block Sizes

The allowed block sizes are the packet chunk sizes that NFS uses when reading and
writing data. The smaller the size, the greater the number of packets need to be sent
to send or receive a file. Conversely, the larger the size, the fewer the number of
packets need to be sent to send or receive a file. With NFS Version 3 and 4, you can
set the rsize and wsize values as high as 65536, when the network transport is TCP.
The default value is 32768 and must be a multiple of 4096.

 Read and write size must be identical on the NFS server and client.

You can find the set values by working with the output of the mount command on a
standard server, as in the example below.

#root@server:~# mount | egrep -o rsize=[0-9]*
rsize=65536

#root@server:~# mount | egrep -o wsize=[0-9]*
wsize=65536

The information can also be retrieved using the command set of your dedicated
storage backend. Once you’ve determined the best sizes, set them permanently by
passing the (rsize and wsize) options when mounting the share or in the share’s mount
configuration.

Listing 1. Specifying the read and write block sizes when calling mount

mount 192.168.0.104:/data /mnt -o rsize=65536,wsize=65536

Listing 2. Example for a set of NFS mount options:

bg,nfsvers=3,wsize=65536,rsize=65536,tcp,_netdev

Ethernet Configuration Options

MTU (Maximum Transmission Unit) Size

The MTU size dictates the maximum amount of data that can be transferred in one
Ethernet frame. If the MTU size is too small, then regardless of the read and write
block sizes, the data must still be fragmented across multiple frames. Keep in mind
that MTU = payload (packetsize) + 28.

Get the Current Set MTU Size

You can find the current MTU size for each interface using netstat, ifconfig, ip, and
cat, as in the following examples:

68 | Deployment Recommendations

Listing 3. Retrieve interface MTU size with netstat

netstat -i

Kernel Interface table
Iface MTU RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
lo 65536 363183 0 0 0 363183 0 0 0 LRU
eth0 1500 3138292 0 0 0 2049155 0 0 0 BMR

Listing 4. Retrieve interface MTU size with ifconfig

ifconfig| grep -i MTU

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

Listing 5. Retrieve interface MTU size with ip

ip addr | grep mtu

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
group default qlen 1000
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000

Listing 6. Retrieve interface MTU size with cat

cat /sys/class/net/<interface>/mtu

Check for MTU Fragmentation

To check if a particular packet size will be fragmented on the way to the target, run
the following command:

ping <your-storage-backend> -c 3 -M do -s <packetsize>

Get the Optimal MTU Size

To get the optimal MTU size, run following command:

tracepath <your-storage-backend>

You can expect to see output like the following:

 1?: [LOCALHOST] pmtu 1500 ①
 1: <your-storage-backend> 0.263ms reached ②
 1: <your-storage-backend> 0.224ms reached ③
 Resume: pmtu 1500 hops 1 back 1

Deployment Recommendations | 69

① The first line with localhost shows the given MTS size.

② The last line shows the optimal MTU size.

③ If both are identical, nothing needs to be done.

Change Your MTU Value

In case you need or want to change the MTU size, under Ubuntu:

• If NetworkManager is managing all devices on the system, then you can use nmtui
or nmcli to configure the MTU setting.

• If NetworkManager is not managing all devices on the system, you can set the MTU
to 1280 with Netplan, as in the following example.

network:
 version: 2
 ethernets:
 eth0:
 mtu: 1280

Refer to the Netplan documentation for further information.

 NetworkWorld has an excellent overview of MTU size issues.

System Requirements

Officially Recommended Environment

For best performance, stability, support, and full functionality we officially recommend
and support:

Platform Options

Operating System Ubuntu 20.04 LTS

Database MariaDB 10+

Web server Apache 2.4 with prefork and mod_php

PHP Runtime 7.4

Officially Supported Environments

For best performance, stability, support, and full functionality we officially support:

Server

70 | System Requirements

https://help.ubuntu.com/community/NetworkManager
https://manpages.ubuntu.com/manpages/disco/man1/nmtui.1.html
https://manpages.ubuntu.com/manpages/disco/man1/nmcli.1.html
https://netplan.io/reference
https://www.networkworld.com/article/2224654/mtu-size-issues.html
installation/manual_installation.pdf#multi-processing-module-mpm

Platform Options

Operating System (64bit) • Debian 10
• Fedora 32 and 33
• Red Hat Enterprise Linux/Centos 7.5 and 8
• SUSE Linux Enterprise Server 12 with SP4/5 and 15
• Ubuntu 18.04 and 20.04
• openSUSE Leap 15.2

Database • MySQL 8+ or MariaDB 10+ (Recommended)
• Oracle 11 and 12
• PostgreSQL 9 and 10
• SQLite (Not for production)

Web server • Apache 2.4 with prefork and mod_php

PHP Runtime • 7.2, 7.3, and 7.4


For Linux distributions, we support, if technically feasible, the latest
two versions per platform and the previous LTS Version.

Hypervisors

• Hyper-V
• VMware ESX
• Xen
• KVM

Web Browser

• Edge (current version on Windows 10)
• IE11 or newer (except Compatibility Mode)
• Firefox 60 ESR+
• Chrome 66+
• Safari 10+

Desktop Sync Client

We always recommend to use the newest sync client with the latest server release.

You can find detailed system requirements in the documentation for the Desktop
Synchronization Client.

Mobile Apps

We always recommend to use the newest mobile apps with the latest server release.

You can find detailed system requirements in the documentation for the mobile apps.

• iOS system requirements
• Android system requirements

System Requirements | 71

installation/manual_installation.pdf#multi-processing-module-mpm
installation/manual_installation.pdf#multi-processing-module-mpm
installation/manual_installation.pdf#multi-processing-module-mpm
https://doc.owncloud.com/desktop/installing.html#system-requirements
https://doc.owncloud.com/ios-app/ios_faq.html
https://doc.owncloud.com/android/faq.html

 You can find out more in the changelog.

Database Requirements

The following database settings are currently required if you’re running ownCloud
together with a MySQL or MariaDB database:

• Disabled or BINLOG_FORMAT = MIXED or BINLOG_FORMAT = ROW configured
Binary Logging (See: MySQL / MariaDB with Binary Logging Enabled)

• InnoDB storage engine (The MyISAM storage engine is not supported, see: MySQL
/ MariaDB storage engine)

• READ COMMITED transaction isolation level (See: MySQL / MariaDB READ
COMMITED transaction isolation level)

Memory Requirements

Memory requirements for running an ownCloud server are greatly variable, depending
on the numbers of users and files, and volume of server activity. ownCloud officially
requires a minimum of 128MB RAM. But, we recommend a minimum of 512MB.

Configuration Notes and Tips

SELinux

See the SELinux Configuration for a suggested configuration for SELinux-enabled
distributions such as Fedora and CentOS.

php.ini

Several core PHP settings must be configured correctly, otherwise ownCloud may not
work properly. Known settings causing issues are listed here. Please note that, there
might be other settings which cause unwanted behavior. In general, however, it is
recommended to keep the php.ini settings at their defaults, except when you know
exactly why the change is required, and its implications.


Keep in mind that, changes to php.ini may have to be configured in
more than one ini file. This can be the case, for example, for the
date.timezone setting.

php.ini - Used by the Web server

For PHP version 7.2 onward, replace php_version with the version number installed,
e.g., 7.2 in the following examples.

/etc/php/[php_version]/apache2/php.ini

or

/etc/php/[php_version]/fpm/php.ini

or

72 | Configuration Notes and Tips

https://owncloud.org/changelog
configuration/database/linux_database_configuration.pdf#mysql-mariadb-with-binary-logging-enabled
configuration/database/linux_database_configuration.pdf#mysql-mariadb-storage-engine
configuration/database/linux_database_configuration.pdf#mysql-mariadb-storage-engine
configuration/database/linux_database_configuration.pdf#mysql-mariadb-read-commited-transaction-isolation-level
configuration/database/linux_database_configuration.pdf#mysql-mariadb-read-commited-transaction-isolation-level
configuration/database/linux_database_configuration.pdf#mysql-mariadb-read-commited-transaction-isolation-level
configuration/database/linux_database_configuration.pdf#mysql-mariadb-read-commited-transaction-isolation-level
installation/selinux_configuration.pdf

php.ini - used by the php-cli and so by ownCloud CRON jobs

/etc/php/[php_version]/cli/php.ini

session.auto_start && enable_post_data_reading

Ensure that session.auto_start is set to 0 or Off and enable_post_data_reading to 1 or
On in your configuration. If not, you may have issues logging in to ownCloud via the
WebUI, where you see the error: "Access denied. CSRF check failed".

session.save_path

In addition to setting session.auto_start and enable_post_data_reading correctly,
ensure that, if session.save_handler is set to files, that session.save_path is set to a
path on the filesystem which only the web server process (or process which PHP is
running as) can read from and write to.

This is especially important if your ownCloud installation is using a shared-hosting
arrangement. In these situations, session poisoning can occur if all of the session files
are stored in the same location. Session poisoning is where one web application can
manipulate data in the $_SESSION superglobal array of another.

When this happens, the original application has no way of knowing that this corruption
has occurred and may not treat the data with any sense of suspicion. You can read
through a thorough discussion of local session poisoning if you’d like to know more.

post_max_size

Please ensure that you have post_max_size configured with at least the minimum
amount of memory for use with ownCloud, which is 512 MB.


Please be careful when you set this value if you use the byte value
shortcut as it is very specific. Use K for kilobyte, M for megabyte and G
for gigabyte. KB, MB, and GB do not work!

realpath_cache_size

This determines the size of the realpath cache used by PHP. This value should be
increased on systems where PHP opens many files, to reflect the number of file
operations performed. For a detailed description see realpath-cache-size. This setting
has been available since PHP 5.1.0. Prior to PHP 7.0.16 and 7.1.2, the default was 16
KB.

To see your current value, query your phpinfo() output for this key. It is recommended
to set the value if it is currently set to the default of 16 KB. A good reading about the
background can be found at tideways.io.

How to get a working value

With the assumption of 112 bytes per file path needed, this would allow the cache to
hold around 37.000 items with a cache size of 4096K (4M), but only about a hundred
entries for a cache size of 16 KB.


It’s a good rule of thumb to always have a realpath cache that can hold
entries for all your files paths in memory. If you use symlink
deployment, then set it to double or triple the amount of files.

The easiest way to get the quantity of PHP files is to use cloc, which can be installed

Configuration Notes and Tips | 73

https://secure.php.net/manual/en/session.configuration.php#ini.session.auto-start
https://secure.php.net/manual/en/ini.core.php#ini.enable-post-data-reading
https://en.wikipedia.org/wiki/Session_poisoning
https://dl.packetstormsecurity.net/papers/attack/php-part1.pdf
http://php.net/manual/en/ini.core.php#ini.realpath-cache-size
https://tideways.io/profiler/blog/how-does-the-php-realpath-cache-work-and-how-to-configure-it

by running sudo apt-get install cloc. The cloc package is available for nearly all
distributions.

sudo cloc /var/www/owncloud --exclude-dir=data --follow-links
 12179 text files.
 11367 unique files.
 73126 files ignored.

http://cloc.sourceforge.net v 1.60 T=1308.98 s (6.4 files/s, 1283.5 lines/s)
--
Language files blank comment code
--
PHP 4896 96509 285384 558135
...

Taking the math from above and assuming a symlinked instance, using factor 3. For
example: 4896 * 3 * 112 = 1.6MB This result shows that you can run with the PHP
setting of 4M two instances of ownCloud.

Having the default of 16 KB means that only 1/100 of the existing PHP file paths can
be cached and need continuous cache refresh slowing down performance. If you run
more web services using PHP, you have to calculate accordingly.

PHP-FPM

Note that mod_php is used exclusively in the development and QA process of the
ownCloud server. It’s highly recommended to use mod_php in your production
environment for optimal performance and stability. Any issues with the ownCloud
server have to be reproducible with mod_php.

SAML SSO with Shibboleth will not work with php-fpm.

System Environment Variables

When you are using php-fpm, system environment variables like PATH, TMP or others
are not automatically populated in the same way as when using php-cli. A PHP call like
getenv('PATH'); can therefore return an empty result. So you may need to manually
configure environment variables in the appropriate php-fpm ini/config file.

Here are some example root paths for these ini/config files:

Ubuntu/Mint CentOS/Red Hat/Fedora

/etc/php/[php_version]/fpm/ /etc/php-fpm.d/

In both examples, the ini/config file is called www.conf, and depending on the
distribution or customizations which you have made, it may be in a sub-directory.

Usually, you will find some or all of the environment variables already in the file, but
commented out like this:

74 | Configuration Notes and Tips

;env[HOSTNAME] = $HOSTNAME
;env[PATH] = /usr/local/bin:/usr/bin:/bin
;env[TMP] = /tmp
;env[TMPDIR] = /tmp
;env[TEMP] = /tmp

Uncomment the appropriate existing entries. Then run printenv PATH to confirm your
paths, for example:

$ printenv PATH
/home/user/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:
/sbin:/bin:/

If any of your system environment variables are not present in the file then you must
add them.

When you are using shared hosting or a control panel to manage your ownCloud
virtual machine or server, the configuration files are almost certain to be located
somewhere else, for security and flexibility reasons, so check your documentation for
the correct locations.

Please keep in mind that it is possible to create different settings for php-cli and php-
fpm, and for different domains and Web sites. The best way to check your settings is
with label-phpinfo.

Maximum Upload Size

If you want to increase the maximum upload size, you will also have to modify your
php-fpm configuration and increase the upload_max_filesize and post_max_size values.
You will need to restart php5-fpm and your HTTP server in order for these changes to
be applied.

.htaccess Notes for Apache

ownCloud comes with its own owncloud/.htaccess file. Because php-fpm can’t read
PHP settings in .htaccess these settings and permissions must be set in the
owncloud/.user.ini file.

No basic authentication headers were found

This error is shown in your data/owncloud.log file. Some Apache modules like
mod_fastcgi, mod_fcgid or mod_proxy_fcgi are not passing the needed authentication
headers to PHP and so the login to ownCloud via WebDAV, CalDAV and CardDAV
clients is failing. Information on how to correctly configure your environment can be
found in the forums but we generally recommend against the use of these modules and
recommend mod_php instead.

Other Web Servers

• Other HTTP servers
• Univention Corporate Server installation

Configuration Notes and Tips | 75

https://central.owncloud.org/t/no-basic-authentication-headers-were-found-message/819
https://github.com/owncloud/documentation/wiki/Alternate-Web-server-notes
https://github.com/owncloud/documentation/wiki/UCS-Installation

Installation

You can install ownCloud in multiple ways, here are our trusted guides:

Manual Installation

This is a thorough guide to installing ownCloud, containing all the information needed
for the prerequisites, the dependencies, the actual installation and the configuration
afterwards.

Installing With Docker

This guide will show you how to install ownCloud with Docker Compose using our
YAML file.

Example Installation on Ubuntu

This is an example installation on an Ubuntu Server. This guide takes you from a clean
Ubuntu server to a finished ownCloud installation in the minimal steps required. All
commands are written down and are easy to copy paste in to your terminal.

Linux Package Manager

This guide shows you how to install ownCloud with the Ubuntu Package Manager.

Installing with Docker

Introduction

ownCloud can be installed using the official ownCloud Docker image. This official
image works standalone for a quick evaluation but is designed to be used in a docker-
compose setup.

Grant docker command privileges to certain users by adding them to the group
docker:

sudo usermod -aG docker <your-user>


The changes via usermod only take effect after the docker users log in.
So you may have to log out and log in again or possibly reboot before
you can run docker commands.

Users not added to the docker group can run docker commands with a preceding sudo.
In this section sudo is generally omitted before docker commands since we assume
you have created a docker user, which is also the only way to run ownCloud’s
command-line interface occ in a docker container. For more information on occ, see
section Using the occ Command.

An example occ command looks like this:

docker exec --user www-data <owncloud-container-name> php occ <your-
command>

76 | Installation

installation/manual_installation/index.pdf
installation/docker/index.pdf
installation/quick_guides/index.pdf
installation/linux_packetmanager_install.pdf
https://hub.docker.com/r/owncloud/server
configuration/server/occ_command.pdf

Quick Evaluation



The commands and links provided in the following descriptions are
intended to showcase basic docker usage, but we cannot take
responsibility for their proper functioning. If you only want to take a
peek and are content with SQLite as database, which is not supported
by ownCloud for production purposes, try the following:

docker run --rm --name oc-eval -d -e OWNCLOUD_DOMAIN=localhost:8080
-p8080:8080 owncloud/server

This starts a docker container with the name "oc-eval" in the background (option -d).
owncloud/server is the docker image downloaded from Docker Hub. If you don’t start
the container with option -d, the logs will be displayed in the shell. If you are running
it in the background as in the example above, you can display the logs with the
command:

docker logs oc-eval

With the command docker ps you can list your running docker containers and should
see the entry for oc-eval.

You can log in to your ownCloud instance via a browser at http://localhost:8080 with
the preconfigured user admin and password admin.

 Access only works with http, not https.

Now, if you like what you see but want a supported installation with MariaDB, you
should remove the eval version before proceeding with the next section.

docker kill oc-eval

This removes the container if you used the option --rm as suggested in the example
above. If you omitted that option, you need to first run the command:

docker rm oc-eval

If you now run docker ps again, the entry for oc-eval should be gone.

Docker Compose

The configuration:

• Exposes ports 8080, allowing for HTTP connections.
• Uses separate MariaDB and Redis containers.
• Mounts the data and MySQL data directories on the host for persistent storage.

The following instructions assume you install locally. For remote access, the value of
OWNCLOUD_DOMAIN must be adapted.

1. Create a new project directory. Then copy and paste the sample docker-
compose.yml from this page into that new directory.

Installation | 77

2. Create a .env configuration file, which contains the required configuration settings.

Only a few settings are required, these are:

Setting Name Description Example

OWNCLOUD_VERSIO
N

The ownCloud version latest

OWNCLOUD_DOMAIN The ownCloud domain localhost:8080

ADMIN_USERNAME The admin username admin

ADMIN_PASSWORD The admin user’s
password

admin

HTTP_PORT The HTTP port to bind
to

8080


ADMIN_USERNAME and ADMIN_PASSWORD will not change between
deploys even if you change the values in the .env file. To change them,
you’ll need to do docker volume prune, which will delete all your
data.

Then, you can start the container, using your preferred Docker command-line tool. The
example below shows how to use Docker Compose.

Create a new project directory
mkdir owncloud-docker-server

cd owncloud-docker-server

Copy docker-compose.yml from the GitHub repository
wget
https://raw.githubusercontent.com/owncloud/docs/master/modules/admin_manual/e
xamples/installation/docker/docker-compose.yml

Create the environment configuration file
cat << EOF > .env
OWNCLOUD_VERSION=10.6
OWNCLOUD_DOMAIN=localhost:8080
ADMIN_USERNAME=admin
ADMIN_PASSWORD=admin
HTTP_PORT=8080
EOF

Build and start the container
docker-compose up -d

When the process completes, check that all the containers have successfully started,
by running docker-compose ps. If they are all working correctly, you should see output
similar to the one below:

78 | Installation

https://docs.docker.com/compose/

Name Command State Ports

owncloud_mari
adb

docker-entrypoint.sh
--max …

Up (healthy) 3306/tcp

owncloud_redi
s

docker-entrypoint.sh --dat
…

Up (healthy) 6379/tcp

owncloud_serv
er

/usr/bin/entrypoint /usr/b
…

Up (healthy) 0.0.0.0:8080→8080/tcp

In it, you can see that the database, ownCloud and Redis containers are running, and
that ownCloud is accessible via port 8080 on the host machine.



All files stored in this setup are contained in Docker volumes rather
than a physical filesystem tree. It is the admin’s responsibility to make
the files persistent.

To inspect the volumes run:

docker volume ls | grep ownclouddockerserver

To export the files as a tar archive run:

docker run -v ownclouddockerserver_files:/mnt \
 ubuntu tar cf - -C /mnt . > files.tar



Although the containers are up and running, it may still take a few
minutes until ownCloud is fully functional.
To inspect the log output:

docker-compose logs --follow owncloud

Wait until the output shows Starting apache daemon… before you
access the web UI.



Although all important data persists after:

docker-compose down; docker-compose up -d

there are certain details that get lost, e.g., default apps may re-appear
after they were uninstalled.

Logging In

To log in to the ownCloud UI, open http://localhost:8080 in your browser of choice,
where you see the standard ownCloud login screen as in the image below.

Installation | 79

The username and password are the credentials which you stored in .env earlier. Note
that these will not change between deploys even if you change the values in .env.

Stopping the Containers

Again we assume you used docker-compose like in the previous example.
To stop the containers use:

docker-compose stop

To stop and remove containers along with the related networks, images and volumes:

docker-compose down --rmi all --volumes

Running occ commands

If you want to run an occ command, first go to the directory where your .yaml or .env
file is located. Here, you are able to run any command referring to Using the occ
Command by entering:

docker-compose exec owncloud occ <command>


Don’t use the php command prefix, this leads to several errors and is
not intended to run in docker environments.

Upgrading ownCloud on Docker

When a new version of ownCloud gets released, you should update your instance. To
do so, follow these simple steps:

80 | Installation

configuration/server/occ_command.pdf
configuration/server/occ_command.pdf

1. Go to your docker directory where your .yaml and .env files exist.
2. Put ownCloud into maintenance mode with the following command:

docker-compose exec owncloud occ maintenance:mode --on

3. Create a backup in case something goes wrong during the upgrade process, using
the following command:

docker-compose exec mariadb \
 /usr/bin/mysqldump -u root --password=owncloud \
 owncloud > owncloud_$(date +%Y%m%d).sql


You need to adjust the password and database name if you have
changed it in your deployment.

4. Shutdown the containers:

docker-compose down

5. Update the version number of ownCloud in your .env file. You can use sed for it, as
in the following example.

Make sure that you adjust the example to match your installation.
sed -i 's/^OWNCLOUD_VERSION=.*$/OWNCLOUD_VERSION=<newVersion>/'
/compose/*/.env

6. View the file to ensure the change has been implemented.

cat .env

7. Start your docker instance again.

docker-compose up -d

Now you should have the current ownCloud running with docker-compose. Note that
the container will automatically run occ upgrade when starting up. If you notice the
container starting over and over again, you can check the update log with the
following command:

docker-compose logs --timestamp owncloud

Docker Compose YAML File

The file docker-compose.yml contains the configuration of your ownCloud container.

Installation | 81



Since ownCloud Server 10.5, the dedicated enterprise docker image
registry.owncloud.com/owncloud/enterprise is deprecated. All supported
enterprise features and apps are now included in the public image
owncloud/server available on Docker Hub. A login to our registry
registry.owncloud.com is no longer required.

version: "3"

volumes:
 files:
 driver: local
 mysql:
 driver: local
 redis:
 driver: local

services:
 owncloud:
 image: owncloud/server:${OWNCLOUD_VERSION}
 container_name: owncloud_server
 restart: always
 ports:
 - ${HTTP_PORT}:8080
 depends_on:
 - mariadb
 - redis
 environment:
 - OWNCLOUD_DOMAIN=${OWNCLOUD_DOMAIN}
 - OWNCLOUD_DB_TYPE=mysql
 - OWNCLOUD_DB_NAME=owncloud
 - OWNCLOUD_DB_USERNAME=owncloud
 - OWNCLOUD_DB_PASSWORD=owncloud
 - OWNCLOUD_DB_HOST=mariadb
 - OWNCLOUD_ADMIN_USERNAME=${ADMIN_USERNAME}
 - OWNCLOUD_ADMIN_PASSWORD=${ADMIN_PASSWORD}
 - OWNCLOUD_MYSQL_UTF8MB4=true
 - OWNCLOUD_REDIS_ENABLED=true
 - OWNCLOUD_REDIS_HOST=redis
 healthcheck:
 test: ["CMD", "/usr/bin/healthcheck"]
 interval: 30s
 timeout: 10s
 retries: 5
 volumes:
 - files:/mnt/data

 mariadb:
 image: mariadb:10.5
 container_name: owncloud_mariadb
 restart: always

82 | Installation

 environment:
 - MYSQL_ROOT_PASSWORD=owncloud
 - MYSQL_USER=owncloud
 - MYSQL_PASSWORD=owncloud
 - MYSQL_DATABASE=owncloud
 command: ["--max-allowed-packet=128M", "--innodb-log-file-size=64M"]
 healthcheck:
 test: ["CMD", "mysqladmin", "ping", "-u", "root", "--password=owncloud"]
 interval: 10s
 timeout: 5s
 retries: 5
 volumes:
 - mysql:/var/lib/mysql

 redis:
 image: redis:6
 container_name: owncloud_redis
 restart: always
 command: ["--databases", "1"]
 healthcheck:
 test: ["CMD", "redis-cli", "ping"]
 interval: 10s
 timeout: 5s
 retries: 5
 volumes:
 - redis:/data

Troubleshooting

Raspberry Pi

If your container fails to start on Raspberry Pi or other ARM devices, you most likely
have an old version of libseccomp2 on your host. This should only affect distros based
on Rasbian Buster 32 bit. Install a newer version with the following command:

cd /tmp
wget http://ftp.us.debian.org/debian/pool/main/libs/libseccomp/libseccomp2_2.5.1-
1_armhf.deb
sudo dpkg -i libseccomp2_2.5.1-1_armhf.deb

Alternatively you can add the backports repo for Debian Buster:

sudo apt-key adv --keyserver keyserver.ubuntu.com \
 --recv-keys 04EE7237B7D453EC 648ACFD622F3D138
echo "deb http://deb.debian.org/debian buster-backports main" | \
 sudo tee -a /etc/apt/sources.list.d/buster-backports.list
sudo apt update
sudo apt install -t buster-backports libseccomp2

In any case, you should restart the container after confirming you have

Installation | 83

libseccomp2.4.4 installed.

For more information see: Linux Server Docs

Manual Installation

In this section, you will find Installation Guides you need for installing ownCloud
manually.

Please consider the following when deciding which path of installation you are looking
at:

The Detailed Installation Guide gives more detailed information and describes
individual setup possibilities. It may not fit all audiences as it requires a deeper
background knowledge. As a bonus, it provides ready to use scripts which need some
preconfiguration to run successfully. The scripts are "as it is" and no responsibility is
taken.

The Quick Installation Guides are very helpful when doing standard setups and all
commands necessary are setup for copy/paste. Using these guides, you are as it says,
quickly up and running.

Detailed Installation Guide

Introduction

This document describes:

• Prepare your server
• Prerequisites and how to download ownCloud
• Install ownCloud

The descriptions are focussing on the Ubuntu distribution. Even if we try to make
these steps as easy as possible by offering ready to use commands and scripts, you
need to have sufficient knownledge about administrating a server environment which
provides webservices. This document does not give any proposals securing your
server.

Prepare Your Server

For more information about the requirements of your server, read the general
prerequisites guide. The following sections takes care about the procedures in detail.

Ubuntu 18.04 LTS Server

To prepare your Ubuntu 18.04 server for the use with ownCloud, follow the Ubuntu
18.04 preparation guide. This guide installs PHP up to version 7.3 only.

Ubuntu 20.04 LTS Server

To prepare your Ubuntu 20.04 server for the use with ownCloud, follow the Ubuntu
20.04 preparation guide. This guide installs PHP 7.4

Install a Database

If you do not already have installed a supported database or using an existing one,
follow the Manual Installation Databases guide.

84 | Installation

https://docs.linuxserver.io/faq
installation/manual_installation/manual_installation_prerequisites.pdf
installation/manual_installation/manual_installation_prerequisites.pdf
installation/manual_installation/server_prep_ubuntu_18.04.pdf
installation/manual_installation/server_prep_ubuntu_18.04.pdf
installation/manual_installation/server_prep_ubuntu_20.04.pdf
installation/manual_installation/server_prep_ubuntu_20.04.pdf
installation/manual_installation/manual_installation_db.pdf

Configure the Web Server

To configure your Apache Web Server for the use with ownCloud, follow the Apache
preparation guide.

Installation of ownCloud Binaries

To install ownCloud binaries, you have to download the required package. After doing
so, you can do the following steps manually, or use provided scripts. These scripts are
benificial, because they also can be used for upgrading and ease the process a lot.

Download ownCloud

Before downloading the ownCloud package, change to a directory where you will save
your file temporarily. This can be, for example /tmp. In further examples, we use tar
archives and the actual ownCloud Complete Package. The package name for the
complete package is formed the following: owncloud-complete-
yyyymmdd.archive_type.

Download the archive of the latest ownCloud version:

1. Go to the ownCloud Download Page and select the package that fits your needs.
You can download either the .tar.bz2 or .zip archive. Based on the example below,
copy the link of the selected file and run following command to download it:

wget https://download.owncloud.org/community/owncloud-complete-
yyyymmdd.tar.bz2

2. Download the corresponding checksum file like:

wget https://download.owncloud.org/community/owncloud-complete-
yyyymmdd.tar.bz2.md5
 or
wget https://download.owncloud.org/community/owncloud-complete-
yyyymmdd.tar.bz2.sha256

3. Verify the MD5 or SHA256 sum:

sudo md5sum -c owncloud-complete-yyyymmdd.tar.bz2.md5 < owncloud-
complete-yyyymmdd.tar.bz2
 or
sudo sha256sum -c owncloud-complete-yyyymmdd.tar.bz2.sha256 < owncloud-
complete-yyyymmdd.tar.bz2

4. You can also verify the PGP signature:

wget https://download.owncloud.org/community/owncloud-complete-
yyyymmdd.tar.bz2.asc

gpg --verify owncloud-complete-yyyymmdd.tar.bz2.asc owncloud-complete-
yyyymmdd.tar.bz2

Installation | 85

installation/manual_installation/manual_installation_apache.pdf
installation/manual_installation/manual_installation_apache.pdf
https://owncloud.com/download-server/

Script Guided Installation

Use the Script Guided Installation if you want to easily install or upgrade ownCloud or
manage ownership and permissions. The page contains detailed instructions about
downloading and usage.


Using the Script Guided Installation, you can handle many useful
installation and update options automatically.

Command Line Guided Installation

Use these steps, if you want to do the basic setup without any changes or physical
installation options. Consider using the Script Guided Installation if you plan
improving your setup from step one.

• Extract the archive contents and run the unpacking command for your tar archive:

tar -xjf owncloud-complete-yyyymmdd.tar.bz2

• tar unpacks to a single owncloud directory. Copy the ownCloud directory to its final
destination. When you are running the Apache HTTP server, you may safely install
ownCloud in your Apache document root. Assuming you document root is in
/var/www.

cp -r owncloud /var/www

Post physical installation, set the correct ownership and permissions upfront. To do so,
it is suggested use the scripts from the Script Guided Installation.

Complete the Installation

After restarting Apache, you must complete your installation by running either the
Graphical Installation Wizard or on the command line with the occ command.

After finalizing the installation, re-run the script provided in Script Guided Installation
to secure your .htaccess files. Your ownCloud instance is now ready to use.

Finalize Using the Graphical Installation Wizard

To finalize the installation using the the graphical installation wizard, refer to the
Graphical Installation Wizard.

Finalize Using the Command Line

If you want to finalize the installation via the command line, use the following example
command. The command assumes, that you have unpacked the source to
/var/www/owncloud/. Replace all the parameters according your needs.

86 | Installation

installation/manual_installation/script_guided_install.pdf
installation/manual_installation/script_guided_install.pdf
installation/manual_installation/script_guided_install.pdf
installation/manual_installation/script_guided_install.pdf
installation/installation_wizard.pdf

cd /var/www/owncloud/
sudo -u www-data php occ maintenance:install \
 --database "mysql" \
 --database-name "owncloud" \
 --database-user "root"\
 --database-pass "password" \
 --admin-user "admin" \
 --admin-pass "password"

To use occ refer to the occ command reference.


Admins of SELinux-enabled distributions may need to write new
SELinux rules to complete their ownCloud installation; see the SELinux
guide for a suggested configuration.

Post Installation Configuration

After installing ownCloud successfully, ownCloud recommends that you perform some
post installation tasks. These tasks help to configure background jobs or improve
performance by caching.

Background Jobs

To read more about background jobs and how to configure them, read the Background
Job Configuration guide.

Configure Caching

It is recommended to install and enable caching (PHP opcode Cache and/or Data
Cache), which significantly improves performance. For more information read the
Caching Configuration guide.

Notes

Headers



ownCloud has a mechanism to set headers programmatically. These
headers are set with the always directive to avoid errors when there
are additional headers set in the web servers configuration file like
http.conf. More information on headers can be found in the
mod_headers documentation.

Managing Trusted Domains

All URLs used to access your ownCloud server must be white-listed in your config.php
file, under the trusted_domains setting. Users are allowed to log into ownCloud only
when they point their browsers to a URL that is listed in the trusted_domains setting.


This setting is important when changing or moving to a new domain
name. You may use IP addresses and domain names.

A typical configuration may look like this:

Installation | 87

configuration/server/occ_command.pdf
installation/configuration_notes_and_tips.pdf#config-notes-and-tips-selinux
installation/configuration_notes_and_tips.pdf#config-notes-and-tips-selinux
configuration/server/background_jobs_configuration.pdf
configuration/server/background_jobs_configuration.pdf
configuration/server/caching_configuration.pdf
https://httpd.apache.org/docs/current/mod/mod_headers.html#page-header

'trusted_domains' => [
 0 => 'localhost',
 1 => 'server1.example.com',
 2 => '192.168.1.50',
],

The loopback address, 127.0.0.1, is automatically white-listed, so as long as you have
access to the physical server you can always log in. In the event that a load-balancer is
in place, there will be no issues as long as it sends the correct X-Forwarded-Host
header.


For further information on improving the quality of your ownCloud
installation, please see the configuration notes and tips guide.


Admins of SELinux-enabled distributions such as CentOS, Fedora, and
Red Hat Enterprise Linux may need to set new rules to enable installing
ownCloud. See SELinux for a suggested configuration.

The Installation Wizard

Introduction



If you are planning to use the installation wizard, we strongly
encourage you to protect it, through some form of password
authentication, or access control. If the installer is left unprotected
when exposed to the public internet, there is the possibility that a
malicious actor could finish the installation and block you out — or
worse. So please ensure that only you — or someone from your
organization — can access the web installer.

Quick Start

When the ownCloud prerequisites are fulfilled and all ownCloud files are installed, the
last step to completing the installation is running the Installation Wizard. This involves
just three steps:

1. Point your web browser to http://<your-owncloud-domain>
2. Enter your desired administrator’s username and password
3. Click [Finish Setup]

88 | Installation

installation/configuration_notes_and_tips.pdf
installation/configuration_notes_and_tips.pdf#config-notes-and-tips-selinux
https://wiki.apache.org/httpd/PasswordBasicAuth
https://wiki.apache.org/httpd/PasswordBasicAuth
https://httpd.apache.org/docs/2.4/howto/access.html

You’re now finished and can start using your new ownCloud server. Of course, there is
much more that you can do to set up your ownCloud server for best performance and
security. In the following sections we will cover important installation and post-
installation steps.

Detailed Guide

This section provides a more detailed guide to the installation wizard. Specifically, it is
broken down into three steps:

1. Installation Configuration Options
2. Database Setup By ownCloud
3. Post-Installation Steps

Installation Configuration Options

Click [Storage and Database] to expose additional installation configuration options
for your ownCloud data directory and to select the database respectively configure the
access.

Installation | 89

The data directory for ownCloud can be configured to be outside of your webroot. This
can be done in two ways. Either by defining the path here or when installing the
ownCloud files - see the Script Guided Installation. When defining here, a setting in
your config.php file will be adopted. When e.g. linking during installing the physical
files, the config.php setting regarding the data directory stays default.


ownCloud’s data directory must be exclusive to ownCloud and not be
modified manually by any other process or user.

It is best to configure your data directory location at installation, as it is difficult to
move after installation. You may put it anywhere; in this example is it located in
/var/oc_data. This directory must already exist, and must be owned by your Webserver
user user.

Database Setup By ownCloud


Your database and PHP connectors must be installed before you run
the Installation Wizard.

After you enter your administrative login for your database, the installer creates a
special database user with privileges limited to the ownCloud database.

Following this, ownCloud needs only this special ownCloud database user and drops
the aministrative database login you used before. This new user is named from your
ownCloud admin user, with an oc_ prefix, and given a random password. The

90 | Installation

installation/manual_installation/script_guided_install.pdf

ownCloud database user and password are written into config.php:

For MySQL/MariaDB:

'dbuser' => 'oc_dbadmin',
'dbpassword' => 'pX65Ty5DrHQkYPE5HRsDvyFHlZZHcm',

For PostgreSQL:

'dbuser' => 'oc_postgres',
'dbpassword' => 'pX65Ty5DrHQkYPE5HRsDvyFHlZZHcm',

Click [Finish setup], and you’re ready to start using your new ownCloud server.

Post-Installation Steps

For hardened security ownCloud recommends setting the permissions on your
ownCloud directories as strictly as possible, and for proper server operations. This
should be done immediately after the initial installation and before running the setup.

Your HTTP user must own the config/, data/, apps/ respectively the apps-external/
directories so that you can configure ownCloud, create, modify and delete your data
files, and install apps via the ownCloud Web interface.

You can find your HTTP user in your HTTP server configuration files, or you can use
label-phpinfo (Look for the User/Group line).

• The HTTP user and group in Debian/Ubuntu is www-data.
• The HTTP user and group in Fedora/CentOS is apache.
• The HTTP user and group in Arch Linux is http.
• The HTTP user in openSUSE is wwwrun, and the HTTP group is www.


When using an NFS mount for the data directory, do not change its
ownership from the default. The simple act of mounting the drive will
set proper permissions for ownCloud to write to the directory. Changing
ownership as above could result in some issues if the NFS mount is lost.

The easy way to set the correct permissions is to use the scripts provided in Script
Guided Installation

Quick Installation Guides

In this section, you will find Quick Installation Guides for installing ownCloud
manually.

Install ownCloud on Ubuntu 18.04

This is an ultra-short guide to installing ownCloud on a fresh installation of Ubuntu
18.04. Run the following commands in your terminal to complete the installation.

Prerequisites

• A fresh installation of Ubuntu 18.04 with SSH enabled.
• This guide assumes that you are connected as the root user.

Installation | 91

installation/manual_installation/script_guided_install.pdf
installation/manual_installation/script_guided_install.pdf
https://releases.ubuntu.com/18.04

• This guide assumes your ownCloud directory is located in /var/www/owncloud/

Preparation

First, ensure that all the installed packages are entirely up to date, and that PHP is
available in the APT repository. To do so, follow the instructions below:

apt update && \
 apt upgrade -y

Create the occ Helper Script

Create a helper script to simplify running occ commands.

FILE="/usr/local/bin/occ"
/bin/cat <<EOM >$FILE
#! /bin/bash

cd /var/www/owncloud
sudo -u www-data /usr/bin/php /var/www/owncloud/occ "\$@"
EOM

Make the helper script executable:

chmod +x /usr/local/bin/occ

Install the Required Packages

apt install -y \
 apache2 \
 libapache2-mod-php \
 mariadb-server \
 openssl \
 php-imagick php-common php-curl \
 php-gd php-imap php-intl \
 php-json php-mbstring php-mysql \
 php-ssh2 php-xml php-zip \
 php-apcu php-redis redis-server \
 wget

Install the Recommended Packages

apt install -y \
 ssh bzip2 sudo cron rsync curl jq \
 inetutils-ping smbclient php-libsmbclient \
 php-smbclient coreutils php-ldap

92 | Installation

configuration/server/occ_command.pdf


Ubuntu 18.04 includes smbclient 4.7.6, which has a known limitation of
only using version 1 of the SMB protocol.

Installation

Configure Apache

Change the Document Root

sed -i "s#html#owncloud#" /etc/apache2/sites-available/000-default.conf

service apache2 restart

Create a Virtual Host Configuration

FILE="/etc/apache2/sites-available/owncloud.conf"
/bin/cat <<EOM >$FILE
Alias /owncloud "/var/www/owncloud/"

<Directory /var/www/owncloud/>
 Options +FollowSymlinks
 AllowOverride All

 <IfModule mod_dav.c>
 Dav off
 </IfModule>

 SetEnv HOME /var/www/owncloud
 SetEnv HTTP_HOME /var/www/owncloud
</Directory>
EOM

Enable the Virtual Host Configuration

a2ensite owncloud.conf
service apache2 reload

Configure the Database

service mysql start
mysql -u root -e "CREATE DATABASE IF NOT EXISTS owncloud; \
GRANT ALL PRIVILEGES ON owncloud.* \
 TO owncloud@localhost \
 IDENTIFIED BY 'password'";

Enable the Recommended Apache Modules

Installation | 93

echo "Enabling Apache Modules"

a2enmod dir env headers mime rewrite setenvif
service apache2 reload

Download ownCloud

cd /var/www/
wget https://download.owncloud.org/community/owncloud-10.6.0.tar.bz2 && \
tar -xjf owncloud-10.6.0.tar.bz2 && \
chown -R www-data. owncloud

Install ownCloud

occ maintenance:install \
 --database "mysql" \
 --database-name "owncloud" \
 --database-user "owncloud" \
 --database-pass "password" \
 --admin-user "admin" \
 --admin-pass "admin"

Configure ownCloud’s Trusted Domains

myip=$(hostname -I|cut -f1 -d ' ')
occ config:system:set trusted_domains 1 --value="$myip"

Set Up a Cron Job

Set your background job mode to cron

occ background:cron

echo "*/15 * * * * /var/www/owncloud/occ system:cron" \
 > /var/spool/cron/crontabs/www-data
chown www-data.crontab /var/spool/cron/crontabs/www-data
chmod 0600 /var/spool/cron/crontabs/www-data



If you need to sync your users from an LDAP or Active Directory Server,
add this additional Cron job. Every 15 minutes this cron job will sync
LDAP users in ownCloud and disable the ones who are not available for
ownCloud. Additionally, you get a log file in /var/log/ldap-sync/user-
sync.log for debugging.

94 | Installation

configuration/server/background_jobs_configuration.pdf

echo "*/15 * * * * /var/www/owncloud/occ user:sync 'OCA\User_LDAP\User_Proxy' -m
disable -vvv >> /var/log/ldap-sync/user-sync.log 2>&1" >
/var/spool/cron/crontabs/www-data
chown www-data.crontab /var/spool/cron/crontabs/www-data
chmod 0600 /var/spool/cron/crontabs/www-data
mkdir -p /var/log/ldap-sync
touch /var/log/ldap-sync/user-sync.log
chown www-data. /var/log/ldap-sync/user-sync.log

Configure Caching and File Locking

Execute these commands:

occ config:system:set \
 memcache.local \
 --value '\OC\Memcache\APCu'

occ config:system:set \
 memcache.locking \
 --value '\OC\Memcache\Redis'

service redis-server start

occ config:system:set \
 redis \
 --value '{"host": "127.0.0.1", "port": "6379"}' \
 --type json

Configure Log Rotation

Execute this command to set up log rotation.

FILE="/etc/logrotate.d/owncloud"
sudo /bin/cat <<EOM >$FILE
/var/www/owncloud/data/owncloud.log {
 size 10M
 rotate 12
 copytruncate
 missingok
 compress
 compresscmd /bin/gzip
}
EOM

Finalise the Installation

Make sure the permissions are correct

Installation | 95

https://linux.die.net/man/8/logrotate

cd /var/www/
chown -R www-data. owncloud

ownCloud is now installed. You can confirm that it is ready to use by pointing
your web browser to your ownCloud installation.

Install ownCloud on Ubuntu 20.04

Introduction

This is an ultra-short guide to installing ownCloud on a fresh installation of Ubuntu
20.04. Run the following commands in your terminal to complete the installation.


This guide can not go into details and has its limits by nature. If you
experience issues like with dependencies of PHP or other relevant
things like OS / Webserver / Database, look at the Detailed Installation
Guide for more information.

Prerequisites

• A fresh installation of Ubuntu 20.04 with SSH enabled.
• This guide assumes that you are connected as the root user.
• This guide assumes your ownCloud directory is located in /var/www/owncloud/

Preparation

First, ensure that all the installed packages are entirely up to date, and that PHP is
available in the APT repository. To do so, follow the instructions below:

apt update && \
 apt upgrade -y

Create the occ Helper Script

Create a helper script to simplify running occ commands.

FILE="/usr/local/bin/occ"
/bin/cat <<EOM >$FILE
#! /bin/bash
cd /var/www/owncloud
sudo -E -u www-data /usr/bin/php /var/www/owncloud/occ "\$@"
EOM

Make the helper script executable:

chmod +x /usr/local/bin/occ

Install the Required Packages

96 | Installation

manual_installation/manual_installation.html#ubuntu-20-04-lts-server
manual_installation/manual_installation.html#ubuntu-20-04-lts-server
https://www.ubuntu.com/download/server
configuration/server/occ_command.pdf

apt install -y \
 apache2 \
 libapache2-mod-php \
 mariadb-server \
 openssl \
 php-imagick php-common php-curl \
 php-gd php-imap php-intl \
 php-json php-mbstring php-mysql \
 php-ssh2 php-xml php-zip \
 php-apcu php-redis redis-server \
 wget

Note : php 7.4 is the default version installable with Ubuntu 20.04

Install the Recommended Packages

The package php-smbclient was removed from the official repository. It is available in
the ondrej/php repository (ppa). Add ondrej’s ppa with these commands:

add-apt-repository ppa:ondrej/php
apt-get update

and add the key:

apt-key adv --recv-keys --keyserver hkps://keyserver.ubuntu.com:443
4F4EA0AAE5267A6C

Now you can install the recommended packages using the following command:

apt install -y \
 ssh bzip2 rsync curl jq \
 inetutils-ping smbclient\
 php-smbclient coreutils php-ldap

Installation

Configure Apache

Change the Document Root

sed -i "s#html#owncloud#" /etc/apache2/sites-available/000-default.conf
service apache2 restart

Create a Virtual Host Configuration

Installation | 97

FILE="/etc/apache2/sites-available/owncloud.conf"
/bin/cat <<EOM >$FILE
Alias /owncloud "/var/www/owncloud/"

<Directory /var/www/owncloud/>
 Options +FollowSymlinks
 AllowOverride All

 <IfModule mod_dav.c>
 Dav off
 </IfModule>

 SetEnv HOME /var/www/owncloud
 SetEnv HTTP_HOME /var/www/owncloud
</Directory>
EOM

Enable the Virtual Host Configuration

a2ensite owncloud.conf
service apache2 reload

Configure the Database

mysql -u root -e "CREATE DATABASE IF NOT EXISTS owncloud; \
GRANT ALL PRIVILEGES ON owncloud.* \
 TO owncloud@localhost \
 IDENTIFIED BY 'password'";

Enable the Recommended Apache Modules

echo "Enabling Apache Modules"
a2enmod dir env headers mime rewrite setenvif
service apache2 reload

Download ownCloud

cd /var/www/
wget https://download.owncloud.org/community/owncloud-10.6.0.tar.bz2 && \
tar -xjf owncloud-10.6.0.tar.bz2 && \
chown -R www-data. owncloud

Install ownCloud

98 | Installation

occ maintenance:install \
 --database "mysql" \
 --database-name "owncloud" \
 --database-user "owncloud" \
 --database-pass "password" \
 --admin-user "admin" \
 --admin-pass "admin"

Configure ownCloud’s Trusted Domains

myip=$(hostname -I|cut -f1 -d ' ')
occ config:system:set trusted_domains 1 --value="$myip"

Set Up a Cron Job

Set your background job mode to cron

occ background:cron

echo "*/15 * * * * /var/www/owncloud/occ system:cron" \
 > /var/spool/cron/crontabs/www-data
chown www-data.crontab /var/spool/cron/crontabs/www-data
chmod 0600 /var/spool/cron/crontabs/www-data



If you need to sync your users from an LDAP or Active Directory Server,
add this additional Cron job. Every 15 minutes this cron job will sync
LDAP users in ownCloud and disable the ones who are not available for
ownCloud. Additionally, you get a log file in /var/log/ldap-sync/user-
sync.log for debugging.

echo "*/15 * * * * /var/www/owncloud/occ user:sync 'OCA\User_LDAP\User_Proxy' -m
disable -vvv >> /var/log/ldap-sync/user-sync.log 2>&1" >>
/var/spool/cron/crontabs/www-data
chown www-data.crontab /var/spool/cron/crontabs/www-data
chmod 0600 /var/spool/cron/crontabs/www-data
mkdir -p /var/log/ldap-sync
touch /var/log/ldap-sync/user-sync.log
chown www-data. /var/log/ldap-sync/user-sync.log

Configure Caching and File Locking

Execute these commands:

Installation | 99

configuration/server/background_jobs_configuration.pdf

occ config:system:set \
 memcache.local \
 --value '\OC\Memcache\APCu'
occ config:system:set \
 memcache.locking \
 --value '\OC\Memcache\Redis'
occ config:system:set \
 redis \
 --value '{"host": "127.0.0.1", "port": "6379"}' \
 --type json

Configure Log Rotation

Execute this command to set up log rotation.

FILE="/etc/logrotate.d/owncloud"
sudo /bin/cat <<EOM >$FILE
/var/www/owncloud/data/owncloud.log {
 size 10M
 rotate 12
 copytruncate
 missingok
 compress
 compresscmd /bin/gzip
}
EOM

Finalise the Installation

Make sure the permissions are correct

cd /var/www/
chown -R www-data. owncloud

ownCloud is now installed. You can confirm that it is ready to use by pointing
your web browser to your ownCloud installation.

Linux Package Manager Installation

Introduction

You can use the packetmanager installation, but it is not recommended to do so. This
is because somtimes dependencies are acting against each other like ownCloud
version, minimum PHP version and Linux distribution restrictions. Anyone who runs a
package manager installation should consider migrating to a manual installation to
overcome this situation.

Add the ownCloud Repository

Before you can install owncloud-files, you need to add ownCloud’s repository to your
distribution’s package manager.

100 | Installation

https://linux.die.net/man/8/logrotate
https://download.owncloud.org/download/repositories/stable/owncloud/


Package managers should only be used for single-server setups. For
production environments, we recommend installing from the tar
archive.

Available Packages

The recommended package to use is owncloud-complete-files. It only installs
ownCloud, and does not install Apache, a database, or any of the required PHP
dependencies.

Avoid Automatic Upgrades

If you are installing ownCloud using one of the various Linux package managers, we
strongly recommend that you avoid automatically updating the owncloud-complete-
files package, when running a system update or upgrade and when upgrading other
packages. That way, there are no surprise changes (whether positive or negative) to
your ownCloud installation.

Here are the ways to do so for APT, Yum, and Zypper.

APT

If you are using APT, use apt-mark hold to mark the owncloud-complete-files package
as held. Here’s an example of how to do so:

apt-mark hold owncloud-complete-files

To see if owncloud-complete-files has already been held, use the showhold command,
as in the following example. If it’s printed out to the console, then it’s being held.

apt-mark showhold owncloud-complete-files

To unset owncloud-complete-files as held back, use the unhold command, as in the
example below.

apt-mark unhold owncloud-complete-files

Yum

If you are using Yum, there are two options that you can take to lock packages from
being upgraded. You can:

1. Add exclude=owncloud-complete-files to /etc/yum.conf
2. Use the versionlock plugin for Yum.

The VersionLock Plugin

If the versionlock plugin is not installed, install it by running:

yum install yum-plugin-versionlock

When it is installed, you can lock owncloud-complete-files run:

Installation | 101

https://owncloud.org/download/#owncloud-server-tar-ball
https://owncloud.org/download/#owncloud-server-tar-ball
https://manpages.debian.org/stretch/apt/apt-mark.8.en.html#PREVENT_CHANGES_FOR_A_PACKAGE
http://man7.org/linux/man-pages/man1/yum-versionlock.1.html

yum versionlock add owncloud-complete-files

To confirm that it is locked, run:

yum versionlock list

To unlock owncloud-complete-files, run:

yum versionlock delete owncloud-complete-files

Zypper

If you are using Zypper, use the addlock or al commands. Similar to apt-mark hold
these add a package lock that prevents the package from being modified. The example
below shows how to use the command to lock owncloud-complete-files.

zypper addlock owncloud-complete-files

To see if the package has already been locked, use the locks command. If owncloud-
complete-files is already locked, then you will see output similar to the below example.

| Name | Type | Repository
--+----------------+---------+-----------
1 | owncloud-complete-files | package | (any)

To unlock owncloud-complete-files, if it is already locked, use the removelocks or rl
commands, as in the example below.

zypper removelock owncloud-complete-files

Installing ownCloud Community Edition

First, install your own LAMP stack, as doing so allows you to create your own custom
LAMP stack without dependency conflicts with the ownCloud package. Then download
and install from http://download.owncloud.org/download/repositories/production/
owncloud/.

The ownCloud server is designed to work with different databases and different web-
servers, in a large range of configurations.

This package comes without dependencies so that the installation is most likely to
succeed. It also means unfortunately, that the server will not directly run after
installing this package.

To get started, try:

apt install apache2 libapache2-mod-php mariadb-server openssl apt install php-
imagick php-common php-curl php-gd php-imap php-intl apt install php-json php-
mbstring php-mysql php-ssh2 php-xml php-zip apt install php-apcu php-redis redis-
server wget

102 | Installation

http://download.owncloud.org/download/repositories/production/owncloud/
http://download.owncloud.org/download/repositories/production/owncloud/

mysql -e "CREATE DATABASE IF NOT EXISTS owncloud" mysql -e "GRANT ALL
PRIVILEGES ON owncloud.* TO owncloud@localhost IDENTIFIED BY 'password'"; cp
/usr/share/doc/*/owncloud-config-apache.conf.default /etc/apache2/sites-
available/owncloud.conf a2ensite owncloud; systemctl reload apache2

For more details see: Quick Installation Guide


See the system_requirements for the recommended ownCloud setup
and supported platforms.


Do not move the folders provided by these packages after the
installation, as this will break updates.

What is the Correct Version?

Package versions are composed of a major, a minor, and a patch number, such as 9.0,
9.1, 10.0, 10.0.1, and 10.0.2. The second number represents a major release, and the
third number represents a minor release.

Major Releases

If you want to follow either of the most recent major releases, then substitute version
with either 9.0 or 10.0.

Minor Releases

If you want to follow any of the four most recent patch releases, then substitute
version with one of 10.0.1, 10.0.2, 10.0.3, or 10.0.4. Following a minor release avoids
you accidentally upgrading to the next major release before you’re ready.

The Latest Stable Version

Alternatively you can use stable for the latest stable version. If you do, you never have
to change it as it always tracks the current stable ownCloud version through all major
releases.

Installing ownCloud Enterprise Edition

See the enterprise installation guide for instructions on installing ownCloud Enterprise
edition.

Downgrading

Downgrading is not supported and risks corrupting your data! If you want to revert to
an older ownCloud version, install it from scratch and then restore your data from
backup. Before doing this, file a support ticket (if you have paid support) or ask for
help in the ownCloud forums to see if your issue can be resolved without downgrading.

Additional Guides and Notes

See installation_wizard for important steps, such as choosing the best database and
setting correct directory permissions. See the SELinux guide for a suggested
configuration for SELinux-enabled distributions such as Fedora and CentOS.

If your distribution is not listed, your Linux distribution may maintain its own
ownCloud packages or you may prefer to install from source.

Installation | 103

installation/quick_guides/ubuntu_20_04.pdf
enterprise/installation/install.pdf
https://owncloud.com/pricing/
installation/configuration_notes_and_tips.pdf#config-notes-and-tips-selinux
installation/manual_installation.pdf

Archlinux

The current client stable version is in the official community repository, more
packages are in the Arch User Repository.

Note for MySQL/MariaDB environments

Please refer to MySQL / MariaDB with Binary Logging Enabled on how to correctly
configure your environment if you have binary logging enabled.

Running ownCloud in a sub-directory

If you’re running ownCloud in a sub-directory and want to use CalDAV or CardDAV
clients, make sure you have configured the correct service discovery URLs.

Troubleshooting

If your ownCloud installation fails and you see the following error in your ownCloud
log please refer to MySQL / MariaDB with Binary Logging Enabled for how to resolve
it.

An unhandled exception has been thrown: exception ‘PDOException’ with message
'SQLSTATE[HY000]: General error: 1665 Cannot execute statement: impossible to
write to binary log since BINLOG_FORMAT = STATEMENT and at least one table uses
a storage engine limited to row-based logging. InnoDB is limited to row-logging
when transaction isolation level is READ COMMITTED or READ UNCOMMITTED.'

Changing Your ownCloud URL

This admin manual assumes that the ownCloud server is already accessible under the
route /owncloud (which is the default, e.g. https://example.com/owncloud). If you like,
you can change this in your web server configuration, for example by changing it from
https://example.com/owncloud/ to https://example.com/.

To do so on Debian/Ubuntu Linux, you need to edit these files:

• /etc/apache2/sites-enabled/owncloud.conf
• /var/www/owncloud/config/config.php

Edit the Alias directive in /etc/apache2/sites-enabled/owncloud.conf to alias your
ownCloud directory to the Web server root:

Alias / "/var/www/owncloud/"

Edit the overwrite.cli.url parameter in /var/www/owncloud/config/config.php:

'overwrite.cli.url' => 'http://localhost/',

When the changes have been made and the file saved, restart Apache. Now you can
access ownCloud from either https://example.com/ or https://localhost/.

104 | Troubleshooting

https://www.archlinux.org/packages/community/x86_64/owncloud-client/
https://aur.archlinux.org/packages/?O=0&K=owncloud
configuration/database/linux_database_configuration.pdf#mysql-mariadb-with-binary-logging-enabled
configuration/general_topics/general_troubleshooting.pdf#service-discovery
configuration/database/linux_database_configuration.pdf#mysql-mariadb-with-binary-logging-enabled


You will not be able to run any other virtual hosts, as ownCloud is
aliased to your web root. On CentOS/Fedora/Red Hat, edit
/etc/httpd/conf.d/owncloud.conf and
/var/www/html/owncloud/config/config.php, then restart Apache.

Installing and Managing Apps

Introduction

After installing ownCloud, you may provide added functionality by installing
applications.

Installing and Managing Apps

Installing Apps Via the ownCloud Marketplace

To add an app, use the Market app, which is accessible from the top-level navigation
bar, on the left-hand side of the page. Once in the Market app, click an app’s name to
view more details about it. Once you have done this, you can also install it by clicking
[Install]. Clicking Install, downloads it from the ownCloud Marketplace, installs, and
enables it.

Sometimes the installation of a third-party app fails silently, possibly because
appcodechecker' ⇒ true, is enabled in config.php. When appcodechecker is enabled, it
checks if third-party apps are using the private API, rather than the public API. If they
are, they are not installed.


If you would like to create or add (your own) ownCloud app, please
refer to the developer manual.

Installing Apps Manually

To install an app manually, instead of by using the Market app, extract the app tarball
into your ownCloud installation’s default app folder (</path/to/owncloud>/apps) or,
ideally, into a custom app directory.

Once the tarball has been extracted into the default app folder. Enable the application,

Installing and Managing Apps | 105

developer_manual:app/introduction.pdf

• by Navigating to Settings › Admin › Apps and clicking [Enable]; or the
• occ app command.

Managing Apps

Some apps are installed and enabled during ownCloud installation, while other apps
can be installed and enabled post-installation.


Supported Enterprise Apps

See supported apps for a list of supported Enterprise edition apps.

View App Status

To see the status of your installation’s applications, go to your Apps page, via Settings
› Admin › Apps. There, you will see which apps are currently: enabled, not enabled,
and recommended. You’ll also see additional filters, such as Multimedia, Productivity,
and Tool for finding more apps quickly.

Enabling and Disabling Apps

On the Apps page (Settings › Admin › Apps), you can enable or disable applications.
Be default, enabled apps are displayed. To disable an app, click [Disable] under its
details.

To display disabled apps, click [Show disabled apps]. To enable an app, click
[Enable] under its details.

Configuring Apps

Some apps have configurable options on the Apps page, such as Enable only for
specific groups. However, this is the exception. Apps are mainly configured from
your ownCloud Personal or Admin settings page, or in config.php.

106 | Installing and Managing Apps

configuration/server/occ_command.pdf#app-command
installation/apps_supported.pdf

Using Custom App Directories

There are several reasons for using custom app directories instead of ownCloud’s
default. These are:

1. It separates ownCloud’s core apps from user or admin downloaded apps. Doing so
distinguishes which apps are core and which aren’t, simplifying upgrades.

2. It eases manual upgrades. Having non-core apps in a directory separate to the core
app directory makes them simpler to manage.

3. ownCloud may gain new core apps in newer versions. Doing so orphans deprecated
apps, but doesn’t remove them.

If you want to store apps in a custom directory, instead of ownCloud’s default (/app),
you need to modify the apps_paths element in config/config.php. There, you need to
add a new associative array that contains three elements. These are:

path
The absolute file system path to the custom app folder.

url
The request path to that folder relative to the ownCloud webroot, prefixed with /.

writable
Whether users can install apps in that folder.

After adding the configuration, ownCloud only installs apps in directories where
writable is set to true. The configuration example below shows how to add a second
directory, called apps-external.

<?php
$CONFIG = [
 'apps_paths' => [
 [
 'path' => OC::$SERVERROOT.'/apps',
 'url' => '/apps',
 'writable' => false,
],
 [
 'path' => OC::$SERVERROOT.'/apps-external',
 'url' => '/apps-external',
 'writable' => true,
],
],
 // remainder of the configuration
];

After you add a new directory configuration, you can then move apps from the original
app directory to the new one. To do so, follow these steps:

1. Enable maintenance mode.
2. Disable the apps that you want to move.
3. Create a new apps directory and assign it the same user and group, and ownership

permissions as the core apps directory.

Installing and Managing Apps | 107

configuration/server/occ_command.pdf#maintenance-commands
configuration/server/occ_command.pdf#apps-commands

4. Move the apps from the old apps directory to the new apps directory.
5. Add a new app directory in config/config.php.
6. If you’re using a cache, such as Redis or Memcached, ensure that you clear the

cache.
7. Re-enable the apps.
8. Disable maintenance mode.

Multiple Servers

We recommend to have your apps-external and your config directory on a network
storage in order to prevent conflicts when installing or updating apps.

Supported Apps in ownCloud

AGPL Apps

• Activity
• Anti-Virus
• Collaborative Tags
• Comments
• Encryption
• External Sites
• External Storage
• ownCloud WebDAV Endpoint (handles old and new webdav endpoints)
• Federated File Sharing (allows file sharing across ownCloud instances)
• Federation (allows usernname auto-complete across ownCloud instances)
• Files (cannot be disabled)
• Files Media Viewer



Before Files Media Viewer 1.0.4, the Gallery and Files VideoPlayer
apps need to be uninstalled before installing the Media Viewer
app. Starting with Files Media Viewer 1.0.4, the Gallery and Files
VideoPlayer apps need to be disabled before using the Files Media
Viewer app.

• Files PDF Viewer
• Files Sharing
• Files TextEditor
• Files Trashbin
• Files Versions
• First Run Wizard
• Notifications
• Provisioning API
• Template Editor (for notification emails)
• Update Notifications
• User External
• User LDAP

108 | Supported Apps in ownCloud

configuration/server/caching_configuration.pdf#clearing-the-redis-cache
configuration/server/caching_configuration.pdf#clearing-the-memcached-cache
configuration/server/occ_command.pdf#apps-commands
configuration/server/occ_command.pdf#maintenance-commands
https://marketplace.owncloud.com/apps/activity
https://marketplace.owncloud.com/apps/files_antivirus
installation/apps/mediaviewer/index.pdf

Enterprise-Only Apps

• Auditing
• Collaborative Tags Management
• File Firewall
• LDAP Home Connector
• Object Storage Support
• Password Policy
• External Storage: SharePoint
• SAML/Shibboleth User Backend
• Windows Network Drives (requires External Storage)
• Workflows
• ownCloud X Enterprise Theme

Media Viewer App

The Media Viewer App is a simple viewer for pictures and videos integrated into the
files app, which supersedes the former Gallery and Video Player apps.



• Before installing the Media Viewer app, the Gallery and Video Player
apps need to be removed, or at the very least disabled. When
removing or disabling, ensure that any gallery link shares are
redirected.

• Gallery and Video Player are no longer supported and will not
receive any further security or bug fixes.

• Users are strongly encouraged to switch to Media Player.

Add Support For More Media Types

To add support for additional media types, in addition to the default set, ensure that
ImageMagick and its PECL extension are installed and enabled. Next, add new entries
to the enabledPreviewProviders in config/config.php. Below, is an example of how to
configure it.

'enabledPreviewProviders' => [
 'OC\\Preview\\PNG',
 'OC\\Preview\\JPEG',
 'OC\\Preview\\GIF',
 'OC\\Preview\\Illustrator',
 'OC\\Preview\\Postscript',
 'OC\\Preview\\Photoshop',
 'OC\\Preview\\TIFF'
],


Support for playing Apple QuickTime (*.mov) does not work in Chrome -
however it is supported in Safari and Mozilla.


Look at the sample configuration (config.sample.php) in your config
folder, for more information about this configuration key.

Supported Apps in ownCloud | 109

https://marketplace.owncloud.com/apps/admin_audit
https://marketplace.owncloud.com/apps/systemtags_management
https://marketplace.owncloud.com/apps/firewall
https://marketplace.owncloud.com/apps/files_ldap_home
https://marketplace.owncloud.com/apps/objectstore
https://marketplace.owncloud.com/apps/password_policy
https://marketplace.owncloud.com/apps/sharepoint
https://marketplace.owncloud.com/apps/user_shibboleth
https://marketplace.owncloud.com/apps/windows_network_drive
https://marketplace.owncloud.com/apps/workflow
https://marketplace.owncloud.com/themes/theme-enterprise
https://marketplace.owncloud.com/apps/files_mediaviewer
https://github.com/owncloud/gallery#redirect-gallery-link-shares
https://github.com/owncloud/gallery#redirect-gallery-link-shares
https://www.tecmint.com/install-imagemagick-on-debian-ubuntu/
https://www.php.net/manual/en/imagick.installation.php

SELinux Configuration

Introduction

Security-Enhanced Linux (SELinux) is a Linux kernel security module that provides a
mechanism for supporting access control security policies, including mandatory access
controls (MAC).

Preparation

When you have SELinux enabled on your Linux distribution, you may run into
permissions problems after a new ownCloud installation, and see permission denied
errors in your ownCloud logs.

The following settings should work for most SELinux systems that use the default
distro profiles. Run these commands as root, and remember to adjust the filepaths in
these examples for your installation

semanage fcontext -a -t httpd_sys_rw_content_t
'/var/www/html/owncloud/data(/.*)?'
semanage fcontext -a -t httpd_sys_rw_content_t
'/var/www/html/owncloud/config(/.*)?'
semanage fcontext -a -t httpd_sys_rw_content_t
'/var/www/html/owncloud/apps(/.*)?'
semanage fcontext -a -t httpd_sys_rw_content_t '/var/www/html/owncloud/apps-
external(/.*)?'
semanage fcontext -a -t httpd_sys_rw_content_t
'/var/www/html/owncloud/.htaccess'
semanage fcontext -a -t httpd_sys_rw_content_t '/var/www/html/owncloud/.user.ini'

restorecon -Rv '/var/www/html/owncloud/'

If you uninstall ownCloud you need to remove the ownCloud directory labels. To do
this execute the following commands as root after uninstalling ownCloud

semanage fcontext -d '/var/www/html/owncloud/data(/.*)?'
semanage fcontext -d '/var/www/html/owncloud/config(/.*)?'
semanage fcontext -d '/var/www/html/owncloud/apps(/.*)?'
semanage fcontext -d '/var/www/html/owncloud/apps-external(/.*)?'
semanage fcontext -d '/var/www/html/owncloud/.htaccess'
semanage fcontext -d '/var/www/html/owncloud/.user.ini'

restorecon -Rv '/var/www/html/owncloud/'

If you have customized SELinux policies and these examples do not work, you must
give the HTTP server write access to these directories:

110 | SELinux Configuration

https://selinuxproject.org/page/Main_Page

/var/www/html/owncloud/data
/var/www/html/owncloud/config
/var/www/html/owncloud/apps
/var/www/html/owncloud/apps-external

Enable updates via the web interface

To enable updates via the ownCloud web interface, you may need this to enable
writing to the ownCloud directories:

setsebool httpd_unified on

When the update is completed, disable write access:

setsebool -P httpd_unified off

Disallow write access to the whole web directory

For security reasons it’s suggested to disable write access to all folders in /var/www/
(default):

setsebool -P httpd_unified off

Allow access to a remote database

An additional setting is needed if your installation is connecting to a remote database:

setsebool -P httpd_can_network_connect_db on

Allow access to LDAP server

Use this setting to allow LDAP connections:

setsebool -P httpd_can_connect_ldap on

Allow access to remote network

ownCloud requires access to remote networks for functions such as Server-to-Server
sharing, external storages or the ownCloud Marketplace. To allow this access use the
following setting:

setsebool -P httpd_can_network_connect on

Allow access to network memcache

This setting is not required if httpd_can_network_connect is already on:

SELinux Configuration | 111

setsebool -P httpd_can_network_memcache on

Allow access to SMTP/sendmail

If you want to allow ownCloud to send out e-mail notifications via sendmail you need
to use the following setting:

setsebool -P httpd_can_sendmail on

Allow access to CIFS/SMB

If you have placed your datadir on a CIFS/SMB share use the following setting:

setsebool -P httpd_use_cifs on

Allow access to FuseFS

If your owncloud data folder resides on a Fuse Filesystem (e.g. EncFS etc), this setting
is required as well:

setsebool -P httpd_use_fusefs on

Allow access to GPG for Rainloop

If you use a the rainloop webmail client app which supports GPG/PGP, you might need
this:

setsebool -P httpd_use_gpg on

Troubleshooting

General Troubleshooting

For general Troubleshooting of SELinux and its profiles try to install the package
setroubleshoot and run:

sealert -a /var/log/audit/audit.log > /path/to/mylogfile.txt

to get a report which helps you configuring your SELinux profiles.

Another tool for troubleshooting is to enable a single ruleset for your ownCloud
directory:

semanage fcontext -a -t httpd_sys_rw_content_t '/var/www/html/owncloud(/.*)?'
restorecon -RF /var/www/html/owncloud

It is much stronger security to have a more fine-grained ruleset as in the examples at

112 | SELinux Configuration

the beginning, so use this only for testing and troubleshooting. It has a similar effect
to disabling SELinux, so don’t use it on production systems.

See this discussion on GitHub to learn more about configuring SELinux correctly for
ownCloud.

Redis on RHEL 7 & Derivatives

On RHEL 7 and its derivatives, if you are using Redis for both local server cache and
file locking and Redis is configured to listen on a Unix socket instead of a TCP/IP port
(which is recommended if Redis is running on the same system as ownCloud) you must
instruct SELinux to allow daemons to enable cluster mode. You can do this using the
following command:

setsebool -P daemons_enable_cluster_mode 1

Let’s Encrypt SSL Certificates

In this section you will find all the details you need to configure ownCloud with Let’s
Encrypt.

• Using Let’s Encrypt SSL Certificates
• Configure Apache with Let’s Encrypt

Using Let’s Encrypt SSL Certificates

Introduction

This page covers how to configure your web server to use Let’s Encrypt as the
certificate authority for your ownCloud server. Note that Let’s Encrypt is not officially
supported, and this page is community-maintained. Thank you, contributors!

• For ease of handling, SSL-specific directives have been moved into a separately
included file. This can help for first-time certificate issuance as well as for reusing
configurations.

• The examples shown are based on Ubuntu 18.04.
• Read the Certbot user guide for details of the commands.
• Let’s Encrypt CA issues short-lived certificates valid for 90 days. Make sure you

renew the certificates at least once in this period, because expired certificates need
reissuing. A certificate is due for renewal earliest 30 days before expiring. Certbot
can be forced to renew via options at any time as long the certificate is valid.


Raymii.org provides an excellent introduction to strong SSL security
measures with Apache, if you would like to know more.

Requirements & Dependencies

You require a domain name with a valid A-Record pointing back to your servers IP
address. In case your server is behind a firewall, take the necessary measures to
ensure that your server is accessible, worldwide, from the internet, by adding the
required firewall and port forward rules.

Install Let’s Encrypt’s Certbot Client

The Certbot client can be installed in following ways:

Let’s Encrypt SSL Certificates | 113

https://github.com/owncloud/documentation/pull/2693
installation/letsencrypt/using_letsencrypt.pdf
installation/letsencrypt/apache.pdf
https://letsencrypt.org
https://certbot.eff.org/docs/using.html
https://raymii.org/s/tutorials/Strong_SSL_Security_On_Apache2.html
https://raymii.org/s/tutorials/Strong_SSL_Security_On_Apache2.html
https://support.dnsimple.com/articles/a-record/
https://certbot.eff.org

1. Installation via APT install
2. With the Ubuntu PPA repository.

Via APT

To install Certbot via APT, run the following commands.

sudo apt-get update
sudo apt-get install certbot

Via PPA

To install Certbot via the PPA repository, run the following commands.
These will add the repository, update APT’s cache, and install Certbot.


This method is preferred when you’re using a version of Ubuntu prior
to 18.04.

sudo apt-get update
sudo apt-get install software-properties-common
sudo add-apt-repository ppa:certbot/certbot
sudo apt-get install certbot

Run Certbot

To run Certbot use the following command:

sudo certbot


Depending on how you installed Let’s Encrypt, certbot may also be
named letsencrypt or certbot-auto. However, this guide will refer to it
as certbot. Please bear that in mind, and update the examples and
scripts used in this guide to reflect your Certbot installation.

Updating Certbot

If you need to update Certbot at a later date, run:

sudo apt-get install --only-upgrade certbot

Register Your Email Address

First Time Registration

Now that Certbot is installed, register your email address for urgent renewal and
security notifications. This command also prepares Certbot’s environment if it’s not
already installed. To do this, run the following command:

sudo certbot register --agree-tos --email <your-email-address>

114 | Let’s Encrypt SSL Certificates

When it executes, you’ll see a question similar to the following, which you can answer
"Yes" or "No":

Saving debug log to /var/log/letsencrypt/letsencrypt.log

Would you be willing to share your email address with the Electronic Frontier
Foundation, a founding partner of the Let's Encrypt project and the non-profit
organization that develops Certbot? We'd like to send you email about EFF and
our work to encrypt the web, protect its users and defend digital rights.

(Y)es/(N)o:

When that completes, you’ll see a message similar to the following:

IMPORTANT NOTES:
 1. Your account credentials have been saved in your Certbot
 configuration directory at /etc/letsencrypt. You should make a
 secure backup of this folder now. This configuration directory will
 also contain certificates and private keys obtained by Certbot so
 making regular backups of this folder is ideal.

Please, strongly, consider following its recommendation.

Update Your Registration

In case you want to update your registered email address use following command:

 This will affect all the certificates issued using this account.

sudo certbot register --update-registration --email <your-email-address>

When that completes, you’ll see a message similar to the following:

Saving debug log to /var/log/letsencrypt/letsencrypt.log

Would you be willing to share your email address with the Electronic Frontier
Foundation, a founding partner of the Let's Encrypt project and the non-profit
organization that develops Certbot? We'd like to send you email about EFF and
our work to encrypt the web, protect its users and defend digital rights.

(Y)es/(N)o: y

IMPORTANT NOTES:
 - Your e-mail address was updated to <your-email-address>

Let’s Encrypt SSL Certificates | 115

Create Let’s Encrypt’s Config Files

• Create following files in the Let’s Encrypt directory. They will help to maintain your
certificates.

• Replace the path to Certbot and the Certbot script name based on your installation.
You can find it by running which certbot.

• Rename <your-domain-name>.sh with the name of the domain(s) you want to issue
a certificate for.
As an example, the script could be renamed to your-domain-name.com.sh.

• Make all files executable except cli.ini by running sudo chmod +x <script-name>.

 All scripts have to be executed with sudo.

cd /etc/letsencrypt
touch cli.ini list.sh renew.sh renew-cron.sh delete.sh <your-domain-name>.sh

cli.ini

This file defines some default settings used by Certbot. Use the email address you
registered with. Comment / un-comment the post-hook parameter according which
web server you use.

rsa-key-size = 4096
email = <your-email-address>
agree-tos = True
authenticator = webroot
post-hook = service nginx reload
post-hook = service apache2 reload

list.sh

This script lists all your issued certificates.

#!/bin/bash

LE_PATH="/usr/bin"
LE_CB="certbot"

"$LE_PATH/$LE_CB" certificates

renew.sh

This script:

• Renews all your issued certificates.
• In case you have enabled the post hook for your webserver in cli.ini, it will reload

the web server configuration automatically if a certificate has been renewed.

116 | Let’s Encrypt SSL Certificates

#!/bin/bash

LE_PATH="/usr/bin"
LE_CB="certbot"

"$LE_PATH/$LE_CB" renew

renew-cron.sh

This script:

• Renews all your issued certificates but does not upgrade Certbot.
• In case you have enabled the post hook for your webserver in cli.ini, it will reload

the web server configuration automatically if a certificate has been renewed.

 This script is intended for use via Cron.

#!/bin/bash

LE_PATH="/usr/bin"
LE_CB="certbot"

"$LE_PATH/$LE_CB" renew --no-self-upgrade --noninteractive

delete.sh

This script deletes an issued certificate.
Use the list.sh script to list issued certificates.

Let’s Encrypt SSL Certificates | 117

#!/bin/bash

LE_PATH="/usr/bin"
LE_CB="certbot"

##
Retrieve and print a list of the installed Let's Encrypt SSL certificates.
##
function get_certificate_names()
{
 "$LE_PATH/$LE_CB" certificates | grep -iE "certificate name" | awk -F: '{gsub(/\s+/,
"", $2); printf("- %s\n", $2)}'
}

echo "Available Certificates:"

get_certificate_names
echo

read -p "Which certificate do you want to delete: " -r -e answer
if [-n "$answer"]; then
 "$LE_PATH/$LE_CB" delete --cert-name "$answer"
fi

<your-domain-name>.sh

As an example, this script creates a certificate for following domain / sub-domains. You
can add or remove sub-domains as necessary. Use your domain / sub-domain names.
The first (sub)domain name used in the script is taken for naming the directories
created by Certbot.


You can create different certificates for different sub-domains, such as
example.com, www.example.com, and subdomain.example.com, by
creating different scripts.

#!/bin/bash
export makes the variable available for all subprocesses

LE_PATH="/usr/bin"
LE_CB="certbot"

Assumes that example.com www.example.com and subomain.example.com are
the domains
that you want a certificate for
export DOMAINS="-d example.com -d www.example.com -d
subdomain.example.com"

"$LE_PATH/$LE_CB" certonly --config /etc/letsencrypt/cli.ini "$DOMAINS" # --dry-run

118 | Let’s Encrypt SSL Certificates


You can enable the --dry-run option which does a test run of the client
only.

Create an SSL Certificate

With all the scripts created, to create an SSL certificate, run the following command:

sudo /etc/letsencrypt/<your-domain-name>.sh

After you run the script, you will see output similar to the following:

Saving debug log to /var/log/letsencrypt/letsencrypt.log
Obtaining a new certificate
Performing the following challenges:
http-01 challenge for your-domain-name.com
Using the webroot path /var/www/html for all unmatched domains.
Waiting for verification...
Cleaning up challenges
Running post-hook command: service apache2 reload

IMPORTANT NOTES:
 1. Congratulations! Your certificate and chain have been saved at:
 /etc/letsencrypt/live/your-domain-name.com/fullchain.pem
 Your key file has been saved at:
 /etc/letsencrypt/live/your-domain-name.com/privkey.pem
 Your cert will expire on 2018-06-18. To obtain a new or tweaked
 version of this certificate in the future, simply run certbot
 again. To non-interactively renew *all* of your certificates, run
 "certbot renew"
 2. If you like Certbot, please consider supporting our work by:

 Donating to ISRG / Let's Encrypt: https://letsencrypt.org/donate
 Donating to EFF: https://eff.org/donate-le

You can see that the SSL certificate’s been successfully created, and that it will expire
on 2018-06-18.

Listing Existing Certificates

If you want to list (view) existing SSL certificates, use list.sh, which can be run as
follows:

sudo /etc/letsencrypt/list.sh

Depending on the number of certificates, you can expect to see output similar to the
following:

Let’s Encrypt SSL Certificates | 119

Found the following certs:
 Certificate Name: your-domain-name.com
 Domains: your-domain-name.com
 Expiry Date: 2018-06-18 10:57:18+00:00 (VALID: 82 days)
 Certificate Path: /etc/letsencrypt/live/your-domain-name.com/fullchain.pem
 Private Key Path: /etc/letsencrypt/live/your-domain-name.com/privkey.pem

Web Server Setup

Refer to the Apache setup guide, to set up your web server and issue a certificate.

Test the Setup

After you have setup and configured the web server and installed the SSL certificate
using Certbot, you should now test the security of your new configuration. To do so,
you can use the free service of SSL Labs. See an example screenshot of a test run
below.

Renewing SSL Certificates

As Let’s Encrypts certificates expire every 90 days, you should ensure you renew them
before that time.
There are two ways to do so: manually and automatically.

Manual Renewal

If you have provided your email address, you will receive reminder notifications.

sudo /etc/letsencrypt/renew.sh

If the certificate is not yet due for renewal, you can expect to see output similar to that

120 | Let’s Encrypt SSL Certificates

installation/letsencrypt/apache.pdf
https://www.ssllabs.com/ssltest/

below:

Processing /etc/letsencrypt/renewal/your-domain-name.com.conf

Cert not yet due for renewal

The following certs are not due for renewal yet:
 /etc/letsencrypt/live/your-domain-name.com/fullchain.pem (skipped)
No renewals were attempted.
No hooks were run.

Automatic Renewal via Crontab

Certificates are only renewed if they are due, so you can schedule Cron jobs to renew
your SSL certificates on a more frequent basis. However, a weekly check is sufficient.

To add a new Cron job to auto-renew your certificates, firstly run the following
command to edit the job list.

sudo crontab -e

 It is essential to use sudo to derive proper permissions.

Then, add the following at the end of the existing configuration:

30 03 * * 6 /etc/letsencrypt/renew-cron.sh

After you save and exit the file, the new job will have been added to the Cron job
scheduler.


If you want to use own values, you can check them eg. at crontab.guru
or modify the script for other options.

Add Extra Domains to the Certificate

If you want to add an extra domain, like subdomain.example.com, to your certificate,
add the domain in the domain shell script above, re-run it and reload the web server
config. This can be useful when migrating from a sub-directory to sub-domain access.


This also implies that you need to comment the include directive (please
refer to the relevant web server setup) and follow the steps afterwards.

Deleting SSL Certificates

If you want to delete an SSL certificate, use the delete.sh script, running it as follows:

sudo /etc/letsencrypt/delete.sh

It will start off, as below, by displaying a list of the currently available SSL certificate
domain names, and then prompt you to supply the certificate that you want to delete.

Let’s Encrypt SSL Certificates | 121

https://crontab.guru

Available Certificates:

1. your-domain-name.com

Which certificate do you want to delete:

Provide the SSL certificate name that you want to delete and click [enter], and the
certificate and all of its related files will be deleted. After that you should expect to see
a confirmation, as in the example output below.

Deleted all files relating to certificate your-domain-name.com.

Configure Apache with Let’s Encrypt

Introduction

This guide shows how to configure Apache with Let’s Encrypt.

Dependencies

To follow this guide, your server needs to have the following dependencies installed:

• Apache 2.4.8 or later
• OpenSSL 1.0.2 or later
• Let’s Encrypt

Assumptions

This guide assumes two things:

1. That you are using Ubuntu Linux 18.04. If you are not using Ubuntu 18.04, please
adjust the instructions to suit your distribution or operating system.

2. That your ownCloud installation is configured using a VirtualHost (vhost)
configuration instead of being configured in the main Apache configuration, and

3. That the vhost configuration file is stored under /etc/apache2/sites-available/. Not
all distributions use this location, however. Please refer to your distribution’s
Apache documentation, to know where to store yours.

Create and Configure a Diffie-Hellman Params File

When using Apache 2.4.8 or later and OpenSSL 1.0.2 or later you can generate and
specify a Diffie-Hellman (DH) params file. If not already present in your VirtualHost
(vhost) file, add an SSLOpenSSLConfCmd directive and a new certificate with stronger
keys, which improves forward secrecy.


The OpenSSL command may take a quite a while to complete, so please
be patient.

You can place the generated SSL certificate into any directory of your choice, by
running the following command, and changing the value supplied to the -out option.
We recommend storing it in /etc/apache2/ in this guide, solely for sakes of simplicity.

122 | Let’s Encrypt SSL Certificates

https://letsencrypt.org/getting-started/
https://httpd.apache.org/docs/2.4/vhosts/examples.html
https://en.wikipedia.org/wiki/Diffie–Hellman_key_exchange
https://httpd.apache.org/docs/trunk/mod/mod_ssl.html#sslopensslconfcmd
https://scotthelme.co.uk/perfect-forward-secrecy/

sudo openssl dhparam -out /etc/apache2/dh4096.pem 4096

Once the command completes, add the following directive to your common SSL
configuration:

SSLOpenSSLConfCmd DHParameters /etc/apache2/dh4096.pem

Let’s Encrypt ACME-Challenge

After that, add an Alias directive for the /.well-known/acme-challenge location in your
HTTP VirtualHost configuration, as in line four in the following example.

<virtualHost *.80>
 ServerName mydom.tld

 Alias /.well-known/acme-challenge/ /var/www/letsencrypt/.well-known/acme-
challenge/
 <Directory "/var/www/letsencrypt/.well-known/acme-challenge/">
 Options None
 AllowOverride None
 ForceType text/plain
 RedirectMatch 404 "^(?!/\.well-known/acme-challenge/[\w-]{43}$)"
 </Directory>

 # ... remaining configuration
</virtualHost>

Create an SSL VirtualHost Configuration

We recommend creating a separate file for storing the SSL directives. If these
directives already exist in this Virtual Host, delete them and include the file instead.
This is because, when the certificate has been created, you can use this file in any
SSL-enabled VirtualHost configuration for which the certificate is valid, without
reissuing the SSL certificate.

cd /etc/apache2/
sudo mkdir ssl_rules
touch ssl_rules/ssl_mydom.tld

Listing 7. /etc/apache2/ssl_rules/ssl_mydom.tld

Eases letsencrypt initial cert issuing

SSLEngine on
SSLCertificateChainFile /etc/letsencrypt/live/mydom.tld/fullchain.pem
SSLCertificateKeyFile /etc/letsencrypt/live/mydom.tld/privkey.pem
SSLCertificateFile /etc/letsencrypt/live/mydom.tld/cert.pem

Let’s Encrypt SSL Certificates | 123



To improve SSL performance, we recommend that you use the
SSLUseStapling and SSLStaplingCache directives. Here’s an example
configuration:

SSLUseStapling on
SSLStaplingCache shmcb:/tmp/stapling_cache(2097152)

With the files created and filled-out, update your HTTPS VirtualHost configuration:

<virtualHost *:443>
 ServerName mydom.tld

 # ssl letsencrypt
 # Include /etc/apache2/ssl_rules/ssl_mydom.tld

 #...
</virtualHost>


For the moment, comment out the Include directive, as the certificate
files do not, currently, exist.

Test and Enable the Apache Configuration

With the configuration created, test it by running one of the following two commands:

sudo apache2ctl configtest
sudo apache2ctl -t

It should not display any errors. If it doesn’t, load your new Apache configuration by
running the following command:

sudo apache2ctl graceful

Create the SSL Certificates

To create the SSL certificates, run the following command:

sudo /etc/letsencrypt/<your-domain-name>.sh

Next, double check that the certificates have been issued by running the list.sh script.

sudo /etc/letsencrypt/list.sh

If successful, you will see output similar to that below when the command completes:

124 | Let’s Encrypt SSL Certificates

https://httpd.apache.org/docs/trunk/mod/mod_ssl.html#sslusestapling
https://httpd.apache.org/docs/trunk/mod/mod_ssl.html#sslstaplingcache

Saving debug log to /var/log/letsencrypt/letsencrypt.log

Found the following certs:
 Certificate Name: mydom.tld
 Domains: mydom.tld
 Expiry Date: 2018-06-18 10:57:18+00:00 (VALID: 89 days)
 Certificate Path: /etc/letsencrypt/live/mydom.tld/fullchain.pem
 Private Key Path: /etc/letsencrypt/live/mydom.tld/privkey.pem

As the certificate files exist, you can uncomment the Include directive in your HTTPS
VirtualHost configuration to use them.

<virtualHost *:443>
 ServerName mydom.tld

 # ssl letsencrypt
 Include /etc/apache2/ssl_rules/ssl_mydom.tld

 #...
</virtualHost>

Reload the Apache Configuration

Finally, reload (or restart) Apache.

It is now ready to serve HTTPS request for the given domain using the issued
certificates.

sudo service apache2 reload

Let’s Encrypt SSL Certificates | 125

Configuration
In this section, you will find all the information you need for configuring ownCloud.

Database

In this section, you can find out about

• Converting your Database Type
• Database Configuration on Linux

Converting Database Type

Introduction

SQLite is good for testing ownCloud, as well as small, single-user, ownCloud servers.
But, it does not scale for large, multi-user sites. If you have an existing ownCloud
installation which uses SQLite, and you want to convert to a better performing
database, such as MySQL, MariaDB or PostgreSQL, you can use the ownCloud
command line tool: occ.

 ownCloud Enterprise edition does not support SQLite.

Preparation

Add the following to your ownCloud config/config.php:

'mysql.utf8mb4' => true,

Add, or adjust, the following in /etc/mysql/mariadb.conf.d/50-server.cnf:


You can do the same for MySQL by replacing mariadb.conf.d/50-
server.cnf with mysql.conf.d/mysqld.cnf.

126 | Database

configuration/database/db_conversion.pdf
configuration/database/linux_database_configuration.pdf
configuration/server/occ_command.pdf#database-conversion

key_buffer_size = 32M
table_cache = 400
query_cache_size = 128M
#in InnoDB:
innodb_flush_method=O_DIRECT
innodb_flush_log_at_trx_commit=1
innodb_log_file_size=256M
innodb_log_buffer_size = 128M
innodb_buffer_pool_size=2048M
innodb_buffer_pool_instances=3
innodb_read_io_threads=4
innodb_write_io_threads=4
innodb_io_capacity = 500
innodb_thread_concurrency=2
innodb_file_format=Barracuda
innodb_file_per_table=ON
innodb_large_prefix = 1
character-set-server = utf8mb4
collation-server = utf8mb4_general_ci

Restart the Database Server

When you have changed the database parameters, restart your database by running
following command:

sudo service mysql restart

Run the conversion

After you have restarted the database, run the following occ command in your
ownCloud root folder, to convert the database to the new format:

sudo -u www-data php occ db:convert-type [options] type username hostname
database



The converter searches for apps in your configured app folders and
uses the schema definitions in the apps to create the new table. As a
result, tables of removed apps will not be converted — even with option
--all-apps For example:

sudo -u www-data php occ db:convert-type --all-apps mysql
oc_mysql_user 127.0.0.1 new_db_name

To successfully proceed with the conversion, you must type yes when prompted with
the question Continue with the conversion? On success the converter will automatically
configure the new database in your ownCloud config config.php.

Database | 127

Unconvertible Tables

If you updated your ownCloud installation then the old tables, which are not used
anymore, might still exist. The converter will tell you which ones.

The following tables will not be converted:
 oc_permissions

You can ignore these tables. Here is a list of known old tables:

• oc_calendar_calendars
• oc_calendar_objects
• oc_calendar_share_calendar
• oc_calendar_share_event
• oc_fscache
• oc_log
• oc_media_albums
• oc_media_artists
• oc_media_sessions
• oc_media_songs
• oc_media_users
• oc_permissions
• oc_queuedtasks
• oc_sharing

Database Configuration on Linux

Introduction

ownCloud requires a database in which administrative data is stored. The following
databases are currently supported:

• MySQL / MariaDB
• PostgreSQL
• Oracle (ownCloud Enterprise edition only)


The MySQL or MariaDB databases are the recommended database
engines.


After physically installing ownCloud, the setup of the owncloud
database is either done with the installation wizard or via the command
line. For more information see the Complete the Installation section in
the Manual Installation documentation.

Requirements

Choosing to use MySQL / MariaDB, PostgreSQL, or Oracle as your database requires,
that you install and set up the server software first.

 Oracle users, see the Oracle Database Configuration guide.

128 | Database

enterprise/installation/oracle_db_configuration.pdf
enterprise/installation/oracle_db_configuration.pdf
enterprise/installation/oracle_db_configuration.pdf
installation/installation_wizard.pdf
installation/manual_installation/manual_installation.pdf#complete-the-installation
enterprise/installation/oracle_db_configuration.pdf

The steps for configuring a third party database are beyond the scope of this
document. Please refer to the documentation below, for your database vendor.

• The MariaDB Knowledge Base
• The MySQL documentation
• The Oracle Database documentation
• The PostgreSQL documentation

MySQL / MariaDB

Enabling Binary Logging

ownCloud is currently using a TRANSACTION_READ_COMMITTED transaction isolation
to avoid data loss under high load scenarios (e.g., by using the sync client with many
clients/users and many parallel operations). This requires a disabled or correctly
configured binary logging when using MySQL or MariaDB. Your system is affected if
you see the following in your log file during the installation or update of ownCloud:

An unhandled exception has been thrown: exception `PDOException' with message
`SQLSTATE[HY000]: General error: 1665 Cannot execute statement: impossible to
write to binary log since BINLOG_FORMAT = STATEMENT and at least one table uses
a storage engine limited to row-based logging. InnoDB is limited to row-logging
when transaction isolation level is READ COMMITTED or READ UNCOMMITTED.'

There are two solutions. One is to disable binary logging. Binary logging records all
changes to your database, and how long each change took. The purpose of binary
logging is to enable replication and to support backup operations.

The other is to change the BINLOG_FORMAT = STATEMENT in your database
configuration file, or possibly in your database startup script, to BINLOG_FORMAT =
MIXED or BINLOG_FORMAT = ROW. See Overview of the Binary Log and The Binary
Log for detailed information.

Set READ COMMITED as the Transaction Isolation Level

As discussed above, ownCloud is using the TRANSACTION_READ_COMMITTED
transaction isolation level. Some database configurations are enforcing other
transaction isolation levels. To avoid data loss under high load scenarios (e.g., by using
the sync client with many clients/users and many parallel operations), you need to
configure the transaction isolation level accordingly. Please refer to the MySQL
manual for detailed information.

Configuring the Storage Engine

Since ownCloud 7, only InnoDB is supported as a storage engine. Some shared hosts
do not support InnoDB and only MyISAM. Running ownCloud in such an environment
is not supported.

Parameters

For setting up ownCloud to use any database, use the instructions in the Installation
Wizard. You should not have to edit the respective values in the config/config.php.
However, in exceptional cases (for example, if you want to connect your ownCloud
instance to a database created by a previous installation of ownCloud), some
modification might be required.

Database | 129

https://mariadb.com/kb/en/
https://dev.mysql.com/doc/
https://docs.oracle.com/en/database/oracle/oracle-database/index.html
https://www.postgresql.org/docs/manuals/
https://mariadb.com/kb/en/mariadb/overview-of-the-binary-log/
https://dev.mysql.com/doc/refman/5.6/en/binary-log.html
https://dev.mysql.com/doc/refman/5.6/en/binary-log.html
https://dev.mysql.com/doc/refman/5.7/en/set-transaction.html
https://dev.mysql.com/doc/refman/5.7/en/set-transaction.html
installation/installation_wizard.pdf
installation/installation_wizard.pdf

MySQL / MariaDB

If you decide to use a MySQL or MariaDB database, ensure the following:

• That you have installed and enabled the pdo_mysql extension in PHP.
• That the mysql.default_socket points to the correct socket (if the database runs on

the same server as ownCloud).

MariaDB is backward compatible with MySQL. All instructions work for both, so you
will not need to replace or revise any existing MySQL client commands. The PHP
configuration in /etc/php/7.4/apache2/conf.d/20-mysql.ini could look like this:

configuration for PHP MySQL module
extension=pdo_mysql.so

[mysql]
mysql.allow_local_infile=On
mysql.allow_persistent=On
mysql.cache_size=2000
mysql.max_persistent=-1
mysql.max_links=-1
mysql.default_port=
mysql.default_socket=/var/lib/mysql/mysql.sock # Debian squeeze:
/var/run/mysqld/mysqld.sock
mysql.default_host=
mysql.default_user=
mysql.default_password=
mysql.connect_timeout=60
mysql.trace_mode=Off

An ownCloud instance configured with MySQL would contain the hostname on which
the database is running, a valid username and password to access it, and the name of
the database. The config/config.php as created by the installation wizard would
therefore contain entries like this:

<?php

"dbtype" => "mysql",
"dbname" => "owncloud",
"dbuser" => "username",
"dbpassword" => "password",
"dbhost" => "localhost",
"dbtableprefix" => "oc_",

Configure MySQL for 4-byte Unicode Support

For supporting such features as emoji, both MySQL (or MariaDB) and ownCloud need
to be configured to use 4-byte Unicode support instead of the default 3-byte. If you are
setting up a new ownCloud installation, using version 10.0 or above, and you’re using
a minimum MySQL version of 5.7, then you don’t need to do anything, as support is
checked during setup and used if available.

130 | Database

installation/installation_wizard.pdf

However, if you have an existing ownCloud installation that you need to convert to use
4-byte Unicode support or you are working with MySQL earlier than version 5.7, then
you need to do two things:

1. In your MySQL configuration, add the configuration settings below. If you already
have them configured, update them to reflect the values specified:

[mysqld]
innodb_large_prefix=ON
innodb_file_format=Barracuda
innodb_file_per_table=ON

2. Run the following occ command:

sudo -u www-data php occ db:convert-mysql-charset

When this is done, tables will be created with:

◦ A utf8mb4 character set.
◦ A utf8mb4_bin collation.
◦ row_format set to compressed.



For more information, please either refer to config.sample.php, or have
a read through the following links:

• https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#
sysvar_innodb_large_prefix

• https://mariadb.com/kb/en/library/innodb-system-variables/#
innodb_large_prefix

• http://www.tocker.ca/benchmarking-innodb-page-compression-
performance.html

• http://dev.mysql.com/doc/refman/5.7/en/charset-unicode-
utf8mb4.html

• https://dev.mysql.com/doc/refman/5.7/en/innodb-file-format.html
• https://dev.mysql.com/doc/refman/5.7/en/innodb-multiple-

tablespaces.html
• https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#

sysvar_innodb_large_prefix

PostgreSQL

If you decide to use a PostgreSQL database, make sure that you have installed and
enabled the PostgreSQL extension and the PostgreSQL PDO extension in PHP. The
PHP configuration in /etc/php/7.4/apache2/conf.d/20-pgsql.ini could look like this:

Database | 131

configuration/server/config_sample_php_parameters.pdf
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_large_prefix
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_large_prefix
https://mariadb.com/kb/en/library/innodb-system-variables/#innodb_large_prefix
https://mariadb.com/kb/en/library/innodb-system-variables/#innodb_large_prefix
http://www.tocker.ca/benchmarking-innodb-page-compression-performance.html
http://www.tocker.ca/benchmarking-innodb-page-compression-performance.html
http://dev.mysql.com/doc/refman/5.7/en/charset-unicode-utf8mb4.html
http://dev.mysql.com/doc/refman/5.7/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-file-format.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-multiple-tablespaces.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-multiple-tablespaces.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_large_prefix
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_large_prefix
https://www.php.net/manual/en/book.pgsql.php
https://www.php.net/manual/en/ref.pdo-pgsql.php

configuration for PHP PostgreSQL module
extension=pdo_pgsql.so
extension=pgsql.so

[PostgresSQL]
pgsql.allow_persistent = On
pgsql.auto_reset_persistent = Off
pgsql.max_persistent = -1
pgsql.max_links = -1
pgsql.ignore_notice = 0
pgsql.log_notice = 0


The default configuration for PostgreSQL (at least in Ubuntu 14.04) is
to use the peer authentication method. Check
/etc/postgresql/9.3/main/pg_hba.conf to find out which authentication
method is used in your setup.

To start the PostgreSQL command-line mode use:

sudo -u postgres psql -d template1

Then a template1=\# prompt will appear. You can now enter your commands as
required. When finished, you can quit the prompt by entering:

\q

An ownCloud instance configured with PostgreSQL will contain the hostname on which
the database is running, a valid username and password to access it, and the name of
the database. The config/config.php as created by the Installation Wizard would
contain entries like this:

<?php

"dbtype" => "pgsql",
"dbname" => "owncloud",
"dbuser" => "username",
"dbpassword" => "password",
"dbhost" => "localhost",
"dbtableprefix" => "oc_",

Troubleshooting

How to Workaround General Error: 2006 MySQL Server Has Gone Away

The database request takes too long, and therefore the MySQL server times out. It’s
also possible that the server is dropping a packet that is too large. Please refer to the
manual of your database for how to raise the configuration options wait_timeout
and/or max_allowed_packet.

Some shared hosts are not allowing access to these config options. For such systems,

132 | Database

installation/installation_wizard.pdf

ownCloud is providing a dbdriveroptions configuration option within your
config/config.php where you can pass such options to the database driver. Please refer
to the sample PHP configuration parameters for an example.

How Can I Find Out If My MySQL/PostgreSQL Server Is Reachable?

To check the server’s network availability, use the ping command on the server’s
hostname (db.server.com in this example):

ping db.server.com

PING db.server.com (ip-address) 56(84) bytes of data.
64 bytes from your-server.local.lan (192.168.1.10): icmp_req=1 ttl=64 time=3.64
ms
64 bytes from your-server.local.lan (192.168.1.10): icmp_req=2 ttl=64 time=0.055
ms
64 bytes from your-server.local.lan (192.168.1.10): icmp_req=3 ttl=64 time=0.062
ms

For a more detailed check whether the access to the database server software itself
works correctly, see the next question.

How Can I Find Out If a Created User Can Access a Database?

The easiest way to test if a database can be accessed is by starting the command-line
interface:

MySQL

Assuming the database server is installed on the same system you’re running the
command from, use:

mysql -uUSERNAME -p

To access a MySQL installation on a different machine, add the -h option with the
respective hostname:

mysql -uUSERNAME -p -h HOSTNAME

mysql> SHOW VARIABLES LIKE "version";
+---------------+--------+
| Variable_name | Value |
+---------------+--------+
| version | 5.1.67 |
+---------------+--------+
1 row in set (0.00 sec)
mysql> quit

PostgreSQL

Assuming the database server is installed on the same system you’re running the

Database | 133

configuration/server/config_sample_php_parameters.pdf

command from, use:

psql -Uusername -downcloud

To access a PostgreSQL installation on a different machine, add the -h option with the
applicable hostname:

psql -Uusername -downcloud -h HOSTNAME

postgres=# SELECT version();
PostgreSQL 8.4.12 on i686-pc-linux-gnu, compiled by GCC gcc (GCC) 4.1.3
20080704 (prerelease), 32-bit
(1 row)
postgres=# \q

Useful SQL Commands

Show Database Users

MySQL PostgreSQL

SELECT User,Host FROM mysql.user; SELECT * FROM pg_user;

Show Available Databases

MySQL PostgreSQL

SHOW DATABASES; \l

Show ownCloud Tables in Database

MySQL PostgreSQL

USE owncloud; SHOW TABLES; \c owncloud; \d

Quit Database

MySQL PostgreSQL

quit; \q

How to Solve Deadlock Errors

SQLSTATE[40001]: Serialization failure: 1213 Deadlock found when trying to get
lock; try restarting transaction

Explanation

This error occurs when two transactions write and commit to the same rows in
separate cluster nodes. Only one of them can successfully commit. The failing one will
be aborted. For cluster level aborts, Galera Cluster returns a deadlock error.

134 | Database

Solution

The solution, for Galera Cluster, would be to send all write requests to a single DB
node, instead of all of them. Here is a useful guide, when using HAProxy.

The same concept applies when MaxScale is used as a DB proxy. It needs to be
configured to send all write requests to a single DB node instead all of them and
balance read statements across the rest of the nodes. Here is a useful guide on how to
configure MaxScale with Read/Write splitting.

Enabling Causality Checks

Additionally, to solve this issue, when using Galera Cluster, customers should try to set
wsrep_sync_wait=1. When enabled, the node triggers causality checks in response to
certain types of queries. This is disabled by default.

Encryption

In this section you will find all the details you need to configure encryption in
ownCloud.

Enable the Encryption App

Before you can use encryption you must enable the encryption app. You can do this
either from the command-line or from the Web-UI.

Enable Encryption From the Command-Line

To enable the encryption app, run the following command:

sudo -u www-data php occ app:enable encryption

If the encryption app successfully enables, then you should see the following
confirmation:

encryption enabled



This should never happen, but the encryption app may not be packaged
with your ownCloud installation. If so, you will see the following output
when you attempt to enable it:

encryption not found

If that happens, then you need to install it manually. You can do this by
cloning the encryption app, using the following command:

git clone https://github.com/owncloud/encryption.git apps/encryption

Enable Encryption From the Web-UI

To enable encryption from the Web-UI:

1. Go to Settings › Admin › Apps and click on Show disabled apps

Encryption | 135

https://severalnines.com/blog/avoiding-deadlocks-galera-set-haproxy-single-node-writes-and-multi-node-reads
https://www.haproxy.org/
https://github.com/mariadb-corporation/MaxScale/wiki
https://mariadb.com/kb/en/mariadb-enterprise/mariadb-maxscale-14/maxscale-readwrite-splitting-with-galera-cluster/

2. When the disabled apps are rendered click [Enable] under "Default encryption
module".

3. After that go to Settings › Admin › Encryption, and enable [Enable server-side
encryption].

4. Then, under "Default encryption module", select the desired encryption type,
whether "Master Key" (recommended) or "User-key".

5. Now you must log out and then log back in to initialize your encryption keys.

Disable Encryption

Matthew Setter <matthew@matthewsetter.com> :keywords: encryption, occ
:description: This guide will show you how to disable encryption in ownCloud.

You may disable encryption only with occ. Make sure you have backups of all the
encryption keys, including those for all users. When you do, put your ownCloud server
into single-user mode, and then disable your encryption module with this command:

sudo -u www-data php occ maintenance:singleuser --on
sudo -u www-data php occ encryption:disable


Encryption cannot be disabled without the user’s password or file
recovery key. If you don’t have access to at least one of these then
there is no way to decrypt all files.

When decryption has finished, disable single-user mode, using the following command.

sudo -u www-data php occ maintenance:singleuser --off

It is possible to disable encryption with the file recovery key, if every user uses them.
If so, decrypt-all will use it to decrypt all files.

LDAP and Other External User Backends

If you use an external user back-end, such as an LDAP or Samba server, and you
change a user’s password on that back-end, the user will be prompted to change their
ownCloud login to match on their next ownCloud login. The user will need both their
old and new passwords to do this.

If you have enabled the recovery key, then — as an ownCloud admin — you can change
a user’s password in the ownCloud Users panel to match their back-end password, and
then — of course — notify the user and give them their new password.

Encryption Configuration

Background Information

The primary purpose of the ownCloud server-side encryption is to protect users’ files
when they’re located on remote storages, such as Dropbox and Google Drive, and to
do it smoothly and seamlessly from within ownCloud.

From ownCloud 9.0, server-side encryption for local and remote storages can operate
independently of each other. By doing so, you can encrypt a remote storage without
also having to encrypt your home storage on your ownCloud server.

136 | Encryption

mailto:matthew@matthewsetter.com
configuration/files/encryption/enabling-user-key-encryption.pdf#how-to-enable-users-file-recovery-keys
configuration/files/encryption/enabling-user-key-encryption.pdf#how-to-enable-users-file-recovery-keys
configuration/server/occ_command.pdf#encryption


Starting with ownCloud 9.0 we support Authenticated Encryption for all
newly encrypted files. See https://hackerone.com/reports/108082 for
more technical information about the impact.

For maximum security make sure to configure external storage with "Check for
changes: Never". This will let ownCloud ignore new files not added via ownCloud. By
doing so, a malicious external storage administrator cannot add new files to the
storage without your knowledge. However, this is not wise if your external storage is
subject to legitimate external changes.

ownCloud’s server-side encryption encrypts files stored on the ownCloud server and
files on remote storages that are connected to your ownCloud server. Encryption and
decryption are performed on the ownCloud server. All files sent to remote storage will
be encrypted by the ownCloud server and decrypted before serving them to you or
anyone whom you have shared them with.


Encrypting files increases their size by roughly 35%. Remember to take
this into account when you are both provisioning storage and setting
storage quotas. Secondly, user quotas are based on the unencrypted file
size — not the encrypted size.

When files on an external storage are encrypted in ownCloud, you cannot share them
directly from the external storage services, only through ownCloud sharing. This is
because the key to decrypt the data never leaves the ownCloud server.

ownCloud’s server-side encryption generates a strong encryption key, which is
unlocked by users’ passwords. As a result, your users don’t need to track an extra
password. All they need to do is log in as they normally would. ownCloud,
transparently, encrypts only the contents of files, and not filenames and directory
structures.


You should regularly backup all encryption keys to prevent permanent
data loss.

The encryption keys are stored in the following directories:

Directory Description

data/<user>/fi
les_encryption

Users’ private keys and all other keys necessary to decrypt
the users’ files.

data/files_encr
yption

Private keys and all other keys necessary to decrypt the files
stored on a system wide external storage.


You can move the keys to a different location. To do so, refer to the
Move Key Location section of the documentation.

When encryption is enabled, all files are encrypted and decrypted by the ownCloud
application, and stored encrypted on your remote storage. This protects your data on
externally hosted storage. The ownCloud admin and the storage admin will see only
encrypted files when browsing backend storage.

Encryption keys are stored only on the ownCloud server, eliminating exposure of your
data to third-party storage providers. The encryption application does not protect your
data if your ownCloud server is compromised, and it does not prevent ownCloud
administrators from reading users’ files.

This would require client-side encryption, which this application does not provide. If

Encryption | 137

https://hackerone.com/reports/108082

your ownCloud server is not connected to any external storage services, it is better to
use other encryption tools, such as file-level or whole-disk encryption.



SSL terminates at or before the webserver on the ownCloud server.
Consequently, all files are in an unencrypted state between the SSL
connection termination and the ownCloud code that encrypts and
decrypts them. This is, potentially, exploitable by anyone with
administrator access to your server. For more information, read: How
ownCloud uses encryption to protect your data.

Encryption Types

ownCloud provides two encryption types:

User-Key: Every user has their own private/public key pairs, and the
private key is protected by the user’s password.

Master Key: There is only one key (or key pair) and all files are encrypted
using that key pair.

 These encryption types are not compatible.

Before Enabling Encryption

Plan very carefully before enabling encryption, because it is not reversible via the
ownCloud Web interface. If you lose your encryption keys, your files are not
recoverable. Always have backups of your encryption keys stored in a safe location,
and consider enabling all recovery options.

You have more options via the occ command’s encryption options.


You can’t manage encryption without access to the command line. If
your ownCloud installation is on a hosted environment and you don’t
have access to the command line, you won’t be able to run occ
commands. In this case, don’t enable encryption!

Enabling Master Key Based Encryption from the Command-Line

To enable encryption via the command-line, involves several commands. Firstly, enable
the default encryption module app, using the following command:

sudo -u www-data php occ app:enable encryption

Then enable encryption, using the following command:

sudo -u www-data php occ encryption:enable

After that, enable the master key, using the following command:

sudo -u www-data php occ encryption:select-encryption-type masterkey

 The master key mode has to be set up in a newly created instance.

138 | Encryption

https://owncloud.org/blog/how-owncloud-uses-encryption-to-protect-your-data/
https://owncloud.org/blog/how-owncloud-uses-encryption-to-protect-your-data/
configuration/server/occ_command.pdf#encryption
configuration/server/occ_command.pdf#encryption
configuration/server/occ_command.pdf#encryption
configuration/server/occ_command.pdf
configuration/server/occ_command.pdf

Finally, encrypt all data, using the following command:

sudo -u www-data php occ encryption:encrypt-all --yes



This command is not typically required, as the master key is often
enabled at install time. As a result, when enabling it, there should be no
data to encrypt. But, in case it’s being enabled after install, and the
installation does have files which are unencrypted, encrypt-all can be
used to encrypt them.

View Current Encryption Status

Get the current encryption status and the loaded encryption module:

sudo -u www-data php occ encryption:status

This is equivalent to checking Enable server-side encryption on your Admin page:

sudo -u www-data php occ encryption:enable
Encryption enabled

Default module: OC_DEFAULT_MODULE

Recreating an Existing Master Key

If the master key needs replacing, for example, because it has been compromised, an
occ command is available. The command is encryption:recreate-master-key. It replaces
existing master key with new one and encrypts the files with the new key.

Decrypt Master-Key Encryption

You must first put your ownCloud server into single-user mode to prevent any user
activity until encryption is completed.

sudo -u www-data php occ maintenance:singleuser --on
Single user mode is currently enabled

Decrypt all user data files, or optionally a single user:

sudo -u www-data php occ encryption:decrypt-all [username]

Disabling Encryption

To disable encryption, put your ownCloud server into single-user mode, and then
disable your encryption module with these commands:

sudo -u www-data php occ maintenance:singleuser --on
sudo -u www-data php occ encryption:disable

Encryption | 139

configuration/server/occ_command.pdf#encrypt-all
configuration/server/occ_command.pdf#recreate-master-key

Take it out of single-user mode when you are finished, by using the following
command:

sudo -u www-data php occ maintenance:singleuser --off


You may only disable encryption by using the occ Encryption
Commands. Make sure you have backups of all encryption keys,
including those for all your users.

Enabling User-Key Based Encryption From the Command-line

Limitations of User-Key Based Encryption

• Users added to groups cannot decrypt files on existing shares.
• OnlyOffice will not work.
• Impersonate will not work.
• OAuth2 does will not work.
• Elasticsearch will not work.
• Users getting access to an external storage which already contains existing

encrypted files cannot get access to said files for reasons such as the group case
above.

• When having data shared with a group and group membership changes after the
share is established, subsequently added users will not be able to open the shared
data unless the owner will share it again.

To enable User-Key based encryption:

To be safe, put your server in single user mode, to avoid any issues on a running
instance, using the following command:

sudo -u www-data php occ maintenance:singleuser --on

Then, enable the default encryption module app, using the following command:

sudo -u www-data php occ app:enable encryption

After that, enable encryption, using the following command:

sudo -u www-data php occ encryption:enable

Then, enable the user-key, using the following command:

sudo -u www-data php occ encryption:select-encryption-type user-keys

Finally, encrypt all data, using the following command:

sudo -u www-data php occ encryption:encrypt-all --yes

140 | Encryption

configuration/server/occ_command.pdf#encryption
configuration/server/occ_command.pdf#encryption

Now you can turn off the single user mode:

sudo -u www-data php occ maintenance:singleuser --off

How To Enable Users File Recovery Keys

Once a user has encrypted their files, if they lose their ownCloud password, then they
lose access to their encrypted files, as their files will be unrecoverable. It is not
possible, when user files are encrypted, to reset a user’s password using the standard
reset process.

If so, you’ll see a yellow banner warning:

"" Please provide an admin recovery password; otherwise, all user data will be lost. ""

To avoid all this, create a Recovery Key. To do so, go to the Encryption section of your
Admin page and set a recovery key password.

You then need to ask your users to opt-in to the Recovery Key. For the users to do this,
they need to go to the Personal page and enable the recovery key. This signals that
they are OK that the admin might have a way to decrypt their data for recovery
reasons. If they do not do this, then the Recovery Key won’t work for them.

For users who have enabled password recovery, give them a new password and
recover access to their encrypted files, by supplying the Recovery Key on the Users

Encryption | 141

page.

You may change your recovery key password.


Sharing a recovery key with a user group is not supported. This is only
supported with the master key.

Changing The Recovery Key Password

If you have misplaced your recovery key password and need to replace it, here’s what
you need to do:

1. Delete the recovery key from both data/owncloud_private_keys and data/public-keys
2. Edit your database table oc_appconfig and remove the rows with the config keys

recoveryKeyId and recoveryAdminEnabled for the appid files_encryption
3. Login as admin and activate the recovery key again with a new password. This will

generate a new key pair
4. All users who used the original recovery key will need to disable it and enable it

again. This deletes the old recovery share keys from their files and encrypts their
files with the new recovery key


You can only change the recovery key password if you know the
original. This is by design, as only admins who know the recovery key
password should be able to change it. If not, admins could hijack the
recovery key from each other


Replacing the recovery key will mean that all users will lose the
possibility to recover their files until they have applied the new
recovery key.

142 | Encryption

Decrypt User-Key Encryption

You must first put your ownCloud server into single-user mode, to prevent any user
activity until encryption is completed.

sudo -u www-data php occ maintenance:singleuser --on
Single user mode is currently enabled

Disabling Encryption

You may disable encryption only with occ. Make sure you have backups of all the
encryption keys, including those for all users. When you do, put your ownCloud server
into single-user mode, and then disable your encryption module with this command:

sudo -u www-data php occ maintenance:singleuser --on
sudo -u www-data php occ encryption:disable


Encryption cannot be disabled without the user’s password or file
recovery key. If you don’t have access to at least one of these then
there is no way to decrypt all files.

Then, take it out of single-user mode when you are finished with this command:

sudo -u www-data php occ maintenance:singleuser --off

It is possible to disable encryption with the file recovery key, if every user uses them.
If so, "decrypt all" will use it to decrypt all files.


It is not planned to move this to the next user login or a background
job. If that was done, then login passwords would need to be stored in
the database, which could be a security issue.

Move Key Location

View current location of keys:

sudo -u www-data php occ encryption:show-key-storage-root
Current key storage root: default storage location (data/)

You can move the keys to another folder inside your data directory. Moving your keys
outside of your data folder is not supported. The folder must already exist, be owned
by root and your HTTP group, and be restricted to root and your HTTP group. This
example is for Ubuntu Linux. Note that the new folder is relative to your occ directory:

Encryption | 143

mkdir /var/www/owncloud/data/new_keys
chown -R root:www-data /var/www/owncloud/data/new_keys
chmod -R 0770 /var/www/owncloud/data/new_keys
sudo -u www-data php occ encryption:change-key-storage-root new_keys
Change key storage root from default storage location to new_keys
Start to move keys:
 4 [============================]
Key storage root successfully changed to new_keys

Which Files Are Never Encrypted

Only the data in the files in data/<user>/files, and external storages (if enabled), is
encrypted, not the filenames or folder structures. The following files are never
encrypted:

• Existing files in the trash bin & Versions. Only new and changed files after
encryption is enabled are encrypted.

 You can post encrypt existing files via an occ encryption command.

• Existing files in Version
• Image thumbnails
• Previews from the Files app.
• The search index from the full text search app.
• Third-party app data

There may be other files that are not encrypted.


Only files that are exposed to third-party storage providers are
guaranteed to be encrypted.

LDAP and Other External User Back-ends

If you use an external user back-end, such as an LDAP or Samba server, and you
change a user’s password on that back-end, the user will be prompted to change their
ownCloud login to match on their next ownCloud login. The user will need both their
old and new passwords to do this.

If you have enabled the recovery key, then you can change a user’s password in the
ownCloud Users panel to match their back-end password, and then — of course —
notify the user and give them their new password.

Encrypting External Mountpoints

You and your users can encrypt individual external mount points. You must have
external storage enabled on your Admin page, and enabled for your users. Encryption
settings can be configured in the mount options for an external storage mount; see
Mount Options.

Sharing Encrypted Files

After encryption is enabled, your users must also log out and log back in to generate
their personal encryption keys. They will see a yellow warning banner that says
"Encryption App is enabled, but your keys are not initialized. Please log-out and log-in

144 | Encryption

configuration/server/occ_command.pdf#encryption
configuration/files/external_storage/configuration.pdf#mount-options

again."

Also, share owners may need to re-share files after encryption is enabled. Users who
are trying to access the share will see a message advising them to ask the share owner
to re-share the file with them.

For individual shares, un-share and re-share the file. For group shares, share with any
individuals who can’t access the share. This updates the encryption, and then the
share owner can remove the individual shares.

How To Enable Encryption From the Web-UI

1. First, you must enable the encrypton app, and then select an encryption type. Go to
the Apps section of your Admin page, click on [Show disabled Apps] and enable
"Default encryption module".

2. After that go to the encryption section of your Admin page, and check the checkbox
[Enable server-side encryption].

3. Then select an encryption Type. Masterkey and User-key are the options.
Masterkey is recommended.

4. Now you must log out and then log back in to initialize your encryption keys.

Encryption Configuration Quick Guide

Encryption Types

ownCloud provides two encryption types:

User-Key: Every user has their own private/public key pairs,
and the private key is protected by the user’s
password.

Master Key: There is only one key (or key pair) and all files are
encrypted using that key pair.


These encryption types are not compatible. Please see User-Key
Limitations for more details

Enable the Encryption App

Before you can use encryption you must enable the encryption app. You can do this
either from the command-line or from the Web-UI.

Enable Encryption From the Command-Line

To enable the encryption app, run the following command:

sudo -u www-data php occ app:enable encryption

Encryption | 145

configuration/files/encryption/enabling-user-key-encryption.pdf#limitations
configuration/files/encryption/enabling-user-key-encryption.pdf#limitations

If the encryption app successfully enables, then you should see the following
confirmation:

encryption enabled



This should never happen, but the encryption app may not be packaged
with your ownCloud installation. If so, you will see the following output
when you attempt to enable it:

encryption not found

If that happens, then you need to install it manually. You can do this by
cloning the encryption app, using the following command:

git clone https://github.com/owncloud/encryption.git apps/encryption

Enable Encryption From the Web-UI

To enable encryption from the Web-UI:

1. Go to Settings › Admin › Apps and click on Show disabled apps
2. When the disabled apps are rendered click [Enable] under "Default encryption

module".
3. After that go to Settings › Admin › Encryption, and enable [Enable server-side

encryption].
4. Then, under "Default encryption module", select the desired encryption type,

whether "Master Key" (recommended) or "User-key".
5. Now you must log out and then log back in to initialize your encryption keys.

Master Key Encryption

Overview

• The recommended type of encryption.
• Best to activate on new instances with no data.
• If you have existing data, use encrypt all command. Depending on the amount of

existing data, this operation can take a long time.

Activate Master Key-Based Encryption

sudo -u www-data php occ maintenance:singleuser --on
sudo -u www-data php occ app:enable encryption
sudo -u www-data php occ encryption:enable
sudo -u www-data php occ encryption:select-encryption-type masterkey -y
sudo -u www-data php occ encryption:encrypt-all --yes
sudo -u www-data php occ maintenance:singleuser --off

146 | Encryption

View the Encryption Status

sudo -u www-data php occ encryption:status

Decrypt Encrypted Files

Depending on the amount of existing data, this operation can take a long time.

sudo -u www-data php occ maintenance:singleuser --on
sudo -u www-data php occ encryption:decrypt-all
sudo -u www-data php occ maintenance:singleuser --off

Deactivate Master Key-based Encryption

sudo -u www-data php occ encryption:disable
ignore the "already disabled" message
sudo -u www-data php occ app:disable encryption

If the master key has been compromised or exposed, you can recreate it. You will need
the current master key for it.

sudo -u www-data php occ encryption:recreate-master-key

User-Specific Key-based Encryption

Activate User-Specific Key-based Encryption

sudo -u www-data php occ maintenance:singleuser --on
sudo -u www-data php occ app:enable encryption
sudo -u www-data php occ encryption:enable
sudo -u www-data php occ encryption:select-encryption-type user-keys
sudo -u www-data php occ encryption:encrypt-all --yes
sudo -u www-data php occ maintenance:singleuser --off

After User-specific encryption is enabled, users must log out and log back in to trigger
the automatic personal encryption key generation process.

Set a Recovery Key

• Go to the "Encryption" section of your Admin page.
• Set a recovery key password.
• Ask the users to opt-in to the recovery key.

If a user decides not to opt-in to the recovery key and forgets or loses their password,
the user’s data cannot be decrypted. This leads to permanent data loss.

They need to:

• Go to Settings › Personal › Encryption
• Enable the Recovery Key

Encryption | 147

View the Encryption Status

sudo -u www-data php occ encryption:status

Decrypt Encrypted Files

If you have an instance with a few users, you can use this example to decrypt the files.
Note that you have to enter the password for each user manually. The ownCloud admin
must be certain all users already have enabled the recovery password option in their
personal settings page.

sudo -u www-data php occ maintenance:singleuser --on
sudo -u www-data php occ encryption:decrypt-all
#Choose the "Recovery key" Option
#Enter **Recovery Key** for **each user**

Recovery Key is a password set by the admin
sudo -u www-data php occ maintenance:singleuser --off

If you have a large instance with many users, use this to decrypt the files:

• Set the variable as export OC_RECOVERY_PASSWORD=1111, then run this set of
commands: (Replace "1111" with your actual Recovery Key)

export OC_RECOVERY_PASSWORD=1111
sudo -u www-data php occ maintenance:singleuser --on
sudo -E -u www-data php occ encryption:decrypt-all -m recovery -c yes
sudo -u www-data php occ maintenance:singleuser --off

Deactivate User-Specific Key-based Encryption

sudo -u www-data php occ encryption:disable

ignore the "already disabled" message
sudo -u www-data php occ app:disable encryption

Cleanup your database

Access your ownCloud database and remove the remaining entries that haven’t been
automatically removed with this command:

DELETE FROM oc_appconfig WHERE appid='encryption';

Cleanup your storage

Lastly you have to delete all encryption keys on storage by running this command:

(Modify the path to your data directory according to your installation)

148 | Encryption

find /var/www/html/owncloud/data -type d -name "files_encryption" -exec rm -R {}
+

At this point, keys are deleted from storage.

Master Key Based Encryption

Matthew Setter <matthew@matthewsetter.com> :toc: right :toclevels: 1 :keywords:
master key based encryption, encryption :description: This guide will show you how to
work with Master Key encryption in ownCloud.

Introduction

With Master Key based encryption, there is only one key (or key pair) and all files are
encrypted using that key pair. This is highly recommended for new instances to avoid
restrictions in functionality of user key encryption.

Enabling Master Key Based Encryption

There are two steps to be made to enable Master Key based encryption.



We strongly encourage you to put your server in single user mode
before setting up encryption.

To do so, run the following command:

sudo -u www-data php occ maintenance:singleuser --on

Enable the Encryption App

To enable the encryption app, run the following command:

sudo -u www-data php occ app:enable encryption

If the encryption app successfully enables, then you should see the following
confirmation:

encryption enabled



This should never happen, but the encryption app may not be packaged
with your ownCloud installation. If so, you will see the following output
when you attempt to enable it:

encryption not found

If that happens, then you need to install it manually. You can do this by
cloning the encryption app, using the following command:

git clone https://github.com/owncloud/encryption.git apps/encryption

Encryption | 149

mailto:matthew@matthewsetter.com

Enable and Configure Master Key Based Encryption

To enable and configure Master Key based encryption via the command-line, involves
several commands.

1. Enable encryption.
2. Enable the master key.

 Master Key Mode has to be setup in a newly created instance.

3. Encrypt all data.

The following example shows how to carry out these steps.

sudo -u www-data php occ encryption:enable
sudo -u www-data php occ encryption:select-encryption-type masterkey
sudo -u www-data php occ encryption:encrypt-all --yes



This command is not typically required, as the master key is often
enabled at install time. As a result, when enabling it, there should be no
data to encrypt. However, if you have enabled master key encryption
post-installation, existing files will not be automatically encrypted; only
newly created files. To encrypt existing files use the encrypt-all
command as described above. Before doing so, set the instance into
single user mode for that task.

View Current Encryption Status

Retrieves the current encryption status and the name of the loaded encryption module.

sudo -u www-data php occ encryption:status

This is equivalent to checking "Enable server-side encryption" on your Admin page:

sudo -u www-data php occ encryption:enable
Encryption enabled

Default module: OC_DEFAULT_MODULE

Recreate an Existing Master Key

If the master key needs replacing, for example, because it has been compromised, an
occ command is available. The command is encryption:recreate-master-key. It replaces
existing master key with new one and encrypts the files with the new key.

Decrypt Master-Key Based Encryption

You must first put your ownCloud server into single-user mode to prevent any user
activity until encryption is completed.

150 | Encryption

configuration/server/occ_command.pdf#encrypt-all
configuration/server/occ_command.pdf#encrypt-all
configuration/server/occ_command.pdf#maintenance-commands
configuration/server/occ_command.pdf#recreate-master-key

sudo -u www-data php occ maintenance:singleuser --on
Single user mode is currently enabled

Decrypt all user data files, or optionally a single user:

sudo -u www-data php occ encryption:decrypt-all [username]

Disable Encryption

To disable encryption, put your ownCloud server into single-user mode, and then
disable your encryption module with these commands:

sudo -u www-data php occ maintenance:singleuser --on
sudo -u www-data php occ encryption:disable

Take it out of single-user mode when you are finished, by using the following
command:

sudo -u www-data php occ maintenance:singleuser --off


You may only disable encryption by using the occ Encryption
Commands. Make sure you have backups of all encryption keys,
including those for all your users.

Sharing Encrypted Files

After encryption is enabled, your users must also log out and log back in to
(automatically) generate their personal encryption keys. They will see a yellow
warning banner that says

"" Encryption App is enabled, but your keys are not initialized. Please log-out and log-
in again. ""

Also, share owners may need to re-share files after encryption is enabled. Users who
are trying to access the share will see a message advising them to ask the share owner
to re-share the file with them.

For individual shares, un-share and re-share the file. For group shares, share with any
individuals who can’t access the share. This updates the encryption, and then the
share owner can remove the individual shares.

User-Key Based Encryption

Limitations

• Users added to groups cannot decrypt files on existing shares.
• OnlyOffice will not work.
• Impersonate will not work.
• OAuth2 does will not work.
• Elasticsearch will not work.

Encryption | 151

configuration/server/occ_command.pdf#encryption
configuration/server/occ_command.pdf#encryption

• Users getting access to an external storage which already contains existing
encrypted files cannot get access to said files for reasons such as the group case
above.

• When having data shared with a group and group membership changes after the
share is established, subsequently added users will not be able to open the shared
data unless the owner will share it again.

Enable User-Key Based Encryption

To enable User-Key based encryption requires two steps:

1. Enable the encryption app
2. Enable and configure User-Key based Encryption



We strongly encourage you to put your server in single user mode
before setting up encryption.

To do so, run the following command:

sudo -u www-data php occ maintenance:singleuser --on

Enable the Encryption App

To enable the encryption app, run the following command:

sudo -u www-data php occ app:enable encryption

If the encryption app successfully enables, then you should see the following
confirmation:

encryption enabled



This should never happen, but the encryption app may not be packaged
with your ownCloud installation. If so, you will see the following output
when you attempt to enable it:

encryption not found

If that happens, then you need to install it manually. You can do this by
cloning the encryption app, using the following command:

git clone https://github.com/owncloud/encryption.git apps/encryption

Enable and Configure User-Key Based Encryption

To enable and configure User-Key based encryption, you need to:

1. Enable the default encryption module app
2. Enable encryption

152 | Encryption

3. Enable the user-key, using the following command:
4. Encrypt all data
5. Turn off the single user mode

The following example shows how to carry out these steps.

sudo -u www-data php occ encryption:enable
sudo -u www-data php occ encryption:select-encryption-type user-keys
sudo -u www-data php occ encryption:encrypt-all --yes
sudo -u www-data php occ maintenance:singleuser --off

How To Enable Users File Recovery Keys

Once a user has encrypted their files, if they lose their ownCloud password, then they
lose access to their encrypted files, as their files will be unrecoverable. It is not
possible, when user files are encrypted, to reset a user’s password using the standard
reset process. If so, you’ll see a yellow banner warning:

"" Please provide an admin recovery password; otherwise, all user data will be lost. ""

To avoid all this, create a recovery key. To do so, go to Settings › Admin ›
encryption and set a recovery key password.

You then need to ask your users to opt-in to the Recovery Key. For the users to do this,
they need to go to the ''Personal'' page and enable the recovery key. This signals that
they accept that the admin might have a way to decrypt their data for recovery
reasons. If they do not do this, then the recovery key won’t work for them.

Encryption | 153

For users who have enabled password recovery, give them a new password and
recover access to their encrypted files, by supplying the Recovery Key on the Users
page.

Because the recovery key is password protected, you may change its password now.


Sharing a recovery key with a user group is not supported. This is only
supported with the master key.

Changing The Recovery Key Password

If you have misplaced your recovery key password and need to replace it, here’s what
you need to do:

1. Delete the recovery key from both data/owncloud_private_keys and data/public-keys
2. Edit your database table oc_appconfig and remove the rows with the config keys

recoveryKeyId and recoveryAdminEnabled for the appid files_encryption
3. Login as admin and activate the recovery key again with a new password. This will

generate a new key pair
4. All users who used the original recovery key will need to disable it and enable it

154 | Encryption

configuration/files/encryption/master-key-encryption.pdf#recreate-an-existing-master-key

again. This deletes the old recovery share keys from their files and encrypts their
files with the new recovery key


You can only change the recovery key password if you know the
original. This is by design, as only admins who know the recovery key
password should be able to change it. If not, admins could hijack the
recovery key from each other


Replacing the recovery key will mean that all users will lose the
possibility to recover their files until they have applied the new
recovery key.

Decrypt User-Key Encryption

You must first put your ownCloud server into single-user mode, to prevent any user
activity until encryption is completed.

sudo -u www-data php occ maintenance:singleuser --on
Single user mode is currently enabled

Sharing Encrypted Files

After encryption is enabled, your users must also log out and log back in to
(automatically) generate their personal encryption keys. They will see a yellow
warning banner that says

"" Encryption App is enabled, but your keys are not initialized. Please log-out and log-
in again. ""

Also, share owners may need to re-share files after encryption is enabled. Users who
are trying to access the share will see a message advising them to ask the share owner
to re-share the file with them.

For individual shares, un-share and re-share the file. For group shares, share with any
individuals who can’t access the share. This updates the encryption, and then the
share owner can remove the individual shares.

Moving Encryption Key Location

View current location of keys:

sudo -u www-data php occ encryption:show-key-storage-root
Current key storage root: default storage location (data/)

You can move the keys to another folder inside your data directory. Moving your keys
outside of your data folder is not supported. The folder must already exist, be owned
by root and your HTTP group, and be restricted to root and your HTTP group.

This example is for Ubuntu Linux. Note that the new folder is relative to your occ
directory (which in the example below is assumed that owncloud is installed at
/var/www/owncloud):

Encryption | 155

mkdir /var/www/owncloud/data/new_keys
chown -R root:www-data /var/www/owncloud/data/new_keys
chmod -R 0770 /var/www/owncloud/data/new_keys
sudo -u www-data php occ encryption:change-key-storage-root new_keys
Change key storage root from default storage location to new_keys
Start to move keys:
 4 [============================]
Key storage root successfully changed to new_keys

Sharing Encrypted Files

After encryption is enabled, your users must also log out and log back in to
(automatically) generate their personal encryption keys. They will see a yellow
warning banner that says

"" Encryption App is enabled, but your keys are not initialized. Please log-out and log-
in again. ""

Also, share owners may need to re-share files after encryption is enabled. Users who
are trying to access the share will see a message advising them to ask the share owner
to re-share the file with them.

For individual shares, un-share and re-share the file. For group shares, share with any
individuals who can’t access the share. This updates the encryption, and then the
share owner can remove the individual shares.

External Storage

In this section you will find all the details you need to configure external storage in
ownCloud.

External Storage Configuration

Introduction

The External Storage Support application enables you to mount external storage
services and devices as secondary ownCloud storage devices. You may also allow users
to mount their own external storage services.

Starting with ownCloud 9.0, a new set of occ commands for managing external storage
is introduced.

This also includes an option for the ownCloud admin to enable or disable sharing on
individual external mountpoints. Sharing on such mountpoints is disabled by default.

Enabling External Storage Support

Tick the checkbox under Settings > Storage > "Enable External Storage".

156 | External Storage

configuration/server/occ_command.pdf#files-external

Storage Configuration

To create a new external storage mount, select an available backend from the
dropdown Add storage. Each backend has different required options, which are
configured in the configuration fields.

Each backend may also accept multiple authentication methods. These are selected
with the dropdown under Authentication. Different backends support different
authentication mechanisms; some specific to the backend, others are more generic.
See external_storage/auth_mechanisms for more detailed information.

When you select an authentication mechanism, the configuration fields change as
appropriate for the mechanism. The SFTP backend, for one example, supports
username and password, Log-in credentials, save in session, and RSA public
key.

Required fields are marked with a red border. When all required fields are filled, the
storage is automatically saved. A green dot next to the storage row indicates the
storage is ready for use. A red or yellow icon indicates that ownCloud could not
connect to the external storage, so you need to re-check your configuration and
network availability.

External Storage | 157


If there is a connection issue with the target storage, it will be marked
as unavailable for ten minutes. To re-check it, click the [colored icon]
or reload your Admin page.

User and Group Permissions

A storage configured in a user’s Personal settings is available only to the user that
created it. A storage configured in the Admin settings is available to all users by
default, and it can be restricted to specific users and groups in the Available for field.


Adding a storage for users or groups you don’t have access rights to, a
error notification will be shown and a red square icon appears on the
mount.

Mount Options

Hover your cursor to the right of any storage configuration to expose the settings
button and trashcan. When clicking the trashcan icon, you delete the mountpoint. The
settings button allows you to configure each storage mount individually with the
following options:

• Encryption
• Read Only
• Previews
• Enable Sharing
• Filesystem check frequency (Never, Once per direct access)


The Encryption checkbox is visible only, when the Encryption app is
enabled.

Enable Sharing allows the ownCloud admin to enable or disable sharing on individual
mountpoints. When sharing is disabled, the shares are retained internally, so that you
can re-enable sharing and the previous shares become available again. Sharing is
disabled by default.

158 | External Storage

Using Self-Signed Certificates

When using self-signed certificates for external storage mounts, the certificate must
be imported into ownCloud.


Please refer to Importing System-wide and Personal SSL Certificates
for more information.

Available storage backends

The following backends are provided by the external storages app. Other apps may
provide their own backends, which are not listed here.


A non-blocking or correctly configured SELinux setup is needed for
these backends to work. Please refer to the SELinux configuration.

Allow Users to Mount External Storage

Check "Allow users to mount external storage" to allow your users to mount storages
on external services. Then enable the backends you want to allow.


Be careful with the choices that you enable, as it allows a user to make
potentially arbitrary connections to other services on your network!

Detecting Files Added to External Storages

We recommend configuring the background job Webcron or Cron to enable ownCloud
to automatically detect files added to your external storages.

External Storage | 159

configuration/server/import_ssl_cert.pdf
installation/selinux_configuration.pdf
configuration/server/background_jobs_configuration.pdf


You cannot scan/detect changed files on external storage mounts when
you select the Log-in credentials, save in session authentication
mechanism. However, there is a workaround, and that is to use Ajax
cron mode. See Password-based Mechanisms for more information.

ownCloud may not always be able to find out what has been changed remotely (files
changed without going through ownCloud), especially when it’s very deep in the folder
hierarchy of the external storage.

You might need to setup a cron job that runs sudo -u www-data php occ files:scan --all.
Alternatively, replace –all with the user name to trigger a rescan of the user’s files
periodically, for example every 15 minutes, which includes the mounted external
storage.

 See the occ’s file operations for more information.

External Storage Authentication Mechanisms

Introduction

ownCloud storage backends accept one or more authentication schemes such as
passwords, OAuth, or token-based, to name a few examples. Each authentication
scheme may be implemented by multiple authentication mechanisms. Different
mechanisms require different configuration parameters, depending on their behaviour.

Special Mechanisms

The None authentication mechanism requires no configuration parameters, and is
used when a backend requires no authentication.

The Built-in authentication mechanism itself requires no configuration parameters,
but is used as a placeholder for legacy storages that have not been migrated to the
new system and do not take advantage of generic authentication mechanisms. The
authentication parameters are provided directly by the backend.

Password-based Mechanisms

The Username and password mechanism requires a manually-defined username and
password. These get passed directly to the backend.

The Log-in credentials, save in session mechanism uses the ownCloud login
credentials of the user to connect to the storage. These are not stored anywhere on
the server, but rather in the user session, giving increased security. The drawbacks are
that sharing is disabled when this mechanism is in use, as ownCloud has no access to
the storage credentials, and background file scanning does not work.


here is a workaround that allows background file scanning when using
Log-in credentials, save in session, and that is using Ajax cron
mode. Be aware that the Ajax cron mode is triggered by browsing the
ownCloud Web GUI.

Known Limitations

Please be aware that any operations must be performed by the logged-in mount owner,
as credentials are not stored anywhere. As a result, there are three known limitations,
for both admin and personal mounts where both have the "log-in credentials, save in
session" option.

These are:

160 | External Storage

configuration/files/external_storage/auth_mechanisms.pdf#password-based-mechanisms
configuration/server/occ_command.pdf#the-filesscan-command
configuration/server/background_jobs_configuration.pdf
configuration/server/background_jobs_configuration.pdf

1. Directly sharing the storage or any of its sub-folders will go through, but the
recipient will not see the share mounted. This is because the mount cannot be set
up due to missing credentials. Federated sharing is also affected, because it works
on a "public link share token" basis, which itself doesn’t contain the user’s storage
password. As a result, the storage cannot be mounted in this case either.

2. Any background task operating on the storage, such as background scanning.
3. Any occ command that operates on the storage, such as occ files:scan, will have no

effect.


Enterprise Users Only
The enterprise version has a mode called "Save in DB" where the
credentials are saved, in encrypted form, in the database (via the WND
app). In this mode, all of the above operations work.

Public-key Mechanisms

Currently only the RSA mechanism is implemented, where a public/private keypair is
generated by ownCloud and the public half shown in the GUI. The keys are generated
in the SSH format, and are currently 1024 bits in length. Keys can be regenerated with
a button in the GUI.

OAuth

OAuth 1.0 and OAuth 2.0 are both implemented, but currently limited to the Dropbox
and Google Drive backends respectively. These mechanisms require additional
configuration at the service provider, where an app ID and app secret are provided
and then entered into ownCloud. Then ownCloud can perform an authentication
request, establishing the storage connection.

If ownCloud client’s are unable to connect to your ownCloud server, check that the
bearer authorization header is not being stripped out.

Amazon S3


If your installation uses S3 as an external storage in any version before
10.3, you have to install and enable files_external_s3. Otherwise, files
stored on existing S3 external storages will not be fully accessible.

To connect your Amazon S3 buckets to ownCloud, you will need:

• S3 access key
• S3 secret key
• Bucket name

External Storage | 161

configuration/server/occ_command.pdf
enterprise/external_storage/windows-network-drive_configuration.pdf
enterprise/external_storage/windows-network-drive_configuration.pdf
configuration/general_topics/general_troubleshooting.pdf#owncloud-clients-cannot-connect-to-the-owncloud-server
https://github.com/owncloud/files_external_s3

In the Folder name field enter a local folder name for your S3 mountpoint. If this does
not exist it will be created.

In the Available for field enter the users or groups who have permission to access
your S3 mount.

The Enable SSL checkbox enables HTTPS connections; using HTTPS is always highly-
recommended.

Optionally, you can override the hostname, port and region of your S3 server, which is
required for non-Amazon servers such as Ceph Object Gateway.

Enable path style is usually not required (and is, in fact, incompatible with newer
Amazon datacenters), but can be used with non-Amazon servers where the DNS
infrastructure cannot be controlled. Ordinarily, requests will be made with
http://bucket.hostname.domain/, but with path style enabled, requests are made with
http://hostname.domain/bucket instead.

See External Storage Configuration for additional mount options and information.

See auth_mechanisms for more information on authentication schemes.

Dropbox

Introduction

To connect Dropbox to your ownCloud installation requires four steps to be completed.

Install ownClouds Dropbox app

Install the External Storage Dropbox app from the ownCloud Marketplace

162 | External Storage

configuration/files/external_storage/configuration.pdf

1. Click [Market] in the ownCloud web UI drop-down menu on the left side
2. Go to the Storage category
3. Select External Storage: Dropbox App
4. Click [INSTALL]

Create a Dropbox app

Next, you need to create a Dropbox app. To do that, open the new app creation form,
where you see three questions:

1. "Choose an API" –> "Dropbox API"
2. "Choose the type of access" –> "App folder"
3. "Name your app"

With all of the required details filled out, click the blue [Create app] button, in the
bottom, right-hand corner. After you do that, the settings page for the application
loads.


Redirect URI: Here you must enter the exact URL of the page where
you configure the storage.

Examples:

When configuring as an admin:

External Storage | 163

https://www.dropbox.com/developers/apps/create

http(s)://<<Server_Address>>/index.php/settings/admin?sectionid=storage

When configuring as a user:

http(s)://<<Server_Address>>/index.php/settings/personal?sectionid=storage

Create a Dropbox Share

To create a Dropbox share, under Admin › Settings › Storage, check the [Enable
external storage] checkbox, if it’s not already checked. Then, in the drop-down list
under External storage, click the [Dropbox] option.

There are two Dropbox options in the drop-down list, as Dropbox functionality is
currently part of ownCloud’s core. However, the internal Dropbox functionality should
be removed in ownCloud 10.0.4.

Then, you need to provide a name for the folder in the "Folder name" field, and a
"client key" and "client secret", located in the "Configuration" column. The client key
and client secret values are the "App key" and "App secret" fields which you saw
earlier in your Dropbox app’s configuration settings page.

After you have added these three settings, click [Grant access]. ownCloud then
interacts with Dropbox’s API to set up the new shared folder. If the process is
successful, a green circle icon appears, at the far left-hand side of the row, next to the
folder’s name.

Other Options

If you want to restrict access to the share to a select list of users and groups, you can
add them to the field in the "Available for" column.

Using the Dropbox Share

After a Dropbox-backed share is created, a new folder is available under "All Files". It
has the name that you gave it when you created the share, and it is represented by an
external share folder icon, as in the image below.

This links to a new folder in your Dropbox account, under Dropbox › Apps, with the
name of the Dropbox app that you created.

164 | External Storage

Now, if you add files and folders in either the new Dropbox folder or the new
ownCloud folder, after being synced, they will be visible inside the other.

FTP/FTPS

If you want to mount an FTP Storage, please install the FTP Storage Support app from
the ownCloud Marketplace.

External Storage | 165

https://marketplace.owncloud.com/apps/files_external_ftp

To connect to an FTP server, you will need:

• A folder name for your local mountpoint; the folder will be created if it does not
exist

• The URL of the FTP server
• Port number (default: 21)
• Username and password to access the resource
• Remote Subfolder, the FTP directory to mount in ownCloud. ownCloud defaults to

the root directory. If you specify a subfolder you must leave off the leading slash.
For example, public_html/images.

Your new mountpoint is available to all users by default, and you may restrict access
by entering specific users or groups in the Available for field.

Optionally, ownCloud can use FTPS (FTP over SSL) by checking Secure ftps://. This
requires additional configuration with your root certificate, if the FTP server uses a
self-signed certificate. See Importing System-wide and Personal SSL Certificates for
more information.

166 | External Storage

https://en.wikipedia.org/wiki/Self-signed_certificate
https://en.wikipedia.org/wiki/Self-signed_certificate
configuration/server/import_ssl_cert.pdf

The external storage FTP/FTPS needs the allow_url_fopen PHP setting to be set to 1.
When having connection problems make sure that it is not set to 0 in your php.ini. See
PHP Version and Information to learn how to find the right php.ini file to edit.

See External Storage Configuration for additional mount options and information.

FTP uses the password authentication scheme; see External Storage Authentication
mechanisms for more information on authentication schemes.

Google Drive

ownCloud uses OAuth 2.0 to connect to Google Drive. This requires configuration
through Google to get an app ID and app secret, as ownCloud registers itself as an
app.

All applications that access a Google API must be registered through the Google Cloud
Console. Follow along carefully because the Google interface is a bit of a maze and it’s
easy to get lost.

If you already have a Google account, such as Groups, Drive, or Mail, you can use your
existing login to log into the Google Cloud Console. After logging in click the [Create
Project] button.

External Storage | 167

configuration/general_topics/general_troubleshooting.pdf#php-version-and-information
configuration/files/external_storage/configuration.pdf
configuration/files/external_storage/auth_mechanisms.pdf
configuration/files/external_storage/auth_mechanisms.pdf
https://console.developers.google.com/
https://console.developers.google.com/

Give your project a name, and either accept the default Project ID or create your
own, then click the [Create] button. For this example a random name was chosen,
"owncloud-04-27". However, feel free to choose your own name.

After your project is created, click on the [notifications bell] and select your
project.

168 | External Storage

Go to Api overview to select google’s API.

External Storage | 169

Now you must create your credentials.

170 | External Storage

First, select [Web Browser] and [User data].

The next screen that opens is Create OAuth 2.0 Client ID. Enter your app name.

External Storage | 171

Authorized JavaScript Origins is your root domain, for example
https://example.com, without a trailing slash. Examples:

https://example.com
http://example.com
IP/owncloud

You need to configure Authorized Redirect URIs, and they must be in this form:

https://example.com/owncloud/index.php/settings/admin?sectionid=storage
https://example.com/owncloud/index.php/settings/personal?sectionid=storage

If you are configuring storage as an Administrator - choose the admin URI, if you are a
user and configuring a storage - pick the personal URI.

If you are not sure what your exact URIs are - here is a quick guide to figure it out.

Authorized JavaScript Origins

This is just the address you access your ownCloud server at, where you see the login
screen.

172 | External Storage

Authorized Redirect URIs

If you have not already enabled the Google Drive storage, here is how you do it:

External Storage | 173

174 | External Storage

Here is the correct result:

External Storage | 175

Now we have to create a consent screen. This is the information in the screen Google
shows you when you connect your new Google app to ownCloud the first time.

Now you can download the credentials as a JSON file.

You can see either open this file with the editor of your choice (SublimeText for
example), or you can put in in your web browser. This is when you do the later:

176 | External Storage

Enter the Client ID and Client Secret in the app and click [Grant Access].

Now you have everything you need to mount your Google Drive in ownCloud.

Your consent page appears when ownCloud makes a successful connection.

Click [Allow].

1. Success

You are finished when you see the green light confirming a successful connection.

See the External Storage Configuration for additional mount options and
information.

External Storage | 177

configuration/files/external_storage/configuration.pdf

See the Configuring External Storage (GUI) for additional mount options and
information.

Local

Local storage provides the ability to mount any directory on your ownCloud server
that is:

• Outside of your ownCloud data/ directory
• Both readable and writable by your HTTP server user

Since this is a significant security risk, Local storage is only configurable via the
ownCloud admin settings. Non-admin users cannot create Local storage mounts.

See Set Strong Directory Permissions for information on correct file permissions, and
find your HTTP user PHP Version and Information.

To enable Local storage, you must first enable it by editing your ownCloud
installation’s config/config.php file adding the following configuration key:

'files_external_allow_create_new_local' => 'true',

To manage Local storage, navigate to Settings › Admin › Storage. You can see an
example in the screenshot below.

In the Folder name field enter the folder name that you want to appear on your
ownCloud Files page. In the Configuration field enter the full file path of the
directory you want to mount. In the Available for field enter the users or groups who
have permission to access the mount; by default all users have access.

See External Storage Configuration for additional mount options and information, and
External Storage Authentication mechanisms for more information on authentication
schemes.

178 | External Storage

configuration/files/external_storage_configuration_gui.pdf
installation/manual_installation.pdf#set-strong-directory-permissions
configuration/general_topics/general_troubleshooting.pdf#php-version-and-information
configuration/files/external_storage/configuration.pdf
configuration/files/external_storage/auth_mechanisms.pdf

OpenStack Object Storage

OpenStack Object Storage is used to connect to an OpenStack Swift server, or to
Rackspace. Two authentication mechanisms are available: one is the generic
OpenStack mechanism, and the other is used exclusively for Rackspace, a provider of
object storage that uses the OpenStack Swift protocol.

The OpenStack authentication mechanism uses the OpenStack Keystone v2 protocol.
Your ownCloud configuration needs:

• Bucket. This is user-defined; think of it as a subdirectory of your total storage. The
bucket will be created if it does not exist.

• Username of your account.
• Password of your account.
• Tenant name of your account. (A tenant is similar to a user group.)
• Identity Endpoint URL, the URL to log in to your OpenStack account.

The Rackspace authentication mechanism requires:

• Bucket
• Username
• API key.

You must also enter the term cloudFiles in the Service name field.

External Storage | 179

It may be necessary to specify a Region. Your region should be named in your account
information, and you can read about Rackspace regions at About Regions.

The timeout of HTTP requests is set in the Request timeout field, in seconds.

See External Storage Configuration for additional mount options and information, and
External Storage Authentication mechanisms for more information on authentication
schemes.

ownCloud

An ownCloud storage is a specialized webdav storage, with optimizations for
ownCloud-ownCloud communication. See the webdav documentation to learn how to
configure an ownCloud external storage.

When filling in the URL field, use the path to the root of the ownCloud installation,
rather than the path to the WebDAV endpoint. So, for a server at
https://example.com/owncloud, use https://example.com/owncloud and not
https://example.com/owncloud/remote.php/dav.

• See External Storage Configuration for additional mount options and information.
• See External Storage Authentication Mechanisms for more information on

authentication schemes

SFTP

ownCloud’s SFTP (FTP over an SSH tunnel) backend supports both password and
public key authentication.

The Host field is required; a port can be specified as part of the Host field in the
following format: hostname.domain:port. The default port is 22 (SSH).

For public key authentication, you can generate a public/private key pair from your
SFTP with secret key login configuration.

180 | External Storage

https://support.rackspace.com/how-to/about-regions/
configuration/files/external_storage/configuration.pdf
configuration/files/external_storage/auth_mechanisms.pdf
configuration/files/external_storage/configuration.pdf
configuration/files/external_storage/auth_mechanisms.pdf

After generating your keys, you need to copy your new public key to the destination
server to .ssh/authorized_keys. ownCloud will then use its private key to authenticate
to the SFTP server.

The default Remote Subfolder is the root directory (/) of the remote SFTP server, and
you may enter any directory you wish.

• See External Storage Configuration for additional mount options and information.
• See External Storage Authentication Mechanisms for more information on

authentication schemes

Samba File Server Configuration (SMB/CIFS)

Introduction

ownCloud can connect to Windows file servers, and other SMB-compatible servers
(e.g., Samba), by using the SMB/CIFS backend.

Dependencies

To connect ownCloud to an SMB file server, you need to prepare your server. Please
see the Manual Installation on Linux guides for more information, prerequisites and
requirements.

Access Testing

To ensure that you can connect to your file server with SMB, do a small test upfront
like the following.

sudo smbclient -L <file_server_name> -U <full_domain_name>/<user_name>

Please fix any issues before you connect ownCloud to a SMB file server.

Configuration

When configuring ownCloud, you will need the following information:

• The folder name, which will be your local mount point.
• The URL of the Samba server.
• The username or domain/username used to login to the Samba server.
• The password to login to the Samba server.
• The share name to mount on the remote Samba server.
• The remote subfolder inside the remote Samba share to mount. This is optional, as

it defaults to /.

External Storage | 181

configuration/files/external_storage/configuration.pdf
configuration/files/external_storage/auth_mechanisms.pdf
https://www.samba.org
https://docs.microsoft.com/en-us/windows/desktop/FileIO/microsoft-smb-protocol-and-cifs-protocol-overview
installation/manual_installation/index.pdf


To assign the ownCloud logon username automatically to the
subfolder, use $user instead of a subfolder name. The
foldername=username must be present and is not created on
access.

• The ownCloud users and groups who get access to the share.



Optionally, you can specify a Domain. This is useful in cases where the
SMB server requires a domain and a username, and an advanced
authentication mechanism like Active Directory (AD), or when using
session credentials where the username cannot be modified. This is
concatenated with the username, so the backend gets
domain\username

Further Information

• External Storage Configuration for additional mount options and information.
• External Storage Authentication Mechanisms for more information on

authentication schemes.

WebDAV

Use this backend to mount a directory from any WebDAV server, or another ownCloud
server.

You need the following information:

• The name of your local mountpoint. Optionally, a Remote Subfolder can be specified
to change the destination directory. The default is to use the whole root.

• The URL of the WebDAV or ownCloud server.
• The username and password for the remote server.


We always recommend https:// for security reasons, so encourage you
to enable [Secure https://].

 CPanel users should install Web Disk to enable WebDAV functionality.

182 | External Storage

configuration/files/external_storage/configuration.pdf
configuration/files/external_storage/auth_mechanisms.pdf
https://documentation.cpanel.net/display/ALD/Web+Disk

Further Reading

• See External Storage Configuration for additional mount options and information.
• See External Storage Authentication Mechanisms for more information on

authentication schemes.

Files and Sharing

This section contains all of the file and sharing related configuration documentation. It
includes such topics as:

• Default Files Configuration
• File Sharing Configuration.
• Federated Cloud Sharing Configuration.
• Manual File Locking.

Big File Upload Configuration

System Configuration

• Make sure that the latest version of PHP, supported by ownCloud, is installed.
• Disable user quotas, which makes them unlimited.
• Your temp file or partition has to be big enough to hold multiple parallel uploads

from multiple users. For example, if the average upload file size is 4GB and the
average number of users uploading at the same time is 25, then you’ll need 200GB
of temp space, as the formula below shows.

2 x 4 GB x 25 users = 200 GB required temp space

Twice as much space is required because the file chunks will be put together into a
new file before it is finally moved into the user’s folder.



In Centos and RHEL, Apache has a few more default configurations
within systemd. You will have to set the temp directory in two places:

1. In php.ini, e.g., sys_temp_dir = "/scratch/tmp"
2. In Apache systemd file e.g sudo systemctl edit httpd and

change/add:

PrivateTmp=false

When done, you need to reload the deamon and restart the service

sudo systemctl daemon-reload
sudo systemctl restart httpd

Please do not change /usr/lib/systemd/system/httpd.service directly,
only use sudo systemctl edit httpd. If not doing so, a httpd package
upgrade may revert your changes.

Files and Sharing | 183

configuration/files/external_storage/configuration.pdf
configuration/files/external_storage/auth_mechanisms.pdf
configuration/files/default_files_configuration.pdf
configuration/files/file_sharing_configuration.pdf
configuration/files/federated_cloud_sharing_configuration.pdf
configuration/files/manual_file_locking.pdf
installation/system_requirements.pdf

Configuring Your Web Server


ownCloud comes with its own owncloud/.htaccess file. Because php-fpm
can’t read PHP settings in .htaccess these settings must be set in the
owncloud/.user.ini file.

Set the following two parameters inside the corresponding php.ini file (see the
Loaded Configuration File section of PHP Version and Information to find your
relevant php.ini files):

php_value upload_max_filesize = 16G
php_value post_max_size = 16G

Adjust these values for your needs. If you see PHP timeouts in your logfiles, increase
the timeout values, which are in seconds, as in the example below:

php_value max_input_time 3600
php_value max_execution_time 3600

mod_reqtimeout

1707-update-big-file-upload-docs The mod_reqtimeout Apache module could also stop
large uploads from completing. If you’re using this module and getting failed uploads
of large files, either disable it in your Apache config or raise the configured
RequestReadTimeout timeouts.

Disable mod_reqtimeout On Ubuntu

On Ubuntu, you can disable the module by running the following command:

a2dismod reqtimeout

Disable mod_reqtimeout On CentOS

On CentOS, comment out the following line in /etc/httpd/conf/httpd.conf:

LoadModule reqtimeout_module modules/mod_reqtimeout.so

When you have done run asdismod or updated /etc/httpd/conf/httpd.conf, restart
Apache.


There are also several other configuration options in your web server
config which could prevent the upload of larger files. Please see your
web server’s manual, for how to configure those values correctly:

Apache

• LimitRequestBody
• SSLRenegBufferSize

184 | Files and Sharing

configuration/general_topics/general_troubleshooting.pdf#php-version-and-information
https://httpd.apache.org/docs/current/mod/mod_reqtimeout.html
https://httpd.apache.org/docs/current/en/mod/core.html#limitrequestbody
https://httpd.apache.org/docs/current/mod/mod_ssl.html#sslrenegbuffersize

Apache with mod_fcgid

• FcgidMaxRequestInMem
• FcgidMaxRequestLen



If you are using Apache/2.4 with mod_fcgid, as of February/March
2016, FcgidMaxRequestInMem still needs to be significantly increased
from its default value to avoid the occurrence of segmentation faults
when uploading big files. This is not a regular setting but serves as a
workaround for Apache with mod_fcgid bug #51747.

Setting FcgidMaxRequestInMem significantly higher than usual may no longer be
necessary, once bug #51747 is fixed.

Configuring PHP

If you don’t want to use the ownCloud .htaccess or .user.ini file, you may configure
PHP instead. Make sure to comment out any lines .htaccess about upload size, if you
entered any.


If you are running ownCloud on a 32-bit system, any open_basedir
directive in your php.ini file needs to be commented out.

Set the following two parameters inside php.ini, using your own desired file size
values, as in the following example:

upload_max_filesize = 16G
post_max_size = 16G

Tell PHP which temp file you want it to use:

upload_tmp_dir = /var/big_temp_file/

Output Buffering must be turned off in .htaccess or .user.ini or php.ini, or PHP will
return memory-related errors:

output_buffering = 0

Configuring ownCloud

As an alternative to the upload_tmp_dir of PHP (e.g., if you don’t have access to your
php.ini) you can also configure a temporary location for uploaded files by using the
tempdirectory setting in your config.php.

If you have configured the session_lifetime setting in your config.php. See Sample
Config PHP Parameters, to make sure it is not too low. This setting needs to be
configured to at least the time (in seconds) that the longest upload will take. If unsure,
remove this entirely from your configuration to reset it to the default shown in the
config.sample.php.

General Upload Issues

Various environmental factors could cause a restriction of the upload size. Examples
are:

Files and Sharing | 185

https://httpd.apache.org/mod_fcgid/mod/mod_fcgid.html#fcgidmaxrequestinmem
https://httpd.apache.org/mod_fcgid/mod/mod_fcgid.html#fcgidmaxrequestlen
https://bz.apache.org/bugzilla/show_bug.cgi?id=51747
configuration/server/config_sample_php_parameters.pdf
configuration/server/config_sample_php_parameters.pdf

• The LVE Manager of CloudLinux which sets an I/O limit.
• Some services like Cloudflare are also known to cause uploading issues.
• Upload limits enforced by proxies used by your clients.
• Other webserver modules like described in General Troubleshooting.

Long-Running Uploads

For very long-running uploads (those lasting longer than 1 hr) to public folders, when
chunking is not in effect, 'filelocking.ttl' should be set to a significantly large value. If
not, large file uploads will fail with a file locking error, because the Redis garbage
collection will delete the initially acquired file lock after 1 hour by default.

To estimate a good value, use the following formula:

time in seconds = (maximum upload file size / slowest assumed upload
connection).

For the value of "slowest assumed upload connection", take the upload speed of the
user with the slowest connection and divide it by two. For example, let’s assume that
the user with the slowest connection has an 8MBit/s DSL connection; which usually
indicates the download speed. This type of connection would, usually, have 1MBit/s
upload speed (but confirm with the ISP). Divide this value in half, to have a buffer
when there is network congestion, to arrive at 512KBit/s as the final value.

Manual File Locking

Introduction

Starting with ownCloud Server 10.5 a new enhancement is provided for content
collaboration. Manual file locking allows users to lock files in shared areas while
working on them in order to prevent concurrent changes from other users (check-
in/check-out).

The feature builds on the WebDAV Locks backend which has been introduced with
Server 10.1 and is now available in the ownCloud Web Interface. All storages are
supported as locking takes place on the WebDAV level. The locks will only be available
via ownCloud, not when a user works directly on the storage. Using the context menu
of files, every user who has access can lock them. Users can recognize locked files by
the means of a new lock indicator. While a file is locked, other users can still access it
but they can not make any changes. Locked files can manually be unlocked by the lock
owner (the user who locked the file; exclusive locking) using the "Locks" tab in the file
details view (right sidebar).

Installation

By default, locks set in the web interface will expire after 30 minutes. The maximum
lock time by default is 24 hours.


The user-facing components in the web interface are disabled by
default because this feature allows users to lock other user’s files
exclusively. Even the owner of the file can’t unlock them.

Administrators can enable the feature by executing the following occ command:

Make the user-facing components visible

186 | Files and Sharing

configuration/general_topics/general_troubleshooting.pdf

sudo -u www-data php occ config:app:set files enable_lock_file_action --value yes

Configuration

To prevent files being locked infinitely, there is a mechanism that automatically expires
locks after a certain time. The expiration time of locks can be configured via the
"Manual File Locking" section in the Admin → Additional settings or using occ
commands:

Default timeout for the locks is if not specified (in seconds): Maximum lifetime of a
lock set via the web interface (or by not specifying a timeout value when calling the
WebDAV Locks API)

sudo -u www-data php occ config:app:set files lock_timeout_default --value 1800

Maximum timeout for the locks (in seconds): Maximum lifetime of locks which is
allowed to be set by calling the WebDAV Locks API

sudo -u www-data php occ config:app:set files lock_timeout_max --value 86400

Providing Default Files

You may distribute a set of default files and folders to all users by placing them in the
owncloud/core/skeleton directory on your ownCloud server. These files appear only to
new users after their initial login, and existing users will not see files that are added to
this directory after their first login. The files in the skeleton directory are copied into
the users’ data directories, so they may change and delete the files without affecting
the originals.

This screenshot shows a set of photos in the skeleton directory.

Files and Sharing | 187

They appear on the user’s ownCloud Files page just like any other files.

Additional Configuration

The configuration option skeletondirectory available in your config.php allows you to
configure the directory where the skeleton files are located.

188 | Files and Sharing

These files will be copied to the data directory of new users.

Leave this directory empty if you do not want to copy any skeleton files.

The value of the skeletondirectory key must not be empty if you decide to use it in
your config.php.


See Sample Config PHP Parameters for more the complete list of
config.php options.

Configuring Federation Sharing

Introduction

Federated Cloud Sharing is managed by the Federation app. When you enable the
Federation app you can easily and securely link file shares between ownCloud servers,
in effect creating a "cloud" of ownCloud installations.


For security reasons federated sharing strictly requires HTTPS
(SSL/TLS).


We strongly recommend using HTTP for development and testing
purposes. However, to do so, you have to set
'sharing.federation.allowHttpFallback' ⇒ true, in config/config.php.

Configuration

Follow these steps to establish a trusted connection between two servers.

1. Verify that both servers have SSL certificates. If you open the server URL in your
browser and see a lock icon on the left-hand side of the address bar, the certificate
is valid.

Lock icon in the address bars in Firefox, Google Chrome, and Safari.

2. Verify that the 'overwrite.cli.url' ⇒ 'https://<SERVER_URL>' setting is configured to
the correct URL, instead of `localhost, in config.php.

3. Reset the federation job in your oc_jobs table. This job is required to get the
verification token from the other server to establish a federation connection
between two servers. The resetting ensures that it will be executed when we run
system:cron later.

mysql -u root -e "update oc_jobs set last_run=0 where
class='OCA\\Federation\\SyncJob';" owncloud;
mysql -u root -e "update oc_jobs set last_checked=0 where
class='OCA\\Federation\\SyncJob';" owncloud;

4. Navigate to admin settings → sharing → Federation
5. Add server 1 to the trusted servers on server 2.
6. Add server 2 to the trusted servers on server 1.
7. Now run the cron job in your ownCloud directory (for example

/var/www/owncloud/).

Files and Sharing | 189

configuration/server/config_sample_php_parameters.pdf
configuration/server/background_jobs_configuration.pdf#cron

sudo -u www-data php occ system cron

8. Now the check should be green
9. Sync now your users with

sudo -u www-data php occ dav:sync-system-addressbook
sudo -u www-data php occ federation:sync-addressbook

10. Configure automatic acceptance of new federated shares.

sudo -u www-data php occ config:app:set federation auto_accept_trusted --value
'0'
sudo -u www-data php occ config:app:set federatedfilesharing
auto_accept_trusted --value 'yes'

Working With Proxies

There are ownCloud instances that are not connected to the internet. They have no
possibility to reach the public network. Therefore Federation will not work without a
proxy.

To set the proxy and proxyuserpwd configuration variables, in config/config.php. proxy
sets the proxy’s hostname, and proxyuserpwd sets the username and password
credentials, in username:password format.

Creating a New Federation Share

Follow these steps to create a new Federation share between two ownCloud servers.
This requires no action by the user on the remote server; all it takes is a few steps on
the originating server.

1. Enable the Federation app.
2. Then, create a federated share by entering username@serveraddress in the sharing

dialog (for example freda@https://example.com/owncloud). When ownCloud verifies
the link, it displays it with the (remote) label. Click on this label to establish the
link.

3. When the link is successfully completed, you have a single share option, and that is

190 | Files and Sharing

can edit.

You may disconnect the share at any time by clicking the [trash can] icon.

Federated Sharing Scanner CronJob Configuration


As part of the migration step to 10.5, before enabling the cronjob
described below, make sure to remove the system cron job from your
crontab that executes legacy occ incoming-shares:poll

The Federated Sharing Scanner is a background job used to scan the federated shares
to ensure the integrity of the file cache.

On each run the scanner will select federated shares that satisfy these requirements:

1. ensure that within a single cron run, at max [cronjob_scan_external_batch] scans
will be performed out of all accepted external shares (default 100)

2. a scan of that external share has not been performed within the last
[cronjob_scan_external_min_scan] seconds (default 3 hours)

3. the user still exists, and has been active recently, meaning logged in within the last
[cronjob_scan_external_min_login] seconds (default 24 hours)

4. there has been a change in the federated remote share root etag or mtime,
signaling a mandatory rescan

To enable the cronjob, go to Settings › Admin Settings › Federated Cloud Sharing
and enable the checkbox

Alternatively you can use the command line:

sudo -u www-data php occ config:app:set files_sharing
cronjob_scan_external_enabled --value 'yes'

You can also configure these settings of the cronjob:

1. the minimum amount of time since last login of a user so that a scan is triggered
(ensures only active users get fed shares synced)

Files and Sharing | 191

sudo -u www-data php occ config:app:set files_sharing
cronjob_scan_external_min_login --value <integer-seconds>

1. the minimum amount of time since last scanned so that the next scan is triggered
(avoid frequent scan when active collaboration)

sudo -u www-data php occ config:app:set files_sharing
cronjob_scan_external_min_scan --value <integer-seconds>

1. the maximum number of federated share scans per 10 minutes (scan performed
only if fed share files got updated)

sudo -u www-data php occ config:app:set files_sharing cronjob_scan_external_batch
--value <integer-number>

Use the following command to force a run of the scanner cronjob:

sudo -u www-data php occ background:queue:execute --force --accept-warning <id-
of-fed-scanner-job>

Known Issues

Persistent Locks Are Not Guaranteed

There is a known bug propagated persistent locks to federated instances. If a user
creates an exclusive lock on a share, no other users should be able to modify it, nor its
contents, and all users should see a lock icon on the share.

However, this isn’t the case. The following functionality has been recorded:

• The user who created the lock sees the lock icon throughout the share.
• The top-level of the share for receivers shows the lock icon.
• Sub-items of the share do not show the lock icon.
• The share and its contents can still be modified by all users; specifically:

◦ Sub-items can be deleted.
◦ Sub-items can be created.

Tips

VCARD properties

It is possible to configure the VCARD properties that are searched in order to retrieve
a list of federated users in the share dialog. By default, ownCloud uses CLOUD and FN
properties, however this list may be configured by the admin:

sudo -u www-data php occ config:app:set dav remote_search_properties
--value=CLOUD,FN,EMAIL

Possible options are:

192 | Files and Sharing

• VERSION
• UID
• FN
• N
• EMAIL
• CLOUD

Listing Federated Shares

In case you want to see which federated shares exist on your server, you can use this
command to list them.

Currently there is no ownCloud occ command to list federated shares, that’s why you
have to use these database queries to obtain the information.

Federated shares are saved in your database.

sudo mysql -u <ownCloud_DB_User> -p<ownCloud_DB_Password> -h
<ownCloud_DB_Host> <ownCloud_DB_Name>

Incoming shares can be listed with the following query:

select * from oc_share where share_type=6;

Each unique ID gives you a incoming federated share.

Outgoing shares can be listed with the following query: (replace cloud.example.com
with your instance URL)

select * from oc_share_external where remote NOT IN ('https//cloud.example.com');

Each unique ID gives you a outgoing federated share.

Exit the database console with this command:

quit

File Sharing

Introduction

The sharing policy is configured on the Admin page in the "Sharing" section.


If you don’t see the sharing section, try disabling your AdBlock browser
plugin.
It might also be related to another installed ad blocker in your browser.
If so, please disable the plugin and see if that resolves the situation.

Files and Sharing | 193

From this section, ownCloud users can:

• Share files with their ownCloud groups and other users on the same ownCloud
server

• Share files with ownCloud users on other ownCloud servers, for more details see
Federated Cloud Sharing Configuration.

• Create public link shares for people who are not ownCloud users.

You have control of a number of user permissions on file shares:

• Allow users to share files
• Allow users to create public link shares

◦ Allow public uploads to public link shares
◦ Enforce password protection on public link shares
◦ Set default expiration date on public link shares
◦ Allow users to send mail notification for shared files
◦ Set the language used for public mail notification for shared files
◦ Allow users to share file via social media

194 | Files and Sharing

configuration/files/federated_cloud_sharing_configuration.pdf

• Set default expiration date for user shares
◦ Set the number of days to expire after
◦ Enforce as maximum expiration date

• Set default expiration date for group shares
◦ Set the number of days to expire after
◦ Enforce as maximum expiration date

• Set default expiration date for remote shares
◦ Set the number of days to expire after
◦ Enforce as maximum expiration date

• Automatically accept new incoming local user shares
• Allow resharing
• Allow sharing with groups
• Restrict users to only share with users in their groups
• Restrict users to only share with groups they are a member of
• Allow users to send mail notification for shared files to other users
• Exclude groups from creating shares
• Allow username autocompletion in share dialog

◦ Restrict enumeration to group members
• Default user and group share permissions
• Extra field to display in autocomplete results

 ownCloud includes a Share Link Password Policy app.

Settings Explained

Allow apps to use the Share API

Check this option to enable users to share files. If this is not checked, no users can
create file shares.

Allow users to share via link

Check this option to enable creating public link shares for people who are not
ownCloud users via hyperlink.

Allow public uploads

Check this option to allow anyone to upload files to public link shares.

Enforce password protection of public link shares

Check these options to force users to set a password on public link shares. Passwords
can be enforced on any or all of read-only, read-write, read-write-delete and upload-
only (File Drop) public link shares. This does not apply to local user and group shares.

Set default expiration date of public link shares

Check this option to set a default expiration date on public link shares. Check "Enforce
as maximum expiration date" to limit the maximum expiration date to be the default.
Users can choose an earlier expiration date if they wish.

Files and Sharing | 195

configuration/server/security/password_policy.pdf

Allow users to send mail notification for shared files

Check this option to enable sending notifications from ownCloud. When clicked, the
administrator can choose the language for public mail notifications for shared files.

What this means is that email notifications will be sent in the language of the user that
shared an item. By default the language is the share owner’s language.

However, it can be changed to any of the currently available languages. It is also
possible to change this setting on the command-line by using the occ config:app:set
command, as in this example:

sudo -u www-data php occ \
 config:app:set core shareapi_public_notification_lang \
 --value '<language code>'


In the above example <language code> is an ISO 3166-1 alpha-2 two-
letter country code, such as ru, gb, us, and au.


To use this functionality, your ownCloud server must be configured to
send mail.

Allow users to share file via social media

Check this option to enable displaying of a set of links that allow for quickly sharing
files and share links via Twitter, Facebook, Google+, Diaspora, and email.

Set default expiration date for user shares

Check this option to set a default expiration date when sharing with another user. The
user can change or remove the default expiration date of a share.

Set the number of days to expire after

Set the default number of days that user shares will expire. The default value is 7
days.

Enforce as maximum expiration date

Check this option to limit the maximum expiration date to be the default. Users can
choose an earlier expiration date if they wish.

Set default expiration date for group shares

Check this option to set a default expiration date when sharing with a group. The user
can change or remove the default expiration date of a share.

196 | Files and Sharing

configuration/server/occ_command.pdf#config-commands
configuration/server/occ_command.pdf#config-commands
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Set the number of days to expire after

Set the default number of days that group shares will expire. The default value is 7
days.

Enforce as maximum expiration date

Check this option to limit the maximum expiration date to be the default. Users can
choose an earlier expiration date if they wish.

Set default expiration date for remote shares

Check this option to set a default expiration date when sharing with a remote user.
The user can change or remove the default expiration date of a share.

Set the number of days to expire after

Set the default number of days that remote shares will expire. The default value is 7
days.

Enforce as maximum expiration date

Check this option to limit the maximum expiration date to be the default. Users can
choose an earlier expiration date if they wish.

Automatically accept new incoming local user shares

Disabling this option activates the "Pending Shares" feature. Users will be notified and
have to accept new incoming user shares before they appear in the file list and are
available for access giving them more control over their account. More information
about pending shares can be found in the release notes.

Allow resharing

Check this option to enable users to re-share files shared with them.

Allow sharing with groups

Check this option to enable users to share with groups.

Default user and group share permissions

Administrators can define the permissions for user/group shares that are set by
default when users create new shares. As shares are created instantly after choosing
the recipient, administrators can set the default to e.g. read-only to avoid creating
shares with too many permissions unintentionally.

Restrict users to only share with users in their groups

Check this option to confine sharing within group memberships.


This setting does not apply to the Federated Cloud sharing feature.
If Federated Cloud Sharing is enabled, users can still share items with
any users on any instances (including the one they are on) via a remote
share.

Restrict users to only share with groups they are a member of

When this option is enabled, users can only share with groups they are a member of.
They can still share with all users of the instance but not with groups they are not a
member of. To restrict sharing to users in groups the sharer is a member of the option

Files and Sharing | 197

release_notes.pdf#pending-shares
configuration/files/federated_cloud_sharing_configuration.pdf

"Restrict users to only share with users in their groups" can be used. More information
about more granular sharing restrictions can be found in the release notes.

Allow users to send mail notification for shared files to other users

Check this option to enable users to send an email notification to every ownCloud user
that the file is shared with.

Exclude groups from sharing

Check this option to prevent members of specific groups from creating any file shares.
When you check this, you’ll get a dropdown list of all your groups to choose from.
Members of excluded groups can still receive shares, but not create any.

Allow username autocompletion in share dialog

Check this option to enable auto-completion of ownCloud usernames.

Restrict enumeration to group members

Check this option to restrict auto-completion of ownCloud usernames to only those
users who are members of the same group(s) that the user is in.

Extra field to display in autocomplete results

The autocomplete dropdowns in ownCloud usually show the display name of other
users when it is set. If it’s not set, they show the user ID / login name, as display
names are not unique you can run into situations where you can’t distinguish the
proposed users. This option enables to add mail addresses or user ID’s to make them
distinguishable.

Blacklist Groups From Receiving Shares

Sometimes it’s necessary or desirable to block groups from receiving shares. For
example, if a group has a significant number of users (> 5,000) or if it’s a system
group, then it can be advisable to block it from receiving shares. In these cases,
ownCloud administrators can blacklist one or more groups, so that they do not receive
shares.

To blacklist one or more groups, via the Web UI, under "Admin → Settings →
Sharing", add one or more groups to the "Files Sharing" list. As you type the group’s
name, if it exists, it will appear in the drop down list, where you can select it.

Transferring Files to Another User

You may transfer files from one user to another with occ. The command transfers
either all or a limited set of files from one user to another. It also transfers the shares
and metadata info associated with those files (shares, tags, and comments, etc). This is
useful when you have to transfer a user’s files to another user before you delete them.

Trashbin contents are not transferred.

Here is an example of how to transfer all files from one user to another.

198 | Files and Sharing

release_notes.pdf#more-granular-sharing-restrictions

occ files:transfer-ownership <source-user> <destination-user>

Here is an example of how to transfer a limited group a single folder from one user to
another. In it, folder/to/move, and any file and folder inside it will be moved to
<destination-user>.

sudo -u www-data php occ files:transfer-ownership --path="folder/to/move"
<source-user> <destination-user>

When using this command keep two things in mind:

1. The directory provided to the --path switch must exist inside data/<source-
user>/files.

2. The directory (and its contents) won’t be moved as is between the users. It’ll be
moved inside the destination user’s files directory, and placed in a directory which
follows the format: transferred from <source-user> on <timestamp>. Using the
example above, it will be stored under: data/<destination-user>/files/transferred
from <source-user> on 20170426_124510/

 See the occ command reference, for a complete list of occ commands.


If an exception occurred during the transfer ownership command or the
command terminated prematurely, it is advised to run following
command for the source and target user: sudo -u www-data php occ
files:troubleshoot-transfer-ownership --uid <uid>

Creating Persistent File Shares

When a user is deleted, their files are also deleted. As you can imagine, this is a
problem if they created file shares that need to be preserved, because these disappear
as well. In ownCloud files are tied to their owners, so whatever happens to the file
owner also happens to the files.

One solution is to create persistent shares for your users. You can retain ownership of
them, or you could create a special user for the purpose of establishing permanent file
shares. Simply create a shared folder in the usual way, and share it with the users or
groups who need to use it. Set the appropriate permissions on it, and then no matter
which users come and go, the file shares will remain. Because all files added to the
share, or edited in it, automatically become owned by the owner of the share
regardless of who adds or edits them.

Create Shares Programmatically

If you need to create new shares using command-line scripts, there are two available
option.

• occ files_external:create
• occ files_external:import

occ files_external:create

This command provides for the creation of both personal (for a specific user) and
general shares. The command’s configuration options can be provided either as
individual arguments or collectively, as a JSON object. For more information about the
command, refer to the the occ files-external documentation.

Files and Sharing | 199

configuration/server/occ_command.pdf
configuration/server/occ_command.pdf#files-external

Personal Share

sudo -u www-data php occ files_external:create /my_share_name
windows_network_drive \
 password::logincredentials \
 --config={host=127.0.0.1, share='home', root='$user', domain='
owncloud.local'} \
 --user someuser

sudo -u www-data php occ files_external:create /my_share_name
windows_network_drive \
 password::logincredentials \
 --config host=127.0.0.1 \
 --config share='home' \
 --config root='$user' \
 --config domain='somedomain.local' \
 --user someuser

General Share

sudo -u www-data php occ files_external:create /my_share_name
windows_network_drive \
 password::logincredentials \
 --config={host=127.0.0.1, share='home', root='$user', domain='
owncloud.local'}

sudo -u www-data php occ files_external:create /my_share_name
windows_network_drive \
 password::logincredentials \
 --config host=127.0.0.1 \
 --config share='home' \
 --config root='$user' \
 --config domain='somedomain.local'

occ files_external:import

You can create general and personal shares passing the configuration details via JSON
files, using the occ files_external:import command.

General Share

sudo -u www-data php occ files_external:import /import.json

Personal Share

sudo -u www-data php occ files_external:import /import.json --user someuser

200 | Files and Sharing

In the two examples above, here is a sample JSON file, showing all of the available
configuration options that the command supports.

{
 "mount_point": "\/my_share_name",
 "storage": "OCA\\windows_network_drive\\lib\\WND",
 "authentication_type": "password::logincredentials",
 "configuration": {
 "host": "127.0.0.1",
 "share": "home",
 "root": "$user",
 "domain": "owncloud.local"
 },
 "options": {
 "enable_sharing": false
 },
 "applicable_users": [],
 "applicable_groups": []
}

Share Permissions

Permissions Masks

READ 1

UPDATE 2 ("can update" in web UI)

CREATE 4 ("can create" in web UI)

DELETE 8 ("can delete" in web UI)

SHARE 16 ("can reshare" in web UI)

File Operations Shorthand for the Later Table

Operation Description

download download/read/get a file or display a
folder contents

upload a new file can be uploaded/created (file
target does not exist)

upload_overwrite a file can overwrite an existing one

rename rename file to new name, all within the
shared folder

move_in move a file from outside the shared folder
into the shared folder

Files and Sharing | 201

Operation Description

move_in_overwrite move a file from outside the shared folder
and overwrite a file inside the shared
folder.


SabreDAV automatically
deletes the target file first
before moving, so requires
DELETE permission too.

move_in_subdir move a file already in the shared folder
into a subdir within the shared folder

move_in_subdir_overwrite move a file already in the shared folder
into a subdir within the shared folder and
overwrite an existing file there

move_out move a file to outside of the shared folder

move_out_subdir move a file out of a subdir of the shared
folder into the shared folder

copy_in copy a file from outside the shared folder
into the shared folder

copy_in_overwrite copy a file from outside the shared folder
and overwrite a file inside the shared
folder


SabreDAV automatically
deletes the target file first
before copying, so requires
DELETE permission too.

delete delete a file inside the shared folder

mkdir create folder inside the shared folder

rmdir delete folder inside the shared folder

The following lists what operations are allowed for the different permission
combinations (share permission is omitted as it is not relevant to file operations):

Operation(s) Permission Combinations

READ (aka read-only) • download

READ + CREATE • download
• upload
• move_in
• copy_in
• mkdir

202 | Files and Sharing

Operation(s) Permission Combinations

READ + UPDATE • download
• upload_overwrite
• rename

READ + DELETE • download
• move_out
• delete
• rmdir

READ + CREATE + UPDATE • download
• upload
• upload_overwrite
• rename
• move_in
• copy_in
• mkdir

READ + CREATE + DELETE • download
• upload
• move_in
• move_in_overwrite
• move_in_subdir
• move_in_subdir_overwrite
• move_out
• move_out_subdir
• copy_in
• copy_in_overwrite
• delete
• mkdir
• rmdir

READ + UPDATE + DELETE • download
• upload_overwrite
• rename
• move_out
• delete
• rmdir

Files and Sharing | 203

Operation(s) Permission Combinations

READ + CREATE + UPDATE + DELETE
(all permissions)

• download
• upload
• upload_overwrite
• rename
• move_in
• move_in_overwrite
• move_in_subdir
• move_in_subdir_overwrite
• move_out
• move_out_subdir
• copy_in
• copy_in_overwrite
• delete
• mkdir
• rmdir

Files Versions

Introduction

Every time when a file gets rewritten to the storage, the versions app (files_versions)
creates a new backup copy of the file. Versions are visible for the user in the
webinterface only and do not get synced to clients. An admin can control the retention
behaviour of versioned files.

How Versions are Created

When a backup copy is created , it is stored inside a folder files_versions which is
inside the users root folder. The app will add the suffix .v followed by the unix
timestamp of the creation date of the backup copy.

.
├── files
│ └── welcome.txt
└── files_versions
 ├── welcome.txt.v1556203470
 ├── welcome.txt.v1556203501
 └── welcome.txt.v1556203567


File versioning only gets triggered if the change is made via the
ownCloud ecosystem. It does not get triggered if the change is made at
a mounted filesystem directly.

Versions are displayed in the WebUI in the details view in the right sidebar if you click
on the file row in the file listing. You can restore the current file to one of the earlier
backup copies in the list, by clicking on the [restore] icon of the specific version.

204 | Files and Sharing

How Versions are Deleted

The versions app deletes old file versions automatically to ensure that users do not
exceed their storage quotas. This is done by automatic background jobs which clean
up the versions following a specific pattern. This pattern defines the expiration date
for each backup version.

Default Versions Delete Patterns

This is the default pattern used to delete old versions:

• For the last second we keep one version
• For the last 10 seconds ownCloud keeps one version every 2 seconds
• For the last minute ownCloud keeps one version every 10 seconds
• For the last hour ownCloud keeps one version every minute
• For the last 24 hours ownCloud keeps one version every hour
• For the last 30 days ownCloud keeps one version every day
• If the versions are older than 30 days ownCloud keeps one version every week

The versions are adjusted along this pattern every time a new version is created and
the background job was executed.

Example

Time Period before last Expiration Maximum Number of Versions:

1 second 1

10 seconds 5

Files and Sharing | 205

Time Period before last Expiration Maximum Number of Versions:

1 minute 6

1 hour 59

1 day 23

30 days 30


The versions app never uses more that 50% of the user’s storage quota.
If the stored versions exceed this limit, ownCloud deletes the oldest file
versions until it meets the disk space limit again.


Adjust the 'versions_retention_obligation' setting in config.php to avoid
filling up the user’s quota.

Change the Expiration Settings

You may alter the default pattern in config.php. The default setting is auto, which sets
the default pattern:

'versions_retention_obligation' => 'auto',

Possible Config Values

auto Default value if nothing is set

D, auto Keep versions at least for D days, apply expiration rules to all
versions that are older than D days

auto, D Delete all versions that are older than D days automatically,
delete other versions according to expiration rules

D1, D2 Keep versions for at least D1 days and delete when they exceed
D2 days.

disabled Disable Versions; no files will be deleted.

Example 1:

Keep all versions for at least 10 days, apply expiration rules to all versions that are
older than 10 days. This will keep a lot more versions during the last 10 days
compared to the default pattern.

'versions_retention_obligation' => '10, auto',

Example 2:

Apply expiration rules to all versions that are created during the last 30 days and do
not keep any versions older than 30 days.

'versions_retention_obligation' => 'auto, 30',

206 | Files and Sharing

Example 3:

Do not apply any expiration rules. Delete all versions after 30 days.

'versions_retention_obligation' => '30, 30',

Enterprise File Retention

Enterprise customers have additional tools for managing file retention policies; see
Advanced File Tagging With the Workflow App.

Transactional File Locking

ownCloud’s Transactional File Locking mechanism locks files to avoid file corruption
during normal operation. It performs these functions:

• Operates at a higher level than the filesystem, so you don’t need to use a filesystem
that supports locking

• Locks parent directories so they cannot be renamed during any activity on files
inside the directories

• Releases locks after file transactions are interrupted, for example when a sync
client loses the connection during an upload

• Manages locking and releasing locks correctly on shared files during changes from
multiple users

• Manages locks correctly on external storage mounts
• Manages encrypted files correctly

Transactional File locking will not prevent multiple users from editing the same
document, nor give notice that other users are working on the same document.
Multiple users can open and edit a file at the same time and Transactional File locking
does not prevent this. Rather, it prevents simultaneous file saving.



Transactional file locking is in ownCloud core, and replaces the old File
Locking app. The File Locking app was removed from ownCloud in
version 8.2.1. If your ownCloud server still has the File Locking app,
you must visit your Apps page to verify that it is disabled; the File
Locking app and Transactional File Locking cannot both operate at the
same time.

File locking is enabled by default, using the database locking backend. This places a
significant load on your database. Using memcache.locking relieves the database load
and improves performance. Admins of ownCloud servers with heavy workloads should
install a memory cache .

Previews Configuration

Introduction

The ownCloud thumbnail system generates previews of files for all ownCloud apps that
display files, such as Files.

The following image shows some examples of previews of various file types.

Files and Sharing | 207

enterprise/file_management/files_tagging.pdf
configuration/server/caching_configuration.pdf

By default, ownCloud can generate previews for the following filetypes:

• Images files
• Cover of MP3 files
• Text documents



Older versions of ownCloud also supported the preview generation of
other file types such as PDF, SVG or various office documents. Due to
security concerns those providers have been disabled by default and
are considered unsupported. While those providers are still available,
we discourage enabling them, and they are not documented.

Parameters

Please notice that the ownCloud preview system comes already with sensible defaults,
and therefore it is usually unnecessary to adjust those configuration values. If you
want to configure previews, add or change the following parameters in
config/config.php.

Disabling previews

Under certain circumstances, for example if the server has limited resources, you
might want to consider disabling the generation of previews. Note that if you do this
all previews in all apps are disabled and will display generic icons instead of
thumbnails.

Set the configuration option enable_previews to false:

 'enable_previews' => false,

208 | Files and Sharing

Maximum preview size

There are two configuration options for setting the maximum size (in pixels) of a
preview. These are preview_max_x which represents the x-axis and preview_max_y
which represents the y-axis. The default value you can reference in
config/config.sample.php is set to 2048.

The following example would limit previews to a maximum size of 100 px × 100 px:

 'preview_max_x' => 100,
 'preview_max_y' => 100,


If you want no limit applied for one or both of these values then set
them to null.

Maximum scale factor

If a lot of small pictures are stored on the ownCloud instance and the preview system
generates blurry previews, you might want to consider setting a maximum scale factor.
By default, pictures are upscaled to 10 times the original size:

 'preview_max_scale_factor' => 10,

If you want to disable scaling at all, you can set the config value to `1':

 'preview_max_scale_factor' => 1,

If you want to disable the maximum scaling factor, you can set the config value to null:

 'preview_max_scale_factor' => null,

Managing the Trash Bin

The ownCloud Trashbin (files_trashbin) permanently deletes files according to users’
storage quotas and file ages. When a user deletes a file it is not immediately removed
from your ownCloud server, but goes into the Trashbin. Then the user has the options
to un-delete the file, or to delete it permanently.

Files and Sharing | 209

As the ownCloud server administrator, you have two occ commands for permanently
deleting files from the Trashbin manually, without waiting for the normal aging-out
process:

trashbin
 trashbin:cleanup Remove deleted files
 trashbin:expire Expires the users trashbin

The trashbin:cleanup command removes the deleted files of all users, or you may
specify certain users in a space-delimited list. This example removes all the deleted
files of all users:

sudo -u www-data php occ trashbin:cleanup
Remove all deleted files
Remove deleted files for users on backend Database
 user1
 user2
 user3
 user4

This example removes the deleted files of user2 and user4:

sudo -u www-data php occ trashbin:cleanup user2 user4
 Remove deleted files of user2
 Remove deleted files of user4

trashbin:expire deletes only expired files according to the trashbin_retention_obligation
setting in config.php. The default setting is auto, which keeps files in the Trashbin for
30 days, then deletes the oldest files as space is needed to keep users within their
storage quotas. Files may not be deleted if the space is not needed.

The default is to delete expired files for all users, or you may list users in a space-
delimited list:

sudo -u www-data php occ trashbin:cleanup user1 user2
 Remove deleted files of user1
 Remove deleted files of user2

See the Deleted Files section in Sample PHP Configuration Parameters, and the
Trash Bin section of the occ commands.

General Topics

In this section you will find information about:

• Code Signing
• General Troubleshooting
• Impersonating Users

210 | General Topics

configuration/server/config_sample_php_parameters.pdf
configuration/server/occ_command.pdf
configuration/server/occ_command.pdf
configuration/general_topics/code_signing.pdf
configuration/general_topics/general_troubleshooting.pdf
configuration/general_topics/impersonate_users.pdf

Code Signing

Introduction

ownCloud supports code signing for the core releases, and for ownCloud applications.
Code signing gives our users an additional layer of security by ensuring that nobody
other than authorized persons can push updates.

It also ensures that all upgrades have been executed properly, so that no files are left
behind, and all old files are properly replaced. In the past, invalid updates were a
significant source of errors when updating ownCloud.

All the possible errors and their explanations can be found here

FAQ

Why Did ownCloud Add Code Signing?

By supporting Code Signing we add another layer of security by ensuring that nobody
other than authorized persons can push updates for applications, and ensuring proper
upgrades.

Do We Lock Down ownCloud?

The ownCloud project is open source and always will be. We do not want to make it
more difficult for our users to run ownCloud. Any code signing errors on upgrades will
not prevent ownCloud from running, but will display a warning on the Admin page. For
applications that are not tagged "Official" the code signing process is optional.

Not Open Source Anymore?

The ownCloud project is open source and always will be. The code signing process is
optional, though highly recommended. The code check for the core parts of ownCloud
is enabled when the ownCloud release version branch has been set to stable.

For custom distributions of ownCloud it is recommended to change the release version
branch in version.php to something else than "stable".

Is Code Signing Mandatory For Apps?

Code signing is optional for all third-party applications.

Fixing Invalid Code Integrity Messages

A code integrity error message (There were problems with the code integrity check.
More information…) appears in a yellow banner at the top of your ownCloud Web
interface:

 The yellow banner is only shown for admin users.

Clicking on this link will take you to your ownCloud admin page, which provides the
following options:

1. Link to this documentation entry.

General Topics | 211

2. Show a list of invalid files.
3. Trigger a rescan.

To debug issues caused by the code integrity check click on [List of invalid
files], and you will be shown a text document listing the different issues. The content
of the file will look similar to the following example:

Technical information
=====================
The following list covers which files have failed the integrity check. Please read
the previous linked documentation to learn more about the errors and how to fix
them.

Results
=======
- core
 - INVALID_HASH
 - /index.php
 - /version.php
 - EXTRA_FILE
 - /test.php
- calendar
 - EXCEPTION
 - OC\IntegrityCheck\Exceptions\InvalidSignatureException
 - Signature data not found.
- tasks
 - EXCEPTION
 - OC\IntegrityCheck\Exceptions\InvalidSignatureException
 - Certificate has been revoked.

Raw output
==========
Array
(
 [core] => Array
 (
 [INVALID_HASH] => Array
 (
 [/index.php] => Array
 (
 [expected] =>
 f1c5e2630d784bc9cb02d5a28f55d6f24d06dae2a0fee685f3
 c2521b050955d9d452769f61454c9ddfa9c308146ade10546c
 fa829794448eaffbc9a04a29d216
 [current] =>

212 | General Topics

 ce08bf30bcbb879a18b49239a9bec6b8702f52452f88a9d321
 42cad8d2494d5735e6bfa0d8642b2762c62ca5be49f9bf4ec2
 31d4a230559d4f3e2c471d3ea094
)

 [/version.php] => Array
 (
 [expected] =>
 c5a03bacae8dedf8b239997901ba1fffd2fe51271d13a00cc4
 b34b09cca5176397a89fc27381cbb1f72855fa18b69b6f87d7
 d5685c3b45aee373b09be54742ea
 [current] =>
 88a3a92c11db91dec1ac3be0e1c87f862c95ba6ffaaaa3f2c3
 b8f682187c66f07af3a3b557a868342ef4a271218fe1c1e300
 c478e6c156c5955ed53c40d06585
)

)

 [EXTRA_FILE] => Array
 (
 [/test.php] => Array
 (
 [expected] =>
 [current] =>
 09563164f9904a837f9ca0b5f626db56c838e5098e0ccc1d8b
 935f68fa03a25c5ec6f6b2d9e44a868e8b85764dafd1605522
 b4af8db0ae269d73432e9a01e63a
)

)

)

 [calendar] => Array
 (
 [EXCEPTION] => Array
 (
 [class] => OC\IntegrityCheck\Exceptions\InvalidSignature
 Exception
 [message] => Signature data not found.
)

)
 [tasks] => Array
 (
 [EXCEPTION] => Array
 (
 [class] => OC\IntegrityCheck\Exceptions\InvalidSignatureException
 [message] => Certificate has been revoked.

General Topics | 213

)

)
 [web] => Array
 (
 [FILE_MISSING] => Array
 (
 [.htaccess] => Array
 (
 [expected] =>
85ad7b1b88ad984f11f7f24f84e6aa9935eb75a36c50bf08efdbc5c295e67b3762a1bf
acd8f981fb33e5c7c30d65eff7ebd6a47cb1f0de24e936a71cca2f023e
 [current] =>
)

)

)

In above error output it can be seen that:

1. In the ownCloud core (that is, the ownCloud server itself) the files index.php and
version.php do have the wrong version.

2. In the ownCloud core the unrequired extra file /test.php has been found.
3. It was not possible to verify the signature of the calendar application.
4. The certificate of the task application was revoked.
5. The file .htaccess is missing.

You have to do the following steps to solve this:

1. Upload the correct index.php and version.php files from e.g. the archive of your
ownCloud version.

2. Delete the test.php file.
3. Contact the developer of the application. A new version of the app containing a

valid signature file needs to be released.
4. Contact the developer of the application. A new version of the app signed with a

valid signature needs to be released.
5. Download the official server tar ball and copy the .htaccess into your instance.

For other means on how to receive support please take a look at the Docs & Guides
page. After fixing these problems verify by clicking [Rescan].


When using a FTP client to upload those files make sure it is using the
Binary transfer mode instead of the ASCII transfer mode.

Rescans

Rescans are triggered at installation, and by updates. You may run scans manually
with the occ command. The first command scans the ownCloud core files, and the
second command scans the named app. There is not yet a command to manually scan
all apps:

214 | General Topics

https://owncloud.com/docs-guides/
https://owncloud.com/docs-guides/

occ integrity:check-core
occ integrity:check-app $appid

 See the occ command to learn more about using occ.

Errors

Please don’t modify the mentioned signature.json itself.

The following errors can be encountered when trying to verify a code signature.

• INVALID_HASH
◦ The file has a different hash than specified within signature.json. This usually

happens when the file has been modified after writing the signature data.
• FILE_MISSING

◦ The file cannot be found but has been specified within signature.json. Either a
required file has been left out, or signature.json needs to be edited.

• EXTRA_FILE
◦ The file does not exist in signature.json. This usually happens when a file has

been removed and signature.json has not been updated. It also happens if you
have placed additional files in your ownCloud installation folder.

• EXCEPTION
◦ Another exception has prevented the code verification. There are currently

these following exceptions:
▪ Signature data not found.

▪ The app has mandatory code signing enforced but no signature.json file
has been found in its appinfo folder.

▪ Certificate is not valid.
▪ The certificate has not been issued by the official ownCloud Code Signing

Root Authority.
▪ Certificate is not valid for required scope. (Requested: %s, current: %s)

▪ The certificate is not valid for the defined application. Certificates are only
valid for the defined app identifier and cannot be used for others.

▪ Signature could not get verified.
▪ There was a problem with verifying the signature of signature.json.

▪ Certificate has been revoked.
▪ The certificate which was used to sign the application was revoked.

General Troubleshooting

Introduction

If you have trouble installing, configuring or maintaining ownCloud, please refer to
our community support channels:

• The ownCloud Forum


The ownCloud forum have a FAQ category where each topic
corresponds to typical errors or frequently occurring issues.

General Topics | 215

configuration/server/occ_command.pdf
https://central.owncloud.org
https://owncloud.org/faq/

• The ownCloud User mailing list

Please understand that all these channels essentially consist of users like you helping
each other out. Consider helping others out where you can, to contribute back for the
help you get. This is the only way to keep a community like ownCloud healthy and
sustainable!

If you are using ownCloud in a business or otherwise large scale deployment, note that
ownCloud Inc. offers the Enterprise Edition with commercial support options.

Bugs

If you think you have found a bug in ownCloud, please:

• Search for a solution (see the options above)
• Double-check your configuration

If you can’t find a solution, please use our bugtracker. You can generate a
configuration report with the occ config command, with passwords automatically
obscured.

General Troubleshooting

Check the ownCloud System Requirements, especially supported browser versions.
When you see warnings about code integrity, refer to Code Signing.

Disable Third-Party Apps

Third-party apps may cause problems during upgrades. To avoid this happening, we
strongly encourage administrators to always disable third-party apps before upgrades,
and for troubleshooting purposes.

ownCloud Logfiles

In a standard ownCloud installation the log level is set to Normal. To find any issues
you need to raise the log level to All in your config.php file, or to Everything on your
ownCloud Admin page. Please see Logging Configuration for more information on
these log levels.

Some logging - for example JavaScript console logging - needs debugging enabled.
Edit config/config.php and change 'debug' ⇒ false, to 'debug' ⇒ true, Be sure to change
it back when you are finished.

For JavaScript issues you will also need to view the javascript console. All major
browsers have developer tools for viewing the console, and you usually access them by
pressing F12. For Firefox we recommend to installing the Firebug extension.


The logfile of ownCloud is located in the data directory
owncloud/data/owncloud.log.

PHP Version and Information

You will need to know your PHP version and configuration details. There are two ways
to retrieve this information: using PHP’s phpinfo function and using a set of options to
PHP on the command-line.

Using PHP’s phpinfo Function

Create a plain-text file named "phpinfo.php" and place it in your webserver’s root
directory, for example /var/www/html/phpinfo.php.

216 | General Topics

https://mailman.owncloud.org/mailman/listinfo/user
https://owncloud.com/standard-or-enterprise/
developer_manual:bugtracker/index.pdf
configuration/server/occ_command.pdf#config-commands
installation/system_requirements.pdf
configuration/general_topics/code_signing.pdf
maintenance/manual_upgrade.pdf#review-third-party-apps
configuration/server/logging/logging_configuration.pdf
https://getfirebug.com/


Your webserver’s root directory may be in a different location; your
Linux distribution’s documentation will tell you where it is located.

This file contains the following line:

<?php phpinfo(); ?>

Open this file in a web browser, by pointing your browser to localhost/phpinfo.php:

Your PHP version is at the top, and the rest of the page contains abundant system
information such as active modules, active .ini files, and much more. When you are
finished reviewing your information you must delete phpinfo.php, or move it outside of
your Web directory, because it is a security risk to expose such sensitive data.

Using the Command-Line

To retrieve your PHP version, run the following command:

php -v

You will see output similar to the following displayed in the terminal. You can see the
version number, 7.3.15-3+ubuntu18.04.1+deb.sury.org+1, displayed near the start of
the output’s first line.

PHP 7.3.15-3+ubuntu18.04.1+deb.sury.org+1 (cli) (built: Feb 23 2020 07:23:33) (
NTS)
Copyright (c) 1997-2018 The PHP Group
Zend Engine v3.3.15, Copyright (c) 1998-2018 Zend Technologies
 with Zend OPcache v7.3.15-3+ubuntu18.04.1+deb.sury.org+1, Copyright (c)
1999-2018, by Zend Technologies
 with Xdebug v2.9.2, Copyright (c) 2002-2020, by Derick Rethans

To retrieve a list of PHP’s active modules, run the following command.

php -m

You will see output similar to the following displayed in the terminal.

General Topics | 217

[PHP Modules]
ast
calendar
Core
ctype
curl
date
dom
exif
fileinfo

To obtain information about PHP’s configuration, you can either retrieve it all at once,
by running php -i or retrieve information about individual modules, by running php --ri
followed by the module’s name, such as php --ri curl.

Debugging Sync Issues


The data directory on the server is exclusive to ownCloud and must not
be modified manually.

Disregarding this can lead to unwanted behaviours like:

• Problems with sync clients
• Undetected changes due to caching in the database

If you need to directly upload files from the same server please use a WebDAV
command line client like cadaver to upload files to the WebDAV interface at:

https://example.com/owncloud/remote.php/dav

Common problems / error messages

Some common problems / error messages found in your logfiles as described above:

• SQLSTATE[HY000] [1040] Too many connections → You need to increase the
connection limit of your database, please refer to the manual of your database for
more information.

• SQLSTATE[HY000]: General error: 5 database is locked → You’re using SQLite which
can’t handle a lot of parallel requests. Please consider converting to another
database like described in converting Database Type.

• SQLSTATE[HY000]: General error: 2006 MySQL server has gone away → Please refer
to Troubleshooting for more information.

• SQLSTATE[HY000] [2002] No such file or directory → There is a problem accessing
your SQLite database file in your data directory (data/owncloud.db). Please check
the permissions of this folder/file or if it exists at all. If you’re using MySQL please
start your database.

• Connection closed / Operation cancelled or expected filesize 4734206 got 458752 →
This could be caused by wrong KeepAlive settings within your Apache config. Make
sure that KeepAlive is set to On and also try to raise the limits of KeepAliveTimeout
and MaxKeepAliveRequests. On Apache with mod_php using a multi-processing
module other than prefork could be another reason. Further information is available
in the forums.

• No basic authentication headers were found → This error is shown in your
data/owncloud.log file. Some Apache modules like mod_fastcgi, mod_fcgid or

218 | General Topics

configuration/database/db_conversion.pdf
configuration/database/linux_database_configuration.pdf#database-configuration-troubleshooting
installation/manual_installation.pdf#multi-processing-module-mpm
installation/manual_installation.pdf#multi-processing-module-mpm
https://central.owncloud.org/t/expected-filesize-xxx-got-yyy-0/816

mod_proxy_fcgi are not passing the needed authentication headers to PHP and so
the login to ownCloud via WebDAV, CalDAV and CardDAV clients is failing. More
information on how to correctly configure your environment can be found at the
forums.

OAuth2

ownCloud clients cannot connect to the ownCloud server

If ownCloud clients cannot connect to your ownCloud server, check to see if
PROPFIND requests receive HTTP/1.1 401 Unauthorized responses. If this is
happening, more than likely your webserver configuration is stripping out the bearer
authorization header.

If you’re using the Apache web server, add the following SetEnvIf directive to your
Apache configuration, whether in the general Apache config, in a configuration include
file, or in ownCloud’s .htaccess file.

SetEnvIf Authorization "(.*)" HTTP_AUTHORIZATION=$1

Missing Data Directory

During the normal course of operations, the ownCloud data directory may be
temporarily unavailable for a variety of reasons. These can include network timeouts
on mounted network disks, unintentional unmounting of the partition on which the
directory sits, or a corruption of the RAID setup. If you have experienced this, here’s
how ownCloud works and what you can expect.

During normal operation, ownCloud’s data directory contains a hidden file, named
.ocdata. The purpose of this file is for setups where the data folder is mounted (such as
via NFS) and for some reason the mount disappeared. If the directory isn’t available,
the data folder would, in effect, be completely empty and the .ocdata would be
missing. When this happens, ownCloud will return a 503 Service not available error, to
prevent clients believing that the files are gone.

Troubleshooting Web server and PHP problems

Logfiles

When having issues the first step is to check the logfiles provided by PHP, the Web
server and ownCloud itself.


In the following the paths to the logfiles of a default Debian installation
running Apache2 with mod_php is assumed. On other Web servers,
Linux distros or operating systems they can differ.

• The logfile of Apache2 is located in /var/log/apache2/error.log.
• The logfile of PHP can be configured in your /etc/php5/apache2/php.ini. You need to

set the directive log_errors to On and choose the path to store the logfile in the
error_log directive. After those changes you need to restart your Web server.

• The logfile of ownCloud is located in the data directory
/var/www/owncloud/data/owncloud.log.

Web Server and PHP Modules


Lighttpd is not supported with ownCloud — and some ownCloud
features may not work at all on Lighttpd.

General Topics | 219

https://central.owncloud.org/t/no-basic-authentication-headers-were-found-message/819
https://central.owncloud.org/t/no-basic-authentication-headers-were-found-message/819
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#5xx_Server_Error
https://www.lighttpd.net/

There are some Web server or PHP modules which are known to cause various
problems like broken up-/downloads. The following shows a draft overview of these
modules:

Apache

• libapache2-mod-php5filter (use libapache2-mod-php5 instead)
• mod_dav
• mod_deflate
• mod_evasive
• mod_pagespeed
• mod_proxy_html (can cause broken PDF downloads)
• mod_reqtimeout
• mod_security
• mod_spdy together with libapache2-mod-php5 / mod_php (use fcgi or php-fpm

instead)
• mod_xsendfile / X-Sendfile (causing broken downloads if not configured correctly)

PHP

• eAccelerator

Troubleshooting WebDAV

General troubleshooting

ownCloud uses SabreDAV, and the SabreDAV documentation is comprehensive and
helpful.

See:

• SabreDAV FAQ
• Web servers (Lists lighttpd as not recommended)
• Working with large files (Shows a PHP bug in older SabreDAV versions and

information for mod_security problems)
• 0 byte files (Reasons for empty files on the server)
• Clients (A comprehensive list of WebDAV clients, and possible problems with each

one)
• Finder, OS X’s built-in WebDAV client (Describes problems with Finder on various

Web servers)

There is also a well maintained FAQ thread available at the ownCloud Forums which
contains various additional information about WebDAV problems.

Error 0x80070043 The network name cannot be found. while adding a network drive

The windows native WebDAV client might fail with the following error message:

Error 0x80070043 "The network name cannot be found." while adding a network
drive

A known workaround for this issue is to update your web server configuration.

220 | General Topics

http://sabre.io/dav/faq/
http://sabre.io/dav/webservers
http://sabre.io/dav/large-files/
http://sabre.io/dav/0bytes
http://sabre.io/dav/clients/
http://sabre.io/dav/clients/finder/
https://central.owncloud.org/t/how-to-fix-caldav-carddav-webdav-problems/852

Apache

You need to add the following rule set to your main web server or virtual host
configuration, or the .htaccess file in your document root.

Fixes Windows WebDav client error 0x80070043 "The network name cannot be
found."
RewriteEngine On
RewriteCond %{HTTP_USER_AGENT} ^(DavClnt)$
RewriteCond %{REQUEST_METHOD} ^(OPTIONS)$
RewriteRule .* - [R=401,L]

Troubleshooting Contacts & Calendar

Service Discovery

Some clients - especially on iOS/Mac OS X - have problems finding the proper sync
URL, even when explicitly configured to use it.

If you want to use CalDAV or CardDAV clients together with ownCloud it is important
to have a correct working setup of the following URLs:

https://example.com/.well-known/carddav
https://example.com/.well-known/caldav

Those need to be redirecting your clients to the correct DAV endpoints. If running
ownCloud at the document root of your Web server the correct URL is:

https://example.com/remote.php/dav

and if running in a subfolder like owncloud:

https://example.com/owncloud/remote.php/dav

For the first case the .htaccess file shipped with ownCloud should do this work for
your when running Apache. You only need to make sure that your Web server is using
this file.

If your ownCloud instance is installed in a subfolder called owncloud and you’re
running Apache create or edit the .htaccess file within the document root of your Web
server and add the following lines:

Redirect 301 /.well-known/carddav /owncloud/remote.php/dav
Redirect 301 /.well-known/caldav /owncloud/remote.php/dav

Now change the URL in the client settings to just use:

https://example.com

instead of e.g.

https://example.com/owncloud/remote.php/dav/principals/username.

There are also several techniques to remedy this, which are described extensively at
the Sabre DAV website.

General Topics | 221

http://sabre.io/dav/service-discovery/

Unable to update Contacts or Events

If you get an error like:

PATCH https://example.com/remote.php/dav HTTP/1.0 501 Not Implemented

it is likely caused by one of the following reasons:

Using Pound reverse-proxy/load balancer
As of writing this Pound doesn’t support the HTTP/1.1 verb. Pound is easily patched
to support HTTP/1.1.

Misconfigured Web server
Your Web server is misconfigured and blocks the needed DAV methods. Please refer
to Troubleshooting WebDAV above for troubleshooting steps.

Client Sync Stalls

One known reason is stray locks. These should expire automatically after an hour. If
stray locks don’t expire (identified by e.g. repeated file.txt is locked and/or
Exception\\\\FileLocked messages in your data/owncloud.log), make sure that you are
running system cron and not Ajax cron (See Background Jobs). See https://github.com/
owncloud/core/issues/22116 and https://central.owncloud.org/t/file-is-locked-how-to-
unlock/985 for some discussion and additional info of this issue.

Other issues

Some services like Cloudflare can cause issues by minimizing JavaScript and loading it
only when needed. When having issues like a not working login button or creating new
users make sure to disable such services first.

Impersonating Users

Introduction

Sometimes you may need to use your ownCloud installation as another user, whether
to help users debug an issue or to get a better understanding of what they see when
they use their ownCloud account. The ability to do so is a feature delivered via an
ownCloud app called Impersonate.

 This functionality is available only to administrators.

Impersonating a User

When installed, you can then impersonate users; in effect, you will be logged in as said
user. To do so, go to the Users list, where you will now see a new column available
called "Impersonate", as in the screenshot below.

222 | General Topics

http://www.apsis.ch/pound/pound_list/archive/2013/2013-08/1377264673000
configuration/server/background_jobs_configuration.pdf
https://github.com/owncloud/core/issues/22116
https://github.com/owncloud/core/issues/22116
https://central.owncloud.org/t/file-is-locked-how-to-unlock/985
https://central.owncloud.org/t/file-is-locked-how-to-unlock/985
https://marketplace.owncloud.com/apps/impersonate

Click the gray head icon next to the user that you want to impersonate. Doing so will
log you in as that user, temporarily pausing your current session. You will see a
notification at the top of the page that confirms you’re now logged in as (or
impersonating) that user.

Anything that you see until you log out will be what that user would see.

Ending an Impersonation

When you’re ready to stop impersonating the user, log out and you will return to your
normal user session.

Allow Some or All Group Administrators To Impersonate Users

As a security measure, the application lets ownCloud administrators restrict the ability
to impersonate users to:

• All group administrators.
• Specific group administrators.


By default, when the Impersonate app is installed, only the ownCloud
administrator will be allowed to impersonate users. When the app is
installed and configured, ownCloud administrators retain the ability to
impersonate all users of an ownCloud instance.

When enabled and configured, only a group’s administrator can impersonate members
of their group. For example, if an ownCloud administrator restricts user impersonation
only to the group: group1, then only group1’s administrators can impersonate users
belonging to `group1. No other users can impersonate other users.

General Topics | 223

To configure it, in the administrator settings panel, which you can find under
administrator › Settings › Admin › User Authentication, you’ll see a section
titled: "Impersonate Settings" (which you can see below).

If you want to allow group admins to impersonate users within groups which they
administer, click [Allow all group admins to impersonate users within the
groups they are admins of].

If you want to limit impersonation to specific group admins, first click [Allow group
admins of specific groups to impersonate the users within those groups].
With the option checked, click into the textbox underneath it. You will see a list of the
matching groups on your ownCloud installation appear, which will change, based on
what you type in the textbox.

Choose one or more groups from the list, and they will be added to the textbox,
restricting this functionality to only those groups.

Full Text Search

Introduction

The search_elastic app integrates full text search into ownCloud, powered by
Elasticsearch.

Prerequisites

There is only one pre-requisite for the search_elastic app, and that’s a fully functioning
Elasticsearch server with the ingest-attachment processor to be present. The ingest-
attachment processor lets Elasticsearch extract file attachments in common formats,
such as PPT, XLS, and PDF.

To install the processor, from your Elasticsearch installation directory, run the
following command:

224 | Full Text Search

https://marketplace.owncloud.com/apps/search_elastic
https://www.elastic.co/guide/en/elasticsearch/plugins/5.6/ingest-attachment.html

bin/elasticsearch-plugin install ingest-attachment
service elasticsearch restart


Only Elasticsearch version 5.6 is fully supported. Versions 6 and 7 are
yet to be supported.

Install and Configure the search_elastic App

To install the search_elastic app:

1. Download and extract the tarball of the latest release of the search_elastic app to
the apps directory (or custom apps directory) of your ownCloud instance.

2. Use the occ app:enable command to enable the search_elastic application.
3. Go to Settings › Search (admin) and set the hostname (or IP address) and port of

the Elasticsearch server and click ["Reset Index"].

Configuring Elasticsearch in ownCloud


The index can also be managed from the command-line, via the occ
search:index commands. The commands let administrators create,
rebuild, reset, and update the search index.

Known Limitations

Currently, there are several known limitations to the app; these are:

• Files are shown twice in search results when searching by filename.
• If a shared file is renamed by the sharee (share receiver), the sharee cannot find

the file using the new filename.
• If the search query doesn’t match the start of at least one word in an available file’s

name, no results are returned.
• Search results are not updated when a text file is rolled back to an earlier version.
• The app does not return results for federated share files.
• The app only works with the default encryption module "Master Key".

Mimetypes Management

Introduction

ownCloud allows you to create aliases for mimetypes and map file extensions to a
mimetype. These allow administrators the ability to change the existing icons that
ownCloud uses to represent certain file types and folders, as well as to use custom
icons for mimetypes and file extensions which ownCloud doesn’t natively support. This
is handy in a variety of situations, such as when you might want a custom audio icon
for audio mimetypes, instead of the default file icon.

Mimetypes Management | 225

https://marketplace.owncloud.com/apps/search_elastic
installation/apps_management_installation.pdf#using-custom-app-directories
configuration/server/occ_command.pdf#apps-commands
configuration/server/occ_command.pdf#search
configuration/server/occ_command.pdf#search

Mimetype Aliases

ownCloud’s default mimetype configuration is defined in
owncloud/resources/config/mimetypealiases.dist.json, which you can see a snippet of
below. The mimetype’s on the left, and the icon used to represent that mimetype is on
the right.

{
 "application/coreldraw": "image",
 "application/font-sfnt": "image",
 "application/font-woff": "image",
 "application/illustrator": "image",
 "application/epub+zip": "text",
 "application/javascript": "text/code",
}

Stepping through that file, you can see that:

• the image icon is used to represent Corel Draw, SFNT and WOFF font files, and
Adobe Illustrator files.

• ePub files are represented by the text file icon.
• JavaScript files are represented by the text/code icon.

Changing Existing Icons and Using Custom Icons

If you want to change one or more of the existing icons which ownCloud uses, or if you
want to expand the available list, here’s how to do so.

First, create a copy of resources/config/mimetypealiases.dist.json, naming it
mimetypealiases.json and storing it in config/. This is required for two reasons:

1. It will take precedence over the default file.
2. The original file will get replaced on each ownCloud upgrade.

Then, either override one or more existing definitions or add new, custom, aliases as
required.


Please refer to the ownCloud theming documentation for where to put
the new image files.

Some common mimetypes that may be useful in creating aliases are:

Mimetype Description

image Generic image

image/vector Vector image

audio Generic audio file

x-office/document Word processed document

x-office/spreadsheet Spreadsheet

x-office/presentation Presentation

text Generic text document

226 | Mimetypes Management

developer_manual:core/theming.pdf

Mimetype Description

text/code Source code

Once you have made changes to config/mimetypealiases.json, use the occ command to
propagate the changes throughout your ownCloud installation. Here is an example for
Ubuntu Linux:

$ sudo -u www-data php occ maintenance:mimetype:update-js

Example - Changing the JSON File Icon

Let’s step through an example, from start to finish, of changing the icon that
ownCloud uses to represent JSON files, which you can see above.

1. From the root directory of your ownCloud installation, copy
resources/config/mimetypealiases.dist.json to /config/mimetypealiases.json.

2. Update the alias for application/json, which you should find on line 8, to match the
following, and save the file:

"application/json": "text/json",

1. Copy a new SVG icon to represent JSON files to core/img/filetypes, calling it text-
json.svg.


The name and location of the file are important. The location is because
the core/img/filetypes directory stores the mimetype file icons. The
name is important as it’s a rough mapping between the alias name and
the icon’s file name, i.e., text/json becomes text-json.

1. Run the following command to update the mimetype alias database.

$ sudo -u www-data php occ maintenance:mimetype:update-js

After doing so, whenever you view a folder that contains JSON files or upload one,
your new icon file will be used to represent the file, as in the image below.

Mimetypes Management | 227

configuration/server/occ_command.pdf

Mimetype Mapping

ownCloud allows administrators to map a file extension to a mimetype, e.g., such as
mapping files ending in mp3 to audio/mpeg. Which then, in turn, allows ownCloud to
show the audio icon.

The default file extension to mimetype mapping configuration is stored in
resources/config/mimetypemapping.dist.json. This is similar to
resources/config/mimetypealiases.dist.json, and also returns a basic JSON array.

{
 "3gp": ["video/3gpp"],
 "7z": ["application/x-7z-compressed"],
 "accdb": ["application/msaccess"],
 "ai": ["application/illustrator"],
 "apk": ["application/vnd.android.package-archive"],
 "arw": ["image/x-dcraw"],
 "avi": ["video/x-msvideo"],
 "bash": ["text/x-shellscript"],
 "json": ["application/json", "text/plain"],
}

In the example above, you can see nine mimetypes mapped to file extensions. Each of
them, except the last (json), maps a file extension to a mimetype. Now take a look at
the JSON example.

In this case, ownCloud will first check if a mimetype alias is defined for
application/json, in mimetypealiases.json. If it is, it will use that icon. If not, then
ownCloud will fall back to using the icon for text/plain.

If you want to update or extend the existing mapping, as with updating the mimetype
aliases, create a copy of resources/config/mimetypemapping.dist.json and name it
mimetypemapping.json and storing it in config/. Then, in this new file, make any
changes required.


Please refer to the ownCloud theming documentation for where to put
the new image files.

Icon retrieval

When an icon is retrieved for a mimetype, if the full mimetype cannot be found, the
search will fallback to looking for the part before the slash. Given a file with the

228 | Mimetypes Management

developer_manual:core/theming.pdf

mimetype image/my-custom-image, if no icon exists for the full mimetype, the icon for
image will be used instead. This allows specialized mimetypes to fallback to generic
icons when the relevant icons are unavailable.

Server Configuration

In this section you will find all the details you need to configure ownCloud.

Configuring the Activity App

Introduction

You can configure your ownCloud server to automatically send out e-mail notifications
to your users for various events like:

• A file or folder has been shared
• A new file or folder has been created
• A file or folder has been changed
• A file or folder has been deleted

Users can see actions (delete, add, modify) that happen to files they have access to.
Sharing actions are only visible to the sharer and recipient.

Enabling the Activity App

The Activity App is shipped and enabled by default. If it is not enabled, go to your
ownCloud Apps page to enable it.

Configuring your ownCloud for the Activity App


A working e-mail configuration is required to configure your ownCloud
to send out e-mail notifications. Furthermore, it is recommended to
configure the background job Webcron or Cron.

Email notifications for shared files can be enabled/disabled by administrators with the
"Allow users to send mail notifications for shared files to other users", available in
Settings › Admin › Sharing. There is also a configuration option activity_expire_days
available in your config.php which allows you to clean-up older activities from the
database.

Background Jobs

Introduction

A system like ownCloud sometimes requires tasks to be done on a regular basis
without requiring user interaction or hindering ownCloud’s performance. For that
reason, as a system administrator you can configure background jobs (for example,
database clean-ups) to be executed without any user interaction.

These jobs are typically referred to as Cron Jobs. Cron jobs are commands or shell-
based scripts that are scheduled to periodically run at fixed times, dates, or intervals.
To run Cron jobs with ownCloud, we recommend that you use the occ system:cron
command.

Background Jobs Selector

Use the background command to select which scheduler you want to use for
controlling background jobs. This is the same as using the Cron section on your

Server Configuration | 229

configuration/server/background_jobs_configuration.pdf#cron-jobs
configuration/server/config_apps_sample_php_parameters.pdf#app-activityconfig.php
https://en.wikipedia.org/wiki/Cron
configuration/server/background_jobs_configuration.pdf

ownCloud Admin page.

background
 background:ajax Use ajax to run background jobs
 background:cron Use cron to run background jobs
 background:webcron Use webcron to run background jobs

Examples

Set the background scheduler to Ajax
sudo -u www-data php occ background:ajax

Set the background scheduler to Cron
sudo -u www-data php occ background:cron

Set the background scheduler to Webcron
sudo -u www-data php occ background:webcron

 See background jobs configuration to learn more.

Cron Jobs

You can schedule Cron jobs in three ways: Cron, Webcron, or AJAX. These can all be
configured in the admin settings menu. However, the recommended method is to use
Cron. The following sections describe the differences between each method.

There are a number of things to keep in mind when choosing an automation option:

1. While the default method is AJAX, though the preferred way is to use Cron. The
reason for this distinction is that AJAX is easier to get up and running. As a result,
it makes sense (often times) to accept it in the interests of expediency. However,
doing so is known to cause issues, such as backlogs and potentially not running
every job on a heavily-loaded system. What’s more, an increasing amount of
ownCloud automation has been migrated from AJAX to Cron in recent versions. For
this reason, we encourage you to not use it for too long — especially if your site is
rapidly growing.

2. While Webcron is better than AJAX, it has limitations too. For example, running
Webcron will only remove a single item from the job queue, not all of them. Cron,
however, will clear the entire queue.


It’s for this reason that we encourage you to use Cron — if at all
possible.

Cron

Using the operating system Cron feature is the preferred method for executing regular
tasks. This method enables the execution of scheduled jobs without the inherent
limitations which the web server might have.

For example, to run a Cron job on a *nix system every 15 minutes (recommended),
under the default web server user (often, www-data or wwwrun) you must set up the
following Cron job to call the occ background:cron command:

230 | Server Configuration

configuration/server/background_jobs_configuration.pdf

sudo crontab -u www-data -e
*/15 * * * * /usr/bin/php -f /path/to/your/owncloud/occ system:cron

You can verify if the cron job has been added and scheduled by executing:

sudo crontab -u www-data -l
*/15 * * * * /usr/bin/php -f /path/to/your/owncloud/occ system:cron


You have to make sure that PHP is found by Cron; hence why we’ve
deliberately added the full path.

Please refer to the crontab man page for the exact command syntax if you don’t want
to have it run every 15 minutes.


There are other methods to invoke programs by the system regularly,
e.g., systemd timers

Webcron

By registering your ownCloud cron.php script address as an external webcron service
(for example, easyCron), you ensure that background jobs are executed regularly. To
use this type of service, your external webcron service must be able to access your
ownCloud server using the Internet. For example:

URL to call: http[s]://<domain-of-your-server>/owncloud/cron.php

A JAX

The AJAX scheduling method is the default option. However, it is also the least
reliable. Each time a user visits the ownCloud page, a single background job is
executed. The advantage of this mechanism, however, is that it does not require access
to the system nor registration with a third party service. The disadvantage of this
mechanism, when compared to the Webcron service, is that it requires regular visits to
the page for it to be triggered.


Especially when using the Activity App or external storages, where new
files are added, updated, or deleted one of the other methods should be
used.

Parallel Task Execution

Regardless of the approach which you take, since ownCloud 9.1, Cron jobs can be run
in parallel. This is done by running background:cron multiple times. Depending on the
process which you are automating, this may not be necessary. However, for longer-
running tasks, such as those which are LDAP related, it may be very beneficial.

There is no way to do so via the ownCloud UI. But, the most direct way to do so, is by
opening three console tabs and in each one run

sudo -u www-data php occ system:cron

Each of these processes would acquire their own list of jobs to process without

Server Configuration | 231

https://linux.die.net/man/1/crontab
https://wiki.archlinux.org/index.php/Systemd/Timers
http://www.easycron.com/

overlapping any other.

Available Background Jobs

A number of existing background jobs are available to be run just for specific tasks.



These jobs are generally only needed on large instances and can be run
as background jobs. If the number of users in your installation ranges
between 1,000 and 3,000, or if you’re using LDAP and it becomes a
bottleneck, then admins can delete several entries in the oc_jobs table
and replace them with the corresponding occ command, which you can
see here:

• OCA\\DAV\CardDAV\\SyncJob → occ dav:sync-system-addressbook
• OCA\\Federation\\SyncJob → occ federation:sync-addressbooks
• OCA\\Files_Trashbin\\BackgroundJob\\ExpireTrash → occ

trashbin:expire
• OCA\\Files_Versions\\BackgroundJob\\ExpireVersions → occ

versions:expire

If used, these should be scheduled to run on a daily basis.

While not exhaustive, these include:

CleanupChunks

The CleanupChunks command, occ dav:cleanup-chunks, will clean up outdated chunks
(uploaded files) more than a certain number of days old and needs to be added to your
crontab.

 There is no matching background job to delete from the oc_jobs table.

ExpireTrash

The ExpireTrash job, contained in OCA\Files_Trashbin\BackgroundJob\ExpireTrash, will
remove any file in the ownCloud trash bin which is older than the specified maximum
file retention time. It can be run, as follows, using the OCC trashbin command:

sudo -u www-data php occ trashbin:expire

ExpireVersions

The ExpireVersions job, contained in OCA\Files_Versions\BackgroundJob\ExpireVersions,
will expire versions of files which are older than the specified maximum version
retention time. It can be run, as follows, using the OCC versions command:

sudo -u www-data php occ versions:expire



Please take care when adding ExpireTrash and ExpireVersions as Cron
jobs. Make sure that they’re not started in parallel on multiple
machines. Running in parallel on a single machine is fine. But,
currently, there isn’t sufficient locking in place to prevent them from
conflicting with each other if running in parallel across multiple
machines.

232 | Server Configuration

configuration/server/occ_command.pdf#trashbin
configuration/server/occ_command.pdf#versions

SyncJob (CardDAV)

The CardDAV SyncJob, contained in OCA\DAV\CardDAV\SyncJob, syncs the local system
address book, updating any existing contacts, and deleting any expired contacts. It can
be run, as follows, using the OCC dav command:

sudo -u www-data php occ dav:sync-system-addressbook

SyncJob (Federation)

OCAFederationSyncJob

It can be run, as follows, using the OCC federation sync command:

sudo -u www-data php occ federation:sync-addressbooks

Troubleshooting

Forbidden error for Scanner.php

If you find a Forbidden error message in your log files, with a reference to the
Scanner.php file, then you should:

• Check if you have any shares with the status pending.
• Configure conditional logging for cron to see more output.

Memory Caching

Introduction

You can significantly improve ownCloud server performance by using memory caching.
This is the process of storing frequently-requested objects in-memory for faster
retrieval later. There are two types of memory caching available:

A PHP opcode Cache (OPcache): An opcode cache stores compiled PHP scripts so
they don’t need to be re-compiled every time they are called. These compiled PHP
scripts are stored in-memory, on the server on which they’re compiled.

A Data Cache: A data cache stores copies of data, templates, and other types of
information-based files. Depending on the cache implementation, it can be either local,
or specific, to one server, or distributed across multiple servers. This cache type is
ideal when you have a scale-out installation.

In addition, we suggest to use External Transactional File Locking which reduces
load on the database significantly.

Supported Caching Backends

The caching backends supported by ownCloud are:

• APCu
APCu 4.0.6 and up is required. Alternatively you can use the Zend OPCache.
However, it is not a data cache, it is an opcode cache only.

• Redis
This is a distributed cache for multi-server ownCloud installations and provides file
locking. Version 2.2.6 or higher of the PHP Redis extension is required.

Server Configuration | 233

configuration/server/occ_command.pdf#dav-commands
configuration/server/occ_command.pdf#federation-sync

• Memcached
This is a distributed cache for multi-server ownCloud installations.



You may use both a local and a distributed cache. The recommended
ownCloud caches are APCu and Redis. If you do not install and enable a
local memory cache you will see a warning on your ownCloud admin
page. If you enable only a distributed cache in your config.php
(memcache.distributed) and not a local cache (memcache.local) you will
still see the cache warning.

Cache Directory Location

The cache directory defaults to data/$user/cache where $user is the current user. You
may use the 'cache_path' directive in config.php (See Config.php Parameters) to select
a different location.

Cache Types

APCu

The easiest cache to use is APCu, because it is a data cache, very fast and nothing
needs to be configured. APCu can not be used when needed to run on an external
server.

Installing APCu

On Ubuntu/Debian/Mint systems
sudo apt install php-apcu

With that done, assuming that you don’t encounter any errors, restart Apache and the
extension is ready to use.

Redis

Redis is an excellent modern memory cache to use for both distributed caching and as
a local cache for transactional file locking, because it guarantees that cached objects
are available for as long as they are needed.

Redis performance, when used with a socket connection, is close the performance of
APCu.

The Redis PHP module must be at least version 2.2.6 or higher. If you are running a
Linux distribution that does not package the supported versions of this module — or
does not package Redis at all — see Installing Redis on other distributions.

Installing Redis

If you have Ubuntu 16.04 or higher:

sudo apt install redis-server php-redis

The installer will automatically launch Redis and configure it to launch at startup.

After that, assuming that you don’t encounter any errors, restart Apache and the
extension is ready to use.

234 | Server Configuration

configuration/server/config_sample_php_parameters.pdf
https://redis.io/
configuration/files/files_locking_transactional.pdf

Additional notes for Redis vs. APCu on Memory Caching

APCu is faster at local caching than Redis. If you have enough memory, use APCu for
memory caching and Redis for file locking. If you are low on memory, use Redis for
both.

Clearing the Redis Cache

The Redis cache can be flushed from the command-line using the redis-cli tool, as in
the following example:

sudo redis-cli
SELECT <dbIndex>
FLUSHDB

<dbIndex> is the number of Redis database where the cache is stored. It is zero by
default at ownCloud. To check what yours is currently set to, check the dbindex value
in config/config.php. Here’s an example of what to look for:


Out of the box, every Redis instance supports 16 databases so
<dbIndex> has to be set between 0 and 15.

Please read more about the instructions for the select and flushdb command.

Memcached

Memcached is a reliable old-timer for shared caching on distributed servers. It
performs well with ownCloud with one exception: it is not suitable to use with
Transactional File Locking. This is because it does not store locks, and data can
disappear from the cache at any time. Given that, Redis is the best memory cache to
use.


Be sure to install the memcached PHP module, and not memcache, as
in the following examples. ownCloud supports only the memcached
PHP module.

Installing Memcached

On Ubuntu/Debian/Mint

On Ubuntu/Debian/Mint run the following command:

sudo apt-get install memcached php-memcached


The installer will automatically start memcached and configure it to
launch at startup.

Configuration File Paths

PHP Version Filename

7.2 /etc/php/7.2/mods-
available/memcached.ini

After that, assuming that you don’t encounter any errors:

Server Configuration | 235

https://redis.io/topics/rediscli
https://redis.io/commands/select
https://redis.io/commands/flushdb
configuration/files/files_locking_transactional.pdf

1. Restart your Web server
2. Add the appropriate entries to config.php (which you can find an example of below)
3. Refresh your ownCloud admin page

Clearing the Memcached Cache

The Memcached cache can be flushed from the command-line using a range of
common Linux/Unix tools, including netcat and telnet. The following example uses
telnet to login, run the flush_all command, and logout:

telnet localhost 11211
flush_all
quit

Configuring Memory Caching

Memory caches must be explicitly configured in ownCloud by:

1. Installing and enabling your desired cache (whether that be the PHP extension
and/or the caching server).

2. Adding the appropriate entry to ownCloud’s config.php.

See Config.php Parameters for an overview of all possible config parameters. After
installing and enabling your chosen memory cache, verify that it is active by viewing
the PHP configuration details.

APCu Configuration

To use APCu, add this line to config.php:

'memcache.local' => '\OC\Memcache\APCu',

With that done, refresh your ownCloud admin page, and the cache warning should
disappear.

Redis Configuration

Regardless of whether you have setup Redis to use TCP or a Unix socket, we
recommend adding the following for best performance:

'filelocking.enabled' => true,
'memcache.locking' => '\OC\Memcache\Redis',

This enables External Transactional File Locking based on Redis

Redis Configuration Using TCP

The following example config.php configuration connects to a Redis cache via TCP:

236 | Server Configuration

https://github.com/memcached/memcached/wiki/Commands#flushall
configuration/server/config_sample_php_parameters.pdf
configuration/general_topics/general_troubleshooting.pdf#php-version-and-information

'memcache.local' => '\OC\Memcache\Redis',
'redis' => [
 'host' => 'localhost', // For a Unix domain socket, use
'/var/run/redis/redis.sock'
 'port' => 6379, // Set to 0 when using a Unix socket
 'timeout' => 0, // Optional, keep connection open forever
 'password' => '', // Optional, if not defined no password will be used.
 'dbindex' => 0, // Optional, if undefined SELECT will not run and will
 // use Redis Server's default DB Index.
],

Redis Configuration Using Unix Sockets

If Redis is running on the same server as ownCloud, it is recommended to configure it
to use Unix sockets. Then, configure ownCloud to communicate with Redis, as in the
following example.

Change the host value, based on the socket's location in your distribution
'memcache.local' => '\OC\Memcache\Redis',
'redis' => [
 'host' => '/var/run/redis/redis.sock',
 'port' => 0,
 'password' => '', // Optional, if not defined no password will be used.
 'dbindex' => 0, // Optional, if undefined SELECT will not run and will
 // use Redis Server's default DB Index.
],

If setting up Redis to be accessed via a Unix socket from a webserver user, then
consider the following:

1. Make the webserver user www-data member of the group redis in /etc/group, e.g.,
redis:x:110:www-data

2. In your Redis configuration (/etc/redis/redis.conf) set unixsocketperm to 770

To see a benchmark comparison, run:

sudo redis-benchmark -q -n 100000
sudo redis-benchmark -s /var/run/redis/redis-server.sock -q -n 100000

In the following table, you will see an example gain of about +20% when using sockets
compared to TCP on localhost. The values can differ in your environment. Please do a
local check.

Test TCP (requests/s) Socket
(requests/s)

Gain (%)

PING_INLI
NE

15527.95 23518.35 +34

PING_BUL
K

16946.28 23239.60 +27

Server Configuration | 237

Test TCP (requests/s) Socket
(requests/s)

Gain (%)

SET 18351.99 22789.43 +19

GET 18850.14 22747.95 +17

INCR 18663.68 22914.76 +18

LPUSH 19109.50 24183.79 +21

RPUSH 19076.69 23196.47 +18

LPOP 18460.40 23485.21 +21

RPOP 19058.51 24752.47 +23

SADD 18932.22 22391.40 +15

HSET 18491.12 20785.70 +11

SPOP 19069.41 23282.89 +18

LPUSH 19087.61 23764.26 +20

LRANGE_1
00

15288.18 17882.69 +15

LRANGE_3
00

9067.00 10004.00 +10

LRANGE_5
00

6878.53 7496.25 +8

LRANGE_6
00

5379.24 6102.77 +12

MSET (10
keys)

19297.57 18178.51 -6

Redis is very configurable; consult the Redis documentation to learn more.

Memcached Configuration

Redis is very configurable; This example uses APCu for the local cache, Memcached as
the distributed memory cache, and lists all the servers in the shared cache pool with
their port numbers:

'memcache.local' => '\OC\Memcache\APCu',
'memcache.distributed' => '\OC\Memcache\Memcached',
'memcached_servers' => [
 ['localhost', 11211],
 ['server1.example.com', 11211],
 ['server2.example.com', 11211],
],

Configuration Recommendations Based on Type of Deployment

Small/Private Home Server

238 | Server Configuration

https://redis.io/documentation

// Only use APCu
'memcache.local' => '\OC\Memcache\APCu',

Small Organization, Single-server Setup

Use APCu for local caching, Redis for file locking

'memcache.local' => '\OC\Memcache\APCu',
'memcache.locking' => '\OC\Memcache\Redis',
'redis' => [
 'host' => 'localhost',
 'port' => 6379,
],

Large Organization, Clustered Setup

Use Redis for everything except a local memory cache. Use the server’s IP address or
hostname so that it is accessible to other hosts:

'memcache.distributed' => '\OC\Memcache\Redis',
'memcache.locking' => '\OC\Memcache\Redis',
'memcache.local' => '\OC\Memcache\APCu',
'redis' => [
 'host' => 'server1', // hostname example
 'host' => '12.34.56.78', // IP address example
 'port' => 6379,
],

Configure Transactional File Locking

Transactional File Locking prevents simultaneous file saving. It is enabled by default
and uses the database to store the locking data. This places a significant load on your
database. It is recommended to use a cache backend instead. You have to configure it
in config.php as in the following example, which uses Redis as the cache backend:

'filelocking.enabled' => true,
'memcache.locking' => '\OC\Memcache\Redis',
'redis' => [
 'host' => 'localhost',
 'port' => 6379,
 'timeout' => 0,
 'password' => '', // Optional, if not defined no password will be used.
],


For enhanced security it is recommended to configure Redis to require
a password. See https://redis.io/topics/security for more information.

Server Configuration | 239

configuration/files/files_locking_transactional.pdf
https://redis.io/topics/security

Caching Exceptions

If ownCloud is configured to use either Memcached or Redis as a memory cache,
please be aware that you may encounter issues with functionality. When these occur, it
is usually a result of PHP being incorrectly configured, or the relevant PHP extension
not being available.

In the table below, you can see all of the known reasons for reduced or broken
functionality related to caching.

Setup/Configuration Result

If file locking is enabled, but the
locking cache class is missing,
then an exception will appear in
the web UI

The application will not be usable

If file locking is enabled and the
locking cache is configured, but
the PHP module missing.

There will be a white page/exception in web UI. It
will be a full page issue, and the application will
not be usable

All enabled, but the Redis server
is not running

The application will be usable. But any file
operation will return a "500 Redis went away"
exception

If Memcache is configured for
local and distributed, but the class
is missing

There will be a white page and an exception
written to the logs, This is because autoloading
needs the missing class. So there is no way to
show a page

Config.php Parameters

Introduction

ownCloud uses the config/config.php file to control server operations.
config/config.sample.php lists all the configurable parameters within ownCloud, along
with example or default values. This document provides a more detailed reference.
Most options are configurable on your Admin page, so it is usually not necessary to
edit config/config.php.



The installer creates a configuration containing the essential
parameters.
Only manually add configuration parameters to config/config.php if you
need to use a special value for a parameter. Do not copy everything
from config/config.sample.php . Only enter the parameters you wish
to modify!

ownCloud supports loading configuration parameters from multiple files. You can add
arbitrary files ending with .config.php in the config/ directory, for example you could
place your email server configuration in email.config.php. This allows you to easily
create and manage custom configurations, or to divide a large complex configuration
file into a set of smaller files. These custom files are not overwritten by ownCloud, and
the values in these files take precedence over config.php.

Default Parameters

These parameters are configured by the ownCloud installer and are required for your
ownCloud server to operate.

240 | Server Configuration

Unique identifier for your ownCloud installation

This unique identifier is created automatically by the installer.

This example is for documentation only, and you should never use it because it will not
work. A valid instanceid is created when you install ownCloud. Needs to start with a
letter.

'instanceid' ⇒ 'd3c944a9a',

Code Sample

'instanceid' => '',

Auto-generated salt used to hash all passwords

The salt used to hash all passwords and is auto-generated by the ownCloud installer.

(There are also per-user salts.) If you lose this salt, you lose all your passwords. This
example is for documentation only, and you should never use it.

Code Sample

'passwordsalt' => '',

Define list of trusted domains that users can log into

Specifying trusted domains prevents host header poisoning.

Do not remove this, as it performs necessary security checks. Please consider that for
backend processes like background jobs or occ commands, the URL parameter in key
overwrite.cli.url is used. For more details, please see that key.

Code Sample

'trusted_domains' => [
 'demo.example.org',
 'otherdomain.example.org',
],

Define global list of CORS domains

All users can use tools running CORS (Cross-Origin Resource Sharing) requests from
the listed domains.

Code Sample

'cors.allowed-domains' => [
 'https://foo.example.org',
],

Server Configuration | 241

Define the directory where user files are stored

This defaults to data/ in the ownCloud directory.

The SQLite database is also stored here, when you use SQLite. (SQLite is not available
in ownCloud Enterprise Edition)

Code Sample

'datadirectory' => '/var/www/owncloud/data',

Define the directory where the crash logs will be stored

By default, this will be the same as the one configured as "datadirectory".

The directory MUST EXIST and be WRITABLE by the web server. Note that crashes
are extremely rare (although they can come in burst due to multiple requests), so the
default location is usually fine. Also note that the log can contain sensitive information,
but it should be useful to pinpoint where is the problem.

Code Sample

'crashdirectory' => '/var/www/owncloud/data',

Current version number of your ownCloud installation

This is set up during installation and update, so you shouldn’t need to change it.

Code Sample

'version' => '',

Show or hide the ownCloud version information in status.php

This hardens an ownCloud instance by hiding the version information in status.php.

This can be a legitimate step. Please consult the documentation before enabling this.

Code Sample

'version.hide' => false,

Show or hide the server hostname in status.php

Optional config option, defaults to hidden.

Code Sample

'show_server_hostname' => false,

Show the short hostname in status.php

Optional config option, defaults to use the gethostname() return value.

242 | Server Configuration

Code Sample

'use_relative_domain_name' => false,

Identify the database used with this installation

See also config option supportedDatabases

Available: - sqlite (SQLite3 - Not in Enterprise Edition) - mysql (MySQL/MariaDB) -
pgsql (PostgreSQL) - oci (Oracle - Enterprise Edition Only)

Code Sample

'dbtype' => 'mysql',

Define the database server host name

For example localhost, hostname, hostname.example.com, or the IP address.

To specify a port use: hostname:##; To specify a Unix socket use:
localhost:/path/to/socket.

Code Sample

'dbhost' => '',

Define the ownCloud database name

The name of the ownCloud database which is set during installation.

You should not need to change this.

Code Sample

'dbname' => 'owncloud',

Define the ownCloud database user

This must be unique across ownCloud instances using the same SQL database.

This is setup during installation, so you shouldn’t need to change it.

Code Sample

'dbuser' => '',

Define the password for the database user

This is set up during installation, so you shouldn’t need to change it.

Code Sample

Server Configuration | 243

'dbpassword' => '',

Define the prefix for the ownCloud tables in the database

Code Sample

'dbtableprefix' => '',

Indicate whether the ownCloud instance was installed successfully

true indicates a successful installation, false indicates an unsuccessful installation.

Code Sample

'installed' => false,

User Experience

These optional parameters control some aspects of the user interface. Default values,
where present, are shown.

Define the default language of your ownCloud instance

Using ISO_639-1 language codes such as en for English, de for German, and fr for
French.

Overrides automatic language detection on public pages like login or shared items.
User’s language preferences configured under personal → language override this
setting after they have logged in.

Code Sample

'default_language' => 'en_GB',

Define the default app to open on user login

Use the app names as they appear in the URL after clicking them in the Apps menu,
such as files, documents or calendar etc. You can use a comma-separated list of app
names, so if the first app is not enabled for a user then ownCloud will try the second
one, and so on. If no enabled apps are found it defaults to the Files app.

Code Sample

'defaultapp' => 'files',

Enable or disable avatars or user profile photos

true enables avatars, or user profile photos, false disables them.

These appear on the User page, on user’s Personal pages and are used by some apps
(contacts, mail, etc).

244 | Server Configuration

Code Sample

'enable_avatars' => true,

Allow or disallow users to change their display names

true allows users to change their display names (on their Personal pages), false
prevents them from changing their display names.

Code Sample

'allow_user_to_change_display_name' => true,

Define the lifetime of the remember login cookie

The remember login cookie is set when the user clicks the remember checkbox on the
login screen. The default is 15 days, expressed in seconds.

Code Sample

'remember_login_cookie_lifetime' => 60*60*24*15,

Define the lifetime of a session after inactivity

The default is 20 minutes, expressed in seconds.

Code Sample

'session_lifetime' => 60 * 20,

Enable or disable session keep-alive when a user is logged in to the Web UI

Enabling this sends a "heartbeat" to the server to keep it from timing out.

Code Sample

'session_keepalive' => true,

Enforce token only authentication for apps and clients connecting to ownCloud

If enabled, all access requests using the users password are blocked for enhanced
security.

Users have to generate special app-passwords (tokens) for their apps or clients in their
personal settings which are further used for app or client authentication. Browser
logon is not affected.

Code Sample

'token_auth_enforced' => false,

Server Configuration | 245

Enforce strict login check with user backend

If enabled, strict login check for password in user backend will be enforced, meaning
only the login name typed by the user would be validated. With this configuration
enabled, e.g. an additional check for email will not be performed.

Code Sample

'strict_login_enforced' => false,

Define additional login buttons on the logon screen

Provides the ability to create additional login buttons on the logon screen, for e.g.,
SSO integration 'login.alternatives' ⇒ [['href' ⇒
'https://www.testshib.org/Shibboleth.sso/ProtectNetwork?target=https%3A%2F%2Fm
y.owncloud.tld%2Flogin%2Fsso-saml%2F', 'name' ⇒ 'ProtectNetwork', 'img' ⇒
'/img/PN_sign-in.gif'], ['href' ⇒
'https://www.testshib.org/Shibboleth.sso/OpenIdP.org?target=https%3A%2F%2Fmy.o
wncloud.tld%2Flogin%2Fsso-saml%2F', 'name' ⇒ 'OpenIdP.org', 'img' ⇒
'/img/openidp.png'],]

Code Sample

'login.alternatives' => [],

Enable or disable ownCloud’s built-in CSRF protection mechanism

In some specific setups CSRF protection is handled in the environment, e.g., running
F5 ASM. In these cases the built-in mechanism is not needed and can be disabled.
Generally speaking, however, this config switch should be left unchanged.

 leave this as is if you’re not sure what it does.

Code Sample

'csrf.disabled' => false,

Define the directory where the skeleton files are located

These files will be copied to the data directory of new users.

Leave this directory empty if you do not want to copy any skeleton files. A valid path
must be given for this key otherwise errors will be generated in owncloud.log.

Code Sample

'skeletondirectory' => '/path/to/owncloud/core/skeleton',

Define the user_backends app

Those need to be enabled first and allow you to configure alternate authentication
backends.

Supported backends are: IMAP (OC_User_IMAP), SMB (OC_User_SMB), and FTP

246 | Server Configuration

(OC_User_FTP).

Code Sample

'user_backends' => [
 [
 'class' => 'OC_User_IMAP',
 'arguments' => ['{imap.gmail.com:993/imap/ssl}INBOX']
]
],

Define a custom link to reset passwords

If your user backend does not allow password resets (e.g. when it’s a read-only user
backend like LDAP), you can specify a custom link, where the user is redirected to,
when clicking the "reset password" link after a failed login-attempt.

If you do not want to provide any link, replace the URL with 'disabled'.

Code Sample

'lost_password_link' => 'https://example.org/link/to/password/reset',

Allow medial search on user account properties

These account properties can be display name, user id, email, and other search terms.

Allows finding 'Alice' when searching for 'lic'. May slow down user search. Disable this
if you encounter slow username search in the sharing dialog.

Code Sample

'accounts.enable_medial_search' => true,

Allow medial search on the group id

Allows finding 'test' in groups when searching for 'es'.

This is only used in the DB group backend (local groups). This won’t be used against
LDAP, Shibboleth or any other group backend.

Code Sample

'groups.enable_medial_search' => true,

Define minimum characters entered before a search returns results

Defines the minimum characters entered before a search returns results for users or
groups in the share autocomplete form. Lower values increase search time especially
for large backends.

Any exact matches to a user or group will be returned, even though less than the
minimum characters have been entered. The search is case insensitive. For example,

Server Configuration | 247

entering "tom" will always return "Tom" if there is an exact match.

Code Sample

'user.search_min_length' => 2,

Mail Parameters

These configure the email settings for ownCloud notifications and password resets.

Define the email RETURN address

The return address that you want to appear on emails sent by the ownCloud server.

Example: oc-admin@example.com, substituting your own domain, of course.

Code Sample

'mail_domain' => 'example.com',

Define the email FROM address

FROM address that overrides the built-in sharing-noreply and lostpassword-noreply
FROM addresses.

Code Sample

'mail_from_address' => 'owncloud',

Enable or disable SMTP class debugging

Code Sample

'mail_smtpdebug' => false,

Define the mode for sending an email

Modes to use for sending mail: sendmail, smtp, qmail or php.

If you are using local or remote SMTP, set this to smtp.

If you are using PHP mail you must have an installed and working email system on the
server. The program used to send email is defined in the php.ini file.

For the sendmail option you need an installed and working email system on the server,
with /usr/sbin/sendmail installed on your Unix system.

For qmail the binary is /var/qmail/bin/sendmail, and it must be installed on your Unix
system.

Code Sample

'mail_smtpmode' => 'sendmail',

248 | Server Configuration

Define the IP address of your mail server host

Depends on mail_smtpmode. May contain multiple hosts separated by a semi-colon.

If you need to specify the port number, append it to the IP address separated by a
colon, like this: 127.0.0.1:24.

Code Sample

'mail_smtphost' => '127.0.0.1',

Define the port for sending an email

Depends on mail_smtpmode.

Code Sample

'mail_smtpport' => 25,

Define the SMTP server timeout

Depends on mail_smtpmode. Sets the SMTP server timeout in seconds.

You may need to increase this if you are running an anti-malware or spam scanner.

Code Sample

'mail_smtptimeout' => 10,

Define the SMTP security style

Depends on mail_smtpmode. Specify when you are using ssl or tls.

Leave empty for no encryption.

Code Sample

'mail_smtpsecure' => '',

Define the SMTP authentication

Depends on mail_smtpmode. Change this to true if your mail server requires
authentication.

Code Sample

'mail_smtpauth' => false,

Define the SMTP authentication type

Depends on mail_smtpmode. If SMTP authentication is required, choose the
authentication type as LOGIN (default) or PLAIN.

Server Configuration | 249

Code Sample

'mail_smtpauthtype' => 'LOGIN',

Define the SMTP authentication username

Depends on mail_smtpauth. Specify the username for authenticating to the SMTP
server.

Code Sample

'mail_smtpname' => '',

Define the SMTP authentication password

Depends on mail_smtpauth. Specify the password for authenticating to the SMTP
server.

Code Sample

'mail_smtppassword' => '',

Proxy Configurations

Override automatic proxy detection

The automatic hostname detection of ownCloud can fail in certain reverse proxy and
CLI/cron situations. This option allows you to manually override the automatic
detection; for example www.example.com, or specify the port www.example.com:8080.

Code Sample

'overwritehost' => '',

Override protocol (http/https) usage

When generating URLs, ownCloud attempts to detect whether the server is accessed
via https or http. However, if ownCloud is behind a proxy and the proxy handles the
https calls, ownCloud would not know that ssl is in use, which would result in incorrect
URLs being generated.

Valid values are http and https.

Code Sample

'overwriteprotocol' => '',

Override ownClouds webroot

ownCloud attempts to detect the webroot for generating URLs automatically.

For example, if www.example.com/owncloud is the URL pointing to the ownCloud
instance, the webroot is /owncloud. When proxies are in use, it may be difficult for

250 | Server Configuration

ownCloud to detect this parameter, resulting in invalid URLs.

Code Sample

'overwritewebroot' => '',

Override condition for the remote IP address with a regular expression

This option allows you to define a manual override condition as a regular expression
for the remote IP address. The keys overwritewebroot, overwriteprotocol, and
overwritehost are subject to this condition.

For example, defining a range of IP addresses starting with 10.0.0. and ending with 1
to 3: * ^10\.0\.0\.[1-3]$

Code Sample

'overwritecondaddr' => '',

Override cli URL

Use this configuration parameter to specify the base URL for any URLs which are
generated within ownCloud using any kind of command line tools (cron or occ).

The value should contain the full base URL: https://www.example.com/owncloud As an
example, alerts shown in the browser to upgrade an app are triggered by a cron
background process and therefore uses the url of this key, even if the user has logged
on via a different domain defined in key trusted_domains. When the user clicks an
alert like this, he will be redirected to that URL and must logon again.

Code Sample

'overwrite.cli.url' => '',

Define the Web base URL

This key is necessary for the navigation item to the new ownCloud Web UI and for
redirecting public and private links.

Code Sample

'web.baseUrl' => '',

Define rewrite private and public links

Rewrite private and public links to the new ownCloud Web UI (if available). If
web.rewriteLinks is set to 'true', public and private links will be redirected to this url.
The Web UI will handle these links accordingly.

As an example, in case 'web.baseUrl' is set to 'http://web.example.com', the shared
link 'http://ocx.example.com/index.php/s/THoQjwYYMJvXMdW' will be redirected by
ownCloud to 'http://web.example.com/index.html#/s/THoQjwYYMJvXMdW'.

Server Configuration | 251

https://www.example.com/owncloud

Code Sample

'web.rewriteLinks' => false,

Define clean URLs without /index.php

This parameter will be written as RewriteBase on update and installation of ownCloud
to your .htaccess file. While this value is often simply the URL path of the ownCloud
installation it cannot be set automatically properly in every scenario and needs thus
some manual configuration.

In a standard Apache setup this usually equals the folder that ownCloud is accessible
at. So if ownCloud is accessible via https://mycloud.org/owncloud the correct value
would most likely be /owncloud. If ownCloud is running under https://mycloud.org/
then it would be /.

Note that the above rule is not valid in every case, as there are some rare setup cases
where this may not apply. However, to avoid any update problems this configuration
value is explicitly opt-in.

After setting this value run sudo -u www-data php occ maintenance:update:htaccess.
Now, when the following conditions are met ownCloud URLs won’t contain index.php:

• mod_rewrite is installed
• mod_env is installed

Code Sample

'htaccess.RewriteBase' => '/',

Define the URL of your proxy server

Example: proxy.example.com:8081.

Code Sample

'proxy' => '',

Define proxy authentication

The optional authentication for the proxy to use to connect to the internet.

The format is: username:password.

The username and the password need to be urlencoded to avoid breaking the delimiter
syntax "username:password@hostname:port

Example: usern@me needs to be encoded as usern%40ame.

Code Sample

'proxyuserpwd' => '',

252 | Server Configuration

https://mycloud.org/owncloud
https://mycloud.org/

Deleted Items (trash bin)

These parameters control the Deleted files app.

Define the trashbin retention obligation

If the trash bin app is enabled (default), this setting defines the policy for when files
and folders in the trash bin will be permanently deleted.

The app allows for two settings, a minimum time for trash bin retention, and a
maximum time for trash bin retention. Minimum time is the number of days a file will
be kept, after which it may be deleted. Maximum time is the number of days at which
it is guaranteed to be deleted. Both minimum and maximum times can be set together
to explicitly define file and folder deletion. For migration purposes, this setting is
installed initially set to auto, which is equivalent to the default setting in ownCloud 8.1
and before.

Available values:

• auto default setting. Keeps files and folders in the deleted files for up to 30 days,
automatically deleting them (at any time) if space is needed. Note: files may not be
removed if space is not required.

• D, auto keeps files and folders in the trash bin for D+ days, delete anytime if space
needed (Note: files may not be deleted if space is not needed)

• auto, D delete all files in the trash bin that are older than D days automatically,
delete other files anytime if space needed

• D1, D2 keep files and folders in the trash bin for at least D1 days and delete when
exceeds D2 days

• disabled trash bin auto clean disabled, files and folders will be kept forever

Code Sample

'trashbin_retention_obligation' => 'auto',

Define the trashbin purge limit

This setting defines the percentage of free space occupied by deleted files that
triggers auto purging of deleted files for this user

Code Sample

'trashbin_purge_limit' => 50,

File versions

These parameters control the Versions app.

Define the files versions retention obligation

If the versions app is enabled (default), this setting defines the policy for when
versions will be permanently deleted.

The app allows for two settings, a minimum time for version retention, and a maximum
time for version retention. Minimum time is the number of days a version will be kept,
after which it may be deleted. Maximum time is the number of days at which it is
guaranteed to be deleted. Both minimum and maximum times can be set together to

Server Configuration | 253

explicitly define version deletion. For migration purposes, this setting is installed
initially set to "auto", which is equivalent to the default setting in ownCloud 8.1 and
before.

Available values:

• auto default setting. Automatically expire versions according to expire rules. Please
refer to https://doc.owncloud.org/server/latestadmin_manual/configuration/files/
file_versioning.html for more information.

• D, auto keep versions at least for D days, apply expire rules to all versions that are
older than D days

• auto, D delete all versions that are older than D days automatically, delete other
versions according to expire rules

• D1, D2 keep versions for at least D1 days and delete when exceeds D2 days
• disabled versions auto clean disabled, versions will be kept forever

Code Sample

'versions_retention_obligation' => 'auto',

ownCloud Verifications

ownCloud performs several verification checks. There are two options, true and false.

Enable or disable updatechecker

Check if ownCloud is up-to-date and shows a notification if a new version is available.

This option is only applicable to ownCloud core. It is not applicable to app updates.

Code Sample

'updatechecker' => true,

Define the updatechecker URL

URL that ownCloud should use to look for updates

Code Sample

'updater.server.url' => 'https://updates.owncloud.com/server/',

Check for an internet connection

Is ownCloud connected to the Internet or running in a closed network?

Code Sample

'has_internet_connection' => true,

254 | Server Configuration

https://doc.owncloud.org/server/latestadmin_manual/configuration/files/file_versioning.html
https://doc.owncloud.org/server/latestadmin_manual/configuration/files/file_versioning.html

Check for a .well-known setup

Allows ownCloud to verify a working .well-known URL redirect.

This is done by attempting to make a request from JS to https://your-domain.com/.well-
known/caldav/

Code Sample

'check_for_working_wellknown_setup' => true,

Define if config.php is read only

In certain environments it is desired to have a read-only configuration file.

When this switch is set to true ownCloud will not verify whether the configuration is
writable. However, it will not be possible to configure all options via the Web interface.
Furthermore, when updating ownCloud it is required to make the configuration file
writable again for the update process.

Code Sample

'config_is_read_only' => false,

Define ownCloud operation modes

This defines the mode of operations. The default value is 'single-instance' which means
that ownCloud is running on a single node, which might be the most common
operations mode. The only other possible value for now is 'clustered-instance' which
means that ownCloud is running on at least 2 nodes. The mode of operations has
various impact on the behavior of ownCloud.

Code Sample

'operation.mode' => 'single-instance',

Logging

These parameters configure the logging options. For additional information or
advanced configuration, please see the logging section in the documentation.

Define the log type

By default the ownCloud logs are sent to the owncloud.log file in the default ownCloud
data directory.

If syslogging is desired, set this parameter to syslog. Setting this parameter to errorlog
will use the PHP error_log function for logging.

Code Sample

'log_type' => 'owncloud',

Server Configuration | 255

https://your-domain.com/.well-known/caldav/
https://your-domain.com/.well-known/caldav/

Define the log path

Log file path for the ownCloud logging type.

Defaults to [datadirectory]/owncloud.log

Code Sample

'logfile' => '/var/log/owncloud.log',

Define the log level

Loglevel to start logging at. Valid values are: 0 = Debug, 1 = Info, 2 = Warning, 3 =
Error, and 4 = Fatal. The default value is Warning.

Code Sample

'loglevel' => 2,

Define the syslog tag

If you maintain different instances and aggregate the logs, you may want to
distinguish between them. syslog_tag can be set per instance with a unique id. Only
available if log_type is set to syslog.

The default value is ownCloud.

Code Sample

'syslog_tag' => 'ownCloud',

Define the syslog format

The syslog format can be changed to remove or add information.

In addition to the %replacements% below %level% can be used, but it is used as a
dedicated parameter to the syslog logging facility anyway.

Code Sample

'log.syslog.format' =>
'[%reqId%][%remoteAddr%][%user%][%app%][%method%][%url%] %message%',

Define log conditions

Log condition for log level increase based on conditions. Once one of these conditions
is met, the required log level is set to debug. This allows to debug specific requests,
users or apps

Supported conditions: - shared_secret: If a request parameter with the name log_secret
is set to this value the condition is met - users: If the current request is done by one of
the specified users, this condition is met - apps: If the log message is invoked by one of
the specified apps, this condition is met - logfile: The log message invoked by the
specified apps get redirected to this logfile, this condition is met Note: Not applicable

256 | Server Configuration

when using syslog

Defaults to an empty array

Code Sample

'log.conditions' => [
 [
 'shared_secret' => '57b58edb6637fe3059b3595cf9c41b9',
 'users' => ['user1'],
 'apps' => ['files_texteditor'],
 'logfile' => '/tmp/test.log'
],
 [
 'shared_secret' => '57b58edb6637fe3059b3595cf9c41b9',
 'users' => ['user1'],
 'apps' => ['files_mediaviewer'],
 'logfile' => '/tmp/mediaviewer.log'
],
],

Define the log date format

This uses PHP.date formatting; see http://php.net/manual/en/function.date.php

Code Sample

'logdateformat' => 'F d, Y H:i:s',

Define the log timezone

The default timezone for logfiles is UTC. You may change this; see http://php.net/
manual/en/timezones.php

Code Sample

'logtimezone' => 'Europe/Berlin',

Define logging if Cron ran successfully

Log successful cron runs.

Code Sample

'cron_log' => true,

Define the maximum log rotation file size

Enables log rotation and limits the total size of the logfiles.

The default is 0 or false which disables log rotation. Specify a size in bytes, for
example 104857600 (100 megabytes = 100 * 1024 * 1024 bytes). A new logfile is

Server Configuration | 257

http://php.net/manual/en/function.date.php
http://php.net/manual/en/timezones.php
http://php.net/manual/en/timezones.php

created with a new name when the old logfile reaches the defined limit. If a rotated
log file is already present, it will be overwritten. If enabled, only the active log file and
one rotated file are stored.

Code Sample

'log_rotate_size' => false,

Alternate Code Locations

Some of the ownCloud code may be stored in alternate locations.

Define alternative app directories

If you want to store apps in a custom directory instead of ownCloud’s default /apps,
you need to modify the apps_paths key. There, you need to add a new associative array
that contains three elements. These are:

• path The absolute file system path to the custom app folder.
• url The request path to that folder relative to the ownCloud web root, prefixed with

/.
• writable Whether users can install apps in that folder. After the configuration is

added, new apps will only install in a directory where writable is set to true.

The configuration example shows how to add a second directory, called /apps-external.
Here, new apps and updates are only written to the /apps-external directory. This
eases upgrade procedures of owncloud where shipped apps are delivered to apps/ by
default. OC::$SERVERROOT points to the web root of your instance. Please see the
Apps Management description on how to move custom apps properly.

Code Sample

'apps_paths' => [
 0 =>
 [
 'path' => OC::$SERVERROOT.'/apps',
 'url' => '/apps',
 'writable' => false,
],
 1 =>
 [
 'path' => OC::$SERVERROOT.'/apps-external',
 'url' => '/apps-external',
 'writable' => true,
],
],

Previews

ownCloud supports previews of image files, the covers of MP3 files, and text files.
These options control enabling and disabling previews, and thumbnail size.

258 | Server Configuration

Enable preview generation

By default, ownCloud can generate previews for the following filetypes:

• Image files
• Covers of MP3 files
• Text documents

Valid values are true, to enable previews, or false, to disable previews

Code Sample

'enable_previews' => true,

Define the preview path

Location of the thumbnails folder, defaults to data/$user/thumbnails where $user is the
current user. When specified, the format will change to $previews_path/$user where
$previews_path is the configured previews base directory and $user will be substituted
with the user id automatically.

For example if previews_path is /var/cache/owncloud/thumbnails then for a logged in
user user1 the thumbnail path will be /var/cache/owncloud/thumbnails/user1.

Code Sample

'previews_path' => '',

Define the maximum x-axis width for previews

The maximum width, in pixels, of a preview.

A value of null means there is no limit.

Code Sample

'preview_max_x' => 2048,

Define the maximum y-axis width for previews

The maximum height, in pixels, of a preview. A value of null means there is no limit.

Code Sample

'preview_max_y' => 2048,

Define the maximum preview scale factor

If a lot of small pictures are stored on the ownCloud instance and the preview system
generates blurry previews, you might want to consider setting a maximum scale factor.
By default, pictures are upscaled to 10 times the original size. A value of 1 or null
disables scaling.

Server Configuration | 259

Code Sample

'preview_max_scale_factor' => 10,

Define the maximum preview filesize limit

Max file size for generating image previews with imagegd (default behaviour) If the
image is bigger, it will try other preview generators, but will most likely show the
default mimetype icon

Value represents the maximum filesize in megabytes Default is 50. Set to -1 for no
limit.

Code Sample

'preview_max_filesize_image' => 50,

Define the custom path for the LibreOffice / OpenOffice binary

Code Sample

'preview_libreoffice_path' => '/usr/bin/libreoffice',

Define additional arguments for LibreOffice / OpenOffice

Use this setting if LibreOffice/OpenOffice requires additional arguments.

Code Sample

'preview_office_cl_parameters' =>
 '--headless --nologo --nofirststartwizard --invisible --norestore ',
 '--convert-to pdf --outdir ',

Define preview providers

Only register providers that have been explicitly enabled

The following providers are enabled by default:

• OC\Preview\PNG
• OC\Preview\JPEG
• OC\Preview\GIF
• OC\Preview\BMP
• OC\Preview\XBitmap
• OC\Preview\MarkDown
• OC\Preview\MP3
• OC\Preview\TXT

The following providers are disabled by default due to performance or privacy
concerns:

260 | Server Configuration

• OC\Preview\Illustrator
• OC\Preview\Movie
• OC\Preview\MSOffice2003
• OC\Preview\MSOffice2007
• OC\Preview\MSOfficeDoc
• OC\Preview\OpenDocument
• OC\Preview\PDF
• OC\Preview\Photoshop
• OC\Preview\Postscript
• OC\Preview\StarOffice
• OC\Preview\SVG
• OC\Preview\TIFF
• OC\Preview\Font

The following providers are not available in Microsoft Windows:

• OC\Preview\Movie
• OC\Preview\MSOfficeDoc
• OC\Preview\MSOffice2003
• OC\Preview\MSOffice2007
• OC\Preview\OpenDocument
• OC\Preview\StarOffice

Code Sample

'enabledPreviewProviders' => [
 'OC\Preview\PNG',
 'OC\Preview\JPEG',
 'OC\Preview\GIF',
 'OC\Preview\BMP',
 'OC\Preview\XBitmap',
 'OC\Preview\MP3',
 'OC\Preview\TXT',
 'OC\Preview\MarkDown'
],

Comments

Global settings for the Comments infrastructure

Define an alternative Comments Manager

Replaces the default Comments Manager Factory. This can be utilized if an own or
3rdParty CommentsManager should be used that – for instance – uses the filesystem
instead of the database to keep the comments.

Code Sample

Server Configuration | 261

'comments.managerFactory' => '\OC\Comments\ManagerFactory',

Define an alternative System Tags Manager

Replaces the default System Tags Manager Factory. This can be utilized if an own or
3rdParty SystemTagsManager should be used that – for instance – uses the filesystem
instead of the database to keep the tags.

Code Sample

'systemtags.managerFactory' => '\OC\SystemTag\ManagerFactory',

Maintenance

These options are for halting user activity when you are performing server
maintenance.

Enable maintenance mode to disable ownCloud

If you want to prevent users from logging in to ownCloud before you start doing some
maintenance work, you need to set the value of the maintenance parameter to true.
Please keep in mind that users who are already logged-in are kicked out of ownCloud
instantly.

Code Sample

'maintenance' => false,

Enable or disable single user mode

When set to true, the ownCloud instance will be unavailable for all users who are not
in the admin group.

Code Sample

'singleuser' => false,

SSL

Extra SSL options to be used for configuration

Code Sample

'openssl' => [
 'config' => '/absolute/location/of/openssl.cnf',
],

Allow the configuration of system wide trusted certificates

262 | Server Configuration

Code Sample

'enable_certificate_management' => false,

Memory caching backend configuration

Available cache backends:

• \OC\Memcache\APCu APC user backend
• \OC\Memcache\ArrayCache In-memory array-based backend (not recommended)
• \OC\Memcache\Memcached Memcached backend
• \OC\Memcache\Redis Redis backend

Advice on choosing between the various backends:

• APCu should be easiest to install. Almost all distributions have packages. Use this
for single user environment for all caches.

• Use Redis or Memcached for distributed environments. For the local cache (you
can configure two) take APCu.

Memory caching backend for locally stored data

• Used for host-specific data, e.g. file paths

Code Sample

'memcache.local' => '\OC\Memcache\APCu',

Memory caching backend for distributed data

• Used for installation-specific data, e.g. database caching
• If unset, defaults to the value of memcache.local

Code Sample

'memcache.distributed' => '\OC\Memcache\Memcached',

Define Redis connection details

Connection details for Redis to use for memory caching in a single server
configuration.

For enhanced security it is recommended to configure Redis to require a password.
See https://redis.io/topics/security for more information.

Code Sample

Server Configuration | 263

https://redis.io/topics/security

'redis' => [
 'host' => 'localhost', // can also be a unix domain socket: '/tmp/redis.sock'
 'port' => 6379,
 'timeout' => 0.0,
 'password' => '', // Optional, if not defined no password will be used.
 'dbindex' => 0, // Optional, if undefined SELECT will not run and will use Redis
Server's default DB Index. Out of the box, every Redis instance supports 16
databases so `<dbIndex>` has to be set between 0 and 15.
],

Define Redis Cluster connection details

Only for use with Redis Clustering, for Sentinel-based setups use the single server
configuration above, and perform HA on the hostname.

Redis Cluster support requires the php module phpredis in version 3.0.0 or higher.

Available failover modes: - \RedisCluster::FAILOVER_NONE - only send commands to
master nodes (default) - \RedisCluster::FAILOVER_ERROR - failover to slaves for read
commands if master is unavailable - \RedisCluster::FAILOVER_DISTRIBUTE -
randomly distribute read commands across master and slaves

Code Sample

'redis.cluster' => [
 'seeds' => [// provide some/all of the cluster servers to bootstrap discovery, port
required
 'localhost:7000',
 'localhost:7001'
],
 'timeout' => 0.0,
 'read_timeout' => 0.0,
 'failover_mode' => \RedisCluster::FAILOVER_DISTRIBUTE
],

Define server details for memcached servers to use for memory caching

Server details for one or more memcached servers to use for memory caching

Code Sample

'memcached_servers' => [
 // hostname, port and optional weight. Also see:
 // http://www.php.net/manual/en/memcached.addservers.php
 // http://www.php.net/manual/en/memcached.addserver.php
 ['localhost', 11211],
 //[other.host.local', 11211],
],

264 | Server Configuration

Define connection options for memcached

For more details please see http://apprize.info/php/scaling/15.html

Code Sample

'memcached_options' => [
 // Set timeouts to 50ms
 \Memcached::OPT_CONNECT_TIMEOUT => 50,
 \Memcached::OPT_RETRY_TIMEOUT => 50,
 \Memcached::OPT_SEND_TIMEOUT => 50,
 \Memcached::OPT_RECV_TIMEOUT => 50,
 \Memcached::OPT_POLL_TIMEOUT => 50,

 // Enable compression
 \Memcached::OPT_COMPRESSION => true,

 // Turn on consistent hashing
 \Memcached::OPT_LIBKETAMA_COMPATIBLE => true,

 // Enable Binary Protocol
 \Memcached::OPT_BINARY_PROTOCOL => true,

 // Binary serializer will be enabled if the igbinary PECL module is available
 //\Memcached::OPT_SERIALIZER => \Memcached::SERIALIZER_IGBINARY,
],

Define the location of the cache directory

The location of the cache directory defaults to data/$user/cache where $user is the
current user. When specified, the format will change to $cache_path/$user where
$cache_path is the configured cache directory and $user is the user.

Code Sample

'cache_path' => '',

Define the TTL for garbage collection

TTL of chunks located in the cache folder before they’re removed by garbage
collection (in seconds). Increase this value if users have issues uploading very large
files via the ownCloud Client as upload isn’t completed within one day.

Code Sample

'cache_chunk_gc_ttl' => 86400, // 60*60*24 = 1 day

Define the DAV chunk base directory

Location of the chunk folder, defaults to data/$user/uploads where $user is the current
user. When specified, the format will change to $dav.chunk_base_dir/$user where
$dav.chunk_base_dir is the configured cache directory and $user is the user.

Server Configuration | 265

http://apprize.info/php/scaling/15.html

Code Sample

'dav.chunk_base_dir' => '',

Sharing

Global settings for Sharing

Define an alternative Share Provider

Replaces the default Share Provider Factory. This can be utilized if own or 3rdParty
Share Providers are used that – for instance – use the filesystem instead of the
database to keep the share information.

Code Sample

'sharing.managerFactory' => '\OC\Share20\ProviderFactory',

Allow schema fallback for federated sharing servers

When talking with federated sharing server, allow falling back to HTTP instead of hard
forcing HTTPS

Code Sample

'sharing.federation.allowHttpFallback' => false,

All other configuration options

Define additional database driver options

Additional driver options for the database connection, eg. to enable SSL encryption in
MySQL or specify a custom wait timeout on a cheap hoster.

Code Sample

'dbdriveroptions' => [
 PDO::MYSQL_ATTR_SSL_CA => '/file/path/to/ca_cert.pem',
 PDO::MYSQL_ATTR_INIT_COMMAND => 'SET wait_timeout = 28800'
],

Define sqlite3 journal mode

sqlite3 journal mode can be specified using this configuration parameter - can be
'WAL' or 'DELETE' see for more details https://www.sqlite.org/wal.html

Code Sample

'sqlite.journal_mode' => 'DELETE',

266 | Server Configuration

https://www.sqlite.org/wal.html

Define MySQL 3/4 byte character handling

During setup, if requirements are met (see below), this setting is set to true and
MySQL can handle 4 byte characters instead of 3 byte characters.

If you want to convert an existing 3-byte setup into a 4-byte setup please set the
parameters in MySQL as mentioned below and run the migration command: sudo -u
www-data php occ db:convert-mysql-charset The config setting will be set
automatically after a successful run.

Consult the documentation for more details.

MySQL requires a special setup for longer indexes (> 767 bytes) which are needed:

[mysqld]
innodb_large_prefix=ON
innodb_file_format=Barracuda
innodb_file_per_table=ON

Tables will be created with * character set: utf8mb4 * collation: utf8mb4_bin *
row_format: compressed

See: https://dev.mysql.com/doc/refman/5.7/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#
sysvar_innodb_large_prefix https://mariadb.com/kb/en/mariadb/xtradbinnodb-server-
system-variables/#innodb_large_prefix http://www.tocker.ca/benchmarking-innodb-
page-compression-performance.html http://mechanics.flite.com/blog/2014/07/29/using-
innodb-large-prefix-to-avoid-error-1071/

Code Sample

'mysql.utf8mb4' => false,

Define supported database types

Database types that are supported for installation.

Available: - sqlite (SQLite3 - Not in Enterprise Edition) - mysql (MySQL) - pgsql
(PostgreSQL) - oci (Oracle - Enterprise Edition Only)

Code Sample

'supportedDatabases' => [
 'sqlite',
 'mysql',
 'pgsql',
 'oci',
],

Define the location for temporary files

Override where ownCloud stores temporary files. Useful in situations where the
system temporary directory is on a limited space ramdisk or is otherwise restricted, or
if external storages which do not support streaming are in use.

Server Configuration | 267

https://dev.mysql.com/doc/refman/5.7/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_large_prefix
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_large_prefix
https://mariadb.com/kb/en/mariadb/xtradbinnodb-server-system-variables/#innodb_large_prefix
https://mariadb.com/kb/en/mariadb/xtradbinnodb-server-system-variables/#innodb_large_prefix
http://www.tocker.ca/benchmarking-innodb-page-compression-performance.html
http://www.tocker.ca/benchmarking-innodb-page-compression-performance.html
http://mechanics.flite.com/blog/2014/07/29/using-innodb-large-prefix-to-avoid-error-1071/
http://mechanics.flite.com/blog/2014/07/29/using-innodb-large-prefix-to-avoid-error-1071/

The Web server user must have write access to this directory.

Code Sample

'tempdirectory' => '/tmp/owncloudtemp',

Define the hashing cost

The hashing cost used by hashes generated by ownCloud.

Using a higher value requires more time and CPU power to calculate the hashes. As
this number grows, the amount of work (typically CPU time or memory) necessary to
compute the hash increases exponentially.

Code Sample

'hashingCost' => 10,

Define blacklisted files

Blacklist a specific file or files and disallow the upload of files with this name.
.htaccess is blocked by default.

 USE THIS ONLY IF YOU KNOW WHAT YOU ARE DOING.

Code Sample

'blacklisted_files' => [
 '.htaccess'
],

Define blacklisted files regular expression(s)

Blacklist files that match any of the given regular expressions and disallow the upload
of those files. The matching is case-insensitive.

 USE THIS ONLY IF YOU KNOW WHAT YOU ARE DOING.

Code Sample

'blacklisted_files_regex' => [
 '.*\.ext',
 '^somefilename.*'
],

Define excluded directories

Exclude specific directory names and disallow scanning, creating and renaming using
these names. The matching is case insensitive.

Excluded directory names are queried at any path part like at the beginning, in the
middle or at the end and will not be further processed if found. Please see the

268 | Server Configuration

documentation for details and examples. Use when the storage backend supports, e.g.
snapshot directories to be excluded.

 USE THIS ONLY IF YOU KNOW WHAT YOU ARE DOING.

Code Sample

'excluded_directories' => [
 '.snapshot',
 '~snapshot',
],

Define excluded directories regular expression(s)

Exclude directory names that match any of the given regular expressions and disallow
scanning, creating and renaming using these names. The matching is case insensitive.

Excluded directory names are queried at any path part like at the beginning, in the
middle or at the end and will not be further processed if found. Please see the
documentation for details and examples. Use when the storage backend supports, e.g.
snapshot directories to be excluded.

 USE THIS ONLY IF YOU KNOW WHAT YOU ARE DOING.

Code Sample

'excluded_directories_regex' => [
 '^backup.*',
 '.*backup$',
],

Define files that are excluded from integrity checking

Exclude files from the integrity checker command

Code Sample

'integrity.excluded.files' => [
 '.DS_Store',
 'Thumbs.db',
 '.directory',
 '.webapp',
 '.htaccess',
 '.user.ini',
],

Define apps or themes that are excluded from integrity checking

The list of apps that are allowed and must not have a signature.json file present.

Besides ownCloud apps, this is particularly useful when creating ownCloud themes,
because themes are treated as apps. The app is identified with it´s app-id. The app-id

Server Configuration | 269

can be identified by the foldername of the app in your apps directory. The following
example allows app-1 and theme-2 to have no signature.json file.

Code Sample

'integrity.ignore.missing.app.signature' => [
 'app-id of app-1',
 'app-id of theme-2',
],

Define a default folder for shared files and folders other than root

Code Sample

'share_folder' => '/',

Define the default cipher for encrypting files

Currently AES-128-CFB and AES-256-CFB are supported.

Code Sample

'cipher' => 'AES-256-CFB',

Define the minimum supported ownCloud desktop client version

Define the minimum ownCloud desktop client version that is allowed to sync with this
server instance. All connections made from earlier clients will be denied by the server.

As shipped, the value here is the oldest desktop client that is technically compatible
with the server. The version number seen here does not imply official support or test
coverage on behalf of ownCloud.


Lowering this value may lead to unexpected behaviour, and can include
data loss.

Code Sample

'minimum.supported.desktop.version' => '2.3.3',

Define whether to include external storage in quota calculation

EXPERIMENTAL: option whether to include external storage in quota calculation,
defaults to false.

Code Sample

'quota_include_external_storage' => false,

270 | Server Configuration

Define how often filesystem changes are detected

Specifies how often the local filesystem (the ownCloud data/ directory, and NFS
mounts in data/) is checked for changes made outside ownCloud. This does not apply
to external storages.

→ Never check the filesystem for outside changes, provides a performance increase
when it’s certain that no changes are made directly to the filesystem

→ Check each file or folder at most once per request, recommended for general use if
outside changes might happen.

Code Sample

'filesystem_check_changes' => 0,

Define unsuccessful mountpoint rename attempts

This config value avoids infinite loops for seldom cases where a file renaming conflict
between different share backends could occur.

The value defines how many unsuccessful mountpoint rename attempts are allowed.
e.g. target mountpoint name could be claimed as unused by the filesystem but
renaming to this target name will fail due to some other reasons like database
constraints. Change this value only under supervision of ownCloud support.

Code Sample

'filesystem.max_mountpoint_move_attempts' => 10,

Define where part files are located

By default ownCloud will store the part files created during upload in the same
storage as the upload target. Setting this to false will store the part files in the root of
the users folder which might be required to work with certain external storage setups
that have limited rename capabilities.

Code Sample

'part_file_in_storage' => true,

Prevent cache changes due to changes in the filesystem

When true, prevent ownCloud from changing the cache due to changes in the
filesystem for all storage.

Code Sample

'filesystem_cache_readonly' => false,

Define ownClouds internal secret

Secret used by ownCloud for various purposes, e.g. to encrypt data.

If you lose this string there will be data corruption.

Server Configuration | 271

Code Sample

'secret' => '',

Define list of trusted proxy servers

If you configure these also consider setting forwarded_for_headers which otherwise
defaults to HTTP_X_FORWARDED_FOR (the X-Forwarded-For header).

Code Sample

'trusted_proxies' => [
 '203.0.113.45',
 '198.51.100.128'
],

Define forwarded_for_headers

Headers that should be trusted as client IP address in combination with
trusted_proxies. If the HTTP header looks like 'X-Forwarded-For', then use
'HTTP_X_FORWARDED_FOR' here.

If set incorrectly, a client can spoof their IP address as visible to ownCloud, bypassing
access controls and making logs useless!

If not set, defaults to 'HTTP_X_FORWARDED_FOR'.

Code Sample

'forwarded_for_headers' => [
 'HTTP_X_FORWARDED',
 'HTTP_FORWARDED_FOR'
],

Define the maximum filesize for animated GIF´s

Max file size for animating gifs on public-sharing-site.

If the gif is bigger, it’ll show a static preview.

Value represents the maximum filesize in megabytes. Default is 10. Set to -1 for no
limit.

Code Sample

'max_filesize_animated_gifs_public_sharing' => 10,

Enable transactional file locking

Transactional file locking is enabled by default.

Prevents concurrent processes from accessing the same files at the same time. Can
help prevent side effects that would be caused by concurrent operations. Mainly

272 | Server Configuration

relevant for very large installations with many users working with shared files.

Code Sample

'filelocking.enabled' => true,

Define the TTL for file locking

Set the lock’s time-to-live in seconds.

Any lock older than this will be automatically cleaned up. If not set this defaults to
either 1 hour or the php max_execution_time, whichever is higher.

Code Sample

'filelocking.ttl' => 3600,

Define the memory caching backend for file locking

Because most memcache backends can clean values without warning, using redis is
highly recommended to avoid data loss.

Code Sample

'memcache.locking' => '\\OC\\Memcache\\Redis',

Disable the web based updater

The web based updater is enabled by default.

Code Sample

'upgrade.disable-web' => false,

Define whether or not to enable automatic update of market apps

Set to false to disable.

Code Sample

'upgrade.automatic-app-update' => true,

Place this ownCloud instance into debugging mode

Only enable this for local development and not in production environments This will
disable the minifier and outputs some additional debug information

WARNING: Be warned that, if you set this to true, exceptions display stack traces on
the web interface, including passwords, — in plain text!. We strongly encourage
you never to use it in production.

Server Configuration | 273

Code Sample

'debug' => false,

Define the data-fingerprint of the current data served

This is a property used by the clients to find out if a backup has been restored on the
server. Once a backup is restored run sudo -u www-data php occ maintenance:data-
fingerprint To set this to a new value.

Updating/Deleting this value can make connected clients stall until the user has
resolved conflicts.

Code Sample

'data-fingerprint' => '',

Define if you have copied the sample configuration

This entry is just here to show a warning in case somebody copied the sample
configuration.

 DO NOT ADD THIS SWITCH TO YOUR CONFIGURATION!

If you, brave person, have read until here be aware that you should not modify ANY
settings in this file without reading the documentation.

Code Sample

'copied_sample_config' => true,

Enable or disable the files_external local mount option

Set this property to true if you want to enable the files_external local mount option.

Default: false

Code Sample

'files_external_allow_create_new_local' => false,

Enable or disable debug logging for SMB access

Set this property to true if you want to enable debug logging for SMB access.

Code Sample

'smb.logging.enable' => false,

Enable or disable async DAV extensions

274 | Server Configuration

Code Sample

'dav.enable.async' => false,

Show the grace period popup

Decide whether show or not the grace period popup. There is no change in the
behaviour of the grace period.

Code Sample

'grace_period.demo_key.show_popup' => true,

Link to get a demo key during active grace period

The admin will be directed to that web page if he clicks in the "get a demo key" link in
the grace period popup. It’s expected that the web page contains instructions on how
to get a valid demo key to be used in the ownCloud server.

If this key isn’t present, ownCloud’s default will be used

Code Sample

'grace_period.demo_key.link' => 'https://owncloud.com/try-enterprise/',

Apps Config.php Parameters

Introduction

This document describes parameters for apps maintained by ownCloud that are not
part of the core system. All keys are only valid if the corresponding app is installed and
enabled. You must copy the keys needed to the active config.php file.

Multiple configuration files

ownCloud supports loading configuration parameters from multiple files. You can add
arbitrary files ending with .config.php in the config/ directory.

Example:

You could place your email server configuration in email.config.php. This allows you to
easily create and manage custom configurations, or to divide a large complex
configuration file into a set of smaller files. These custom files are not overwritten by
ownCloud, and the values in these files take precedence over config.php.

ownCloud may write configurations into config.php. These configurations may conflict
with identical keys already set in additional config files. Be careful when using this
capability!

App: Activity

Possible values: activity_expire_days days.

Server Configuration | 275

Define the retention for activities of the activity app

Code Sample

'activity_expire_days' => 365,

App: Admin Audit

Possible values: log.conditions ARRAY.

Possible values: admin_audit.groups ARRAY.

Configure the path to the log file

Code Sample

'log.conditions' => [
 [
 'apps' => ['admin_audit'],
 // Adjust the path below, to match your setup
 'logfile' => '/var/www/owncloud/data/admin_audit.log'
]
],

Filter the groups that messages are logged for.

Code Sample

'admin_audit.groups' => [
 'group1',
 'group2'
],

App: LDAP

Possible values: ldapIgnoreNamingRules doSet or false.

Possible values: user_ldap.enable_medial_search true or false.

Define parameters for the LDAP app

Code Sample

'ldapIgnoreNamingRules' => false,
'user_ldap.enable_medial_search' => false,

App: Market

Possible values: appstoreurl URL.

276 | Server Configuration

Define the download URL for apps

Code Sample

'appstoreurl' => 'https://marketplace.owncloud.com',

App: Files Versions

Possible keys: versions_retention_obligation STRING

Use following values to configure the retention behaviour. Replace D with the number
of days.

auto
Default value if nothing is set

D, auto
Keep versions at least for D days, apply expiration rules to all versions that are
older than D days

auto, D
Delete all versions that are older than D days automatically, delete other versions
according to expiration rules

D1, D2
Keep versions for at least D1 days and delete when they exceed D2 days

disabled
Disable Versions; no files will be deleted.

Pattern to define the expiration date for each backup version created.

Code Sample

'versions_retention_obligation' => 'auto',

App: Firstrunwizard

Possible values: customclient_desktop URL.

Possible values: customclient_android URL.

Possible values: customclient_ios URL.

Define the download links for ownCloud clients

Configuring the download links for ownCloud clients, as seen in the first-run wizard
and on Personal pages

Code Sample

Server Configuration | 277

'customclient_desktop' =>
 'https://owncloud.org/install/#install-clients',
'customclient_android' =>
 'https://play.google.com/store/apps/details?id=com.owncloud.android',
'customclient_ios' =>
 'https://itunes.apple.com/us/app/owncloud/id543672169?mt=8',

App: Richdocuments

Possible values: collabora_group string.

Define the group name for users allowed to use Collabora

Code Sample

'collabora_group' => '',

OpenID Connect(OIDC) Configuration

App: openidconnect

Configure OpenID Connect

The provider-url, client-id and client-secret variables are to be taken from the OpenID
Connect Provider’s setup. The loginButtonName variable can be freely chosen,
depending on the installation.


The provider-params configuration array only needs to be used if the
OpenID Connect Provider does NOT support service discovery.

autoRedirectOnLoginPage
If true, the login page will automatically be redirected to the OpenID Connect
Provider, as when the button is pressed. The default is false.

mode
This is the attribute in the owncloud accounts table to search for users. The default
value is email. An alternative value: userid.

search-attribute
This is the claim from the OpenID Connect user information which shall be used for
searching in the accounts table. The default value is email. For more information
about the claim, see https://openid.net/specs/openid-connect-core-1_0.html#Claims.

use-token-introspection-endpoint
There are tokens which are not JSON WebToken(JWT) and information like the
expiry cannot be read from the token itself. In these cases, the OpenID Connect
Provider needs to call on the token introspection endpoint to get this information.
The default value is false. See https://tools.ietf.org/html/rfc7662 for more
information on token introspection.

Code Sample

278 | Server Configuration

https://openid.net/specs/openid-connect-core-1_0.html#Claims
https://tools.ietf.org/html/rfc7662

'openid-connect' => [
 'autoRedirectOnLoginPage' => false,
 'client-id' => '',
 'client-secret' => '',
 'loginButtonName' => 'OpenId Connect',
 'mode' => 'userid',
 // Only required if the OpenID Connect Provider does not support service
discovery
 'provider-params' => [
 'authorization_endpoint' => '',
 'end_session_endpoint' => '',
 'jwks_uri' => '',
 'registration_endpoint' => '',
 'token_endpoint' => '',
 'token_endpoint_auth_methods_supported' => '',
 'userinfo_endpoint' => ''
],
 'provider-url' => '',
 'search-attribute' => 'sub',
 'use-token-introspection-endpoint' => true,
],

App: Workflow / Tagging

Note: This app is for Enterprise Customers only.

Possible keys: workflow.retention_engine STRING

Provide advanced management of file tagging

Enables admins to specify rules and conditions (file size, file mimetype, group
membership and more) to automatically assign tags to uploaded files. Values: tagbased
(default) or userbased.

Code Sample

'workflow.retention_engine' => 'tagbased',

Custom Client Download Repositories

You may configure the URLs to your own download repositories for your ownCloud
desktop clients and mobile apps in config/config.php. This example shows the default
download locations:

Server Configuration | 279

<?php

 "customclient_desktop" => "https://owncloud.org/sync-clients/",
 "customclient_android" =>
"https://play.google.com/store/apps/details?id=com.owncloud.android",
 "customclient_ios" =>
"https://itunes.apple.com/us/app/owncloud/id543672169?mt=8",

Simply replace the URLs with the links to your own preferred download repos.

You may test alternate URLs without editing config/config.php by setting a test URL as
an environment variable:

export OCC_UPDATE_URL=https://test.example.com

When you’re finished testing you can disable the environment variable:

unset OCC_UPDATE_URL

Email Configuration

Introduction

ownCloud is capable of sending emails for a range of reasons. These include:

• Password reset emails
• Notifying users of new file shares
• Changes in files
• Activity notifications

To make use of them, users need to configure which notifications they want to receive.
They can do this on their Personal pages.


To be able to send emails, a functioning mail server must be available,
whether locally in your network, or remotely.

Configuring an SMTP Server

To configure ownCloud to interact with an SMTP server, you can either update
config/config.php by hand, or use the graphical Email Configuration Wizard, which
updates config/config.php for you.

The Graphical Email Configuration Wizard

The wizard supports three mail server types: SMTP, PHP, and Sendmail. Use SMTP for
a remote email server, and either PHP or Sendmail when your mail server is on the
same machine as ownCloud.


The Sendmail option refers to the Sendmail SMTP server, and any drop-
in Sendmail replacement such as Postfix, Exim, or Courier. All of these
include a sendmail binary, and are freely-interchangeable.

280 | Server Configuration

You need the following information from your mail server administrator to connect
ownCloud to a remote SMTP server:

• Encryption type: None, SSL/TLS or STARTTLS.
• The From address you want your outgoing ownCloud mails to use.
• Whether authentication is required.
• Authentication method: None, Login, Plain, or NT LAN Manager.
• The server’s IP address or fully-qualified domain name (FQDN).
• Login credentials, if required.

Your changes are saved immediately, and you can click the [Send Email] button to
test your configuration. This sends a test message to the email address you configured
on your Personal page. The test message says:

If you received this email, the settings seem to be correct.

--
ownCloud
web services under your control

Configuring PHP and Sendmail

Configuring PHP or Sendmail requires only that you select one of them, and then enter
your desired return address.

Server Configuration | 281

How do you decide which one to use? PHP mode uses your local sendmail binary. Use
this if you want to use php.ini to control some of your mail server functions, such as
setting paths, headers, or passing extra command options to the sendmail binary.
These vary according to which server you are using, so consult your server’s
documentation to see what your options are.

In most cases the smtp option is best, because it removes the extra step of passing
through PHP, and you can control all of your mail server options in one place, in your
mail server configuration.

Setting Mail Server Parameters in config.php

If you prefer, you may set your mail server parameters in config/config.php. The
following examples are for SMTP, PHP, Sendmail, and Qmail.

SMTP

If you want to send email using a local or remote SMTP server it is necessary to enter
the name or IP address of the server, optionally followed by a colon separated port
number, e.g. :425. If this value is not given the default port 25/tcp will be used unless
you change that by modifying the mail_smtpport parameter. Multiple servers can be
entered, separated by semicolons:

<?php

"mail_smtpmode" => "smtp",
"mail_smtphost" => "smtp-1.server.dom;smtp-2.server.dom:425",
"mail_smtpport" => 25,

Or:

<?php

"mail_smtpmode" => "smtp",
"mail_smtphost" => "smtp.server.dom",
"mail_smtpport" => 425,

If a malware or SPAM scanner is running on the SMTP server it might be necessary
that you increase the SMTP timeout to e.g., 30s:

282 | Server Configuration

<?php

"mail_smtptimeout" => 30,

If the SMTP server accepts insecure connections, the default setting can be used:

<?php

"mail_smtpsecure" => '',

If the SMTP server only accepts secure connections you can choose between the
following two variants:

SSL/TLS

A secure connection will be initiated using SSL/TLS via SMTPS on the default port
465/tcp:

<?php

"mail_smtphost" => "smtp.server.dom:465",
"mail_smtpsecure" => 'ssl',

STARTTLS

A secure connection will be initiated using STARTTLS via SMTP on the default port
25/tcp:

<?php

"mail_smtphost" => "smtp.server.dom",
"mail_smtpsecure" => 'tls',

An alternative is the port 587/tcp (recommended):

<?php

"mail_smtphost" => "smtp.server.dom:587",
"mail_smtpsecure" => 'tls',

Authentication

And finally it is necessary to configure if the SMTP server requires authentication, if
not, the default values can be taken as is.

Server Configuration | 283

<?php

"mail_smtpauth" => false,
"mail_smtpname" => "",
"mail_smtppassword" => "",

If SMTP authentication is required you have to set the required username and
password and can optionally choose between the authentication types LOGIN
(default) or PLAIN.

<?php

"mail_smtpauth" => true,
"mail_smtpauthtype" => "LOGIN",
"mail_smtpname" => "username",
"mail_smtppassword" => "password",

PHP Mail

If you want to use PHP mail it is necessary to have an installed and working email
system on your server. Which program in detail is used to send email is defined by the
configuration settings in the php.ini file. On *nix systems this will most likely be
Sendmail. ownCloud should be able to send email out of the box.

<?php

"mail_smtpmode" => "php",
"mail_smtphost" => "127.0.0.1",
"mail_smtpport" => 25,
"mail_smtptimeout" => 10,
"mail_smtpsecure" => "",
"mail_smtpauth" => false,
"mail_smtpauthtype" => "LOGIN",
"mail_smtpname" => "",
"mail_smtppassword" => "",

Sendmail

If you want to use the well known Sendmail program to send email, it is necessary to
have an installed and working email system on your *nix server. The Sendmail binary
(/usr/sbin/sendmail) is usually part of that system. ownCloud should be able to send
email out of the box.

284 | Server Configuration

<?php

"mail_smtpmode" => "sendmail",
"mail_smtphost" => "127.0.0.1",
"mail_smtpport" => 25,
"mail_smtptimeout" => 10,
"mail_smtpsecure" => "",
"mail_smtpauth" => false,
"mail_smtpauthtype" => "LOGIN",
"mail_smtpname" => "",
"mail_smtppassword" => "",

Qmail

If you want to use the qmail program to send email, it is necessary to have an installed
and working qmail email system on your server. The Sendmail binary
(/var/qmail/bin/sendmail) will then be used to send email. ownCloud should be able
to send email out of the box.

<?php

"mail_smtpmode" => "qmail",
"mail_smtphost" => "127.0.0.1",
"mail_smtpport" => 25,
"mail_smtptimeout" => 10,
"mail_smtpsecure" => "",
"mail_smtpauth" => false,
"mail_smtpauthtype" => "LOGIN",
"mail_smtpname" => "",
"mail_smtppassword" => "",

Send a Test Email

Regardless of how you have configured ownCloud to interact with an email server, to
test your email configuration, save your email address in your personal settings and
then use the Send email button in the Email Server section of the Admin settings
page.

Using Self-Signed Certificates

When using self-signed certificates on the remote SMTP server the certificate must be
imported into ownCloud. Please refer to import_ssl_cert for more information.

Troubleshooting

If you are unable to send email, try turning on debugging. Do this by enabling the
mail_smtpdebug parameter in config/config.php.

<?php

"mail_smtpdebug" => true;

Server Configuration | 285


Immediately after pressing the Send email button, as described
before, several SMTP → get_lines(): … messages appear on the
screen. This is expected behavior and can be ignored.

Why is my web domain different from my mail domain?

The default domain name used for the sender address is the hostname where your
ownCloud installation is served. If you have a different mail domain name you can
override this behavior by setting the following configuration parameter:

<?php

"mail_domain" => "example.com",

This setting results in every email sent by ownCloud (for example, the password reset
email) having the domain part of the sender address appear as follows

no-reply@example.com

How can I find out if an SMTP server is reachable?

Use the ping command to check the server availability

ping smtp.server.dom

PING smtp.server.dom (ip-address) 56(84) bytes of data.
64 bytes from your-server.local.lan (192.168.1.10): icmp_req=1 ttl=64
time=3.64ms

How can I find out if the SMTP server is listening on a specific TCP port?

The best way to get mail server information is to ask your mail server admin. If you are
the mail server admin, or need information in a hurry, you can use the netstat
command. This example shows all active servers on your system, and the ports they
are listening on. The SMTP server is listening on localhost port 25.

netstat -pant

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State ID/Program name
tcp 0 0 0.0.0.0:631 0.0.0.0:* LISTEN 4418/cupsd
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 2245/exim4
tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN 1524/mysqld

• 25/tcp is unencrypted smtp
• 110/tcp/udp is unencrypted pop3
• 143/tcp/udp is unencrypted imap4

286 | Server Configuration

• 465/tcp is encrypted smtps
• 993/tcp/udp is encrypted imaps
• 995/tcp/udp is encrypted pop3s

How can I determine if the SMTP server supports SMTPS?

A good indication that the SMTP server supports SMTPS is that it is listening on port
465.

How can I determine what authorization and encryption protocols the mail server
supports?

SMTP servers usually announce the availability of STARTTLS immediately after a
connection has been established. You can easily check this using the telnet command.

 You must enter the marked lines to obtain the information displayed.

telnet smtp.domain.dom 25

Trying 192.168.1.10...
Connected to smtp.domain.dom.
Escape character is '^]'.
220 smtp.domain.dom ESMTP Exim 4.80.1 Tue, 22 Jan 2013 22:39:55 +0100
EHLO your-server.local.lan # <<< enter this command
250-smtp.domain.dom Hello your-server.local.lan [ip-address]
250-SIZE 52428800
250-8BITMIME
250-PIPELINING
250-AUTH PLAIN LOGIN CRAM-MD5 # <<< Supported auth protocols
250-STARTTLS # <<< Encryption is supported
250 HELP
QUIT # <<< enter this command
221 smtp.domain.dom closing connection
Connection closed by foreign host.

Enabling Debug Mode

If you are unable to send email, it might be useful to activate further debug messages
by enabling the mail_smtpdebug parameter:

<?php

"mail_smtpdebug" => true,


Immediately after pressing the [Send email] button, as described
before, several SMTP → get_lines(): … messages appear on the
screen. This is expected behavior and can be ignored.

Server Configuration | 287

Using Email Templates

Most emails sent from ownCloud are based on editable email templates, which are a
mixture of PHP and HTML. The currently available templates are:

Email Format Description File Location

Activity notification
mail

plain text Notification of
activities that users
have

core/templates/mail.
php

enabled in the
Notifications section
of

their Personal
pages.

Lost password mail Password reset
email for users who
lose

core/templates/lostp
assword/email.php

their passwords.

New user email HTML settings/templates/e
mail.new_user.php

plain text settings/templates/e
mail.new_user_plain
_text.php

Public link share
email

HTML Notify users of new
public link shares.

core/templates/mail.
php

plain text core/templates/altm
ail.php

New file share email HTML Notify users of new
file shares.

core/templates/inter
nalmail.php

plain text core/templates/inter
nalaltmail.php

In addition to providing the email templates, this feature enables you to apply any pre-
configured themes to the email. To modify an email template to users:

1. Access the Admin page.
2. Scroll to the Mail templates section.
3. Select a template from the drop-down menu.
4. Make any desired modifications to the template.

The templates are written in PHP and HTML, and are already loaded with the relevant
variables such as username, share links, and filenames. You can, if you are careful,
edit these — even without knowing PHP or HTML. Don’t touch any of the code, but it’s
OK to edit the text portions of the messages.

For example, this the lost password mail template:

288 | Server Configuration

<?php

echo str_replace(
 '{link}',
 $_['link'],
 $l->t('Use the following link to reset your password: {link}')
);

You could change the text portion of the template, Use the following link to reset your
password: to say something else, such as:

Click the following link to reset your password.
If you did not ask for a password reset, ignore this message.

Again, be very careful to change nothing but the message text, because the tiniest
coding error will break the template.


You can edit the templates directly in the template text box, or you can
copy and paste them to a text editor for modification and then copy and
paste them back to the template text box for use when you are done.

Excluding Directories and Blacklisting Files

Definitions of terms

Blacklisted
Files that may harm the ownCloud environment like a foreign .htaccess file.
Blacklisting prevents anyone from uploading blacklisted files to the ownCloud
server.

Excluded
Existing directories on your ownCloud server, including directories on external
storage mounts, that are excluded from being processed by ownCloud. In effect they
are invisible to ownCloud.

Both types are defined in config.php. Blacklisted files and excluded directories are not
scanned by ownCloud, not viewed, not synced, and cannot be created, renamed,
deleted, or accessed via direct path input from a file manager. Even when a filepath is
entered manually via a file explorer, the path cannot be accessed.

For example configurations please see the config.sample.php file.



Many filesystems do not allow the coexistence of a file and folder with
exactly the same name on the same directory level. Therefore no
differentiation is made in processing files and folders for blacklisting or
excluding, as it would just return a deny at a later stage. With the
implementation made, you get an immediate error message.

Example: The storage backend has a reserved directory name
".snapshot" which is excluded by configuration. If you try to add a file
or folder via the browser or sync a file or folder from the client named
".snapshot", you will get an immediate ownCloud triggered deny.

Server Configuration | 289

configuration/server/config_sample_php_parameters.adoc

Impact on System Performance

If you have a filesystem mounted with 200,000 files and directories and 15 snapshots
in rotation, you would now scan and process 200,000 elements plus 200,000 x 15 =
3,000,000 elements additionally. These additional 3,000,000 elements, 15 times more
than the original quantity, would also be available for viewing and synchronisation.
Because this is a big and unnecessary overhead, most times confusing to clients,
further processing can be eliminated by using excluded directories.

Blacklisted Files

By default, ownCloud blacklists the file .htaccess to secure the running instance,
which is important when using Apache as webserver. A foreign .htaccess file could
overwrite rules defined by ownCloud. There is no explicit need to enter the file name
.htaccess as parameter to the blacklisted_files array in config.php, but you can add
more blacklisted file names if necessary. You can also prevent uploading, e.g., Outlook
.pst files, with this mechanism to avoid massive backend space allocation.

Excluded Directories

Reasons for Excluding Directories

1. Enterprise storage systems, or special filesystems like ZFS and BtrFS are capable
of snapshots. These snapshots are directories and keep point-in-time views of the
data
a. Snapshot directories are read-only
b. There is no common naming convention for these directories, and there most

likely will never be. For example, NetApp uses .snapshot and ~snapshot, EMC
e.g., .ckpt, HDS e.g., .latest and ~latest, and the ZFS filesystem uses .zfs

c. It does not make sense for these directories to be visible to users as they are
used to ease backup, restoration, and cloning

2. Directories which are part of the mounted filesystem, but must not be user
accessible/visible

3. Manual managed but user invisible backup directories

Example:

If you have a snapshot-capable storage or filesystem where snapshots are enabled and
presented to clients, each directory will contain a "special" visible directory named
e.g. .snapshot. Depending on the system, you may find underneath a list of snapshots
taken and in the next lower level the complete set of files and directories which were
present when the snapshot was created. In most systems, this mechanism is true in all
directory levels:

290 | Server Configuration

/.snapshot
 /nightly.0
 /home
 /dat
 /pictures
 file_1
 file_2
 /nightly.1
 /home
 /dat
 /pictures
 file_1
 file_2
 /nightly.2
 /home
 /dat
 /pictures
 file_1
 file_2
 ...
/home
/dat
/pictures
file_1
file_2
...

Example excluded_directories entries in config.php can look like this:

'excluded_directories' => [
 '.snapshot',
 '~snapshot',
 'dir1',
 'dir2',
],

Note that these are not pathnames, but directory names without any slashes.
Excluding dir1 excludes:

/home/dir1
/etc/stuff/dir1

But not:

/home/.dir1
/etc/stuff/mydir1

Server Configuration | 291

Reasons for Blacklisting Files

The reason for blacklisting files can be explained based on the example of a .htaccess
file. Such a file can lead to a unwanted behaviour of your webserver when visible to
ownCloud in a directory.

Example blacklisted_files entries in config.php can look like this:

'blacklisted_files' => [
 'hosts',
 'evil_script.sh',
],

Linking External Sites

You can embed external Web sites inside your ownCloud pages with the External Sites
app, as this screenshot shows.

This is useful for quick access to important Web pages such as the ownCloud manuals
and informational pages for your company, and for presenting external pages inside
your custom ownCloud branding, if you use your own custom themes.

The External sites app is included in all versions of ownCloud. Go to Apps > Not
Enabled to enable it. Then go to your ownCloud Admin page to create your links,
which are saved automatically. There is a dropdown menu to select an icon, but there
is only one default icon so you don’t have to select one. Hover your cursor to the right
of your links to make the trashcan icon appear when you want to remove them.

292 | Server Configuration

The links appear in the ownCloud dropdown menu on the top left after refreshing your
page, and have globe icons.

Your links may or may not work correctly due to the various ways that Web browsers
and Web sites handle HTTP and HTTPS URLs, and because the External Sites app
embeds external links in IFrames. Modern Web browsers try very hard to protect Web
surfers from dangerous links, and safety apps like Privacy Badger and ad-blockers may
block embedded pages. It is strongly recommended to enforce HTTPS on your
ownCloud server; do not weaken this, or any of your security tools, just to make
embedded Web pages work. After all, you can freely access them outside of ownCloud.

Most Web sites that offer login functionalities use the X-Frame-Options or Content-
Security-Policy HTTP header which instructs browsers to not allow their pages to be
embedded for security reasons (e.g. "Clickjacking"). You can usually verify the reason
why embedding the website is not possible by using your browser’s console tool. For
example, this page has an invalid SSL certificate.

Server Configuration | 293

https://www.eff.org/privacybadger

On this page, X-Frame-Options prevents the embedding.

294 | Server Configuration

There isn’t much you can do about these issues, but if you’re curious you can see what
is happening.

Hardening and Security Guidance

Introduction

ownCloud aims to ship with secure defaults that do not need to get modified by
administrators. However, in some cases some additional security hardening can be
applied in scenarios were the administrator has complete control over the ownCloud
instance. This page assumes that you run ownCloud Server on Apache2 in a Linux
environment.


ownCloud will warn you in the administration interface if some critical
security-relevant options are missing. However, it is still up to the
server administrator to review and maintain system security.

Limit on Password Length

ownCloud uses the bcrypt algorithm, and thus for security and performance reasons,
e.g., denial of service as CPU demand increases exponentially, it only verifies the first
72 characters of passwords. This applies to all passwords that you use in ownCloud:
user passwords, passwords on link shares, and passwords on external shares.

Rate Limiting

Currently ownCloud deliberately does not provide any form of rate-limiting (though it
does provide brute-force protection). This is because ownCloud needs to integrate in
to a diverse range of environments and infrastructure, which often already provide

Server Configuration | 295

https://en.m.wikipedia.org/wiki/Bcrypt
https://marketplace.owncloud.com/apps/brute_force_protection

specialized rate-limiting solutions, e.g., Apache, HAProxy, and F5.

If you are yet to implement a rate-limiting solution for your ownCloud instance, start
by retrieving a list of all active routes. This information is obtained by running occ’s
security:routes command, as in the following example.

sudo -u www-data php occ security:routes

It should print a list of all the routes, as in the following, truncated, example.

+---+-----------------+
| Path | Methods |
+---+-----------------+
| /apps/encryption/ajax/adminRecovery | POST |
| /apps/encryption/ajax/changeRecoveryPassword | POST |
| /apps/encryption/ajax/getStatus | GET |
| /apps/encryption/ajax/setEncryptHomeStorage | POST |
| /apps/encryption/ajax/updatePrivateKeyPassword | POST |
| /apps/encryption/ajax/userSetRecovery | POST |
| /apps/federatedfilesharing/ | GET |
| /apps/federatedfilesharing/notifications | POST |
+---+-----------------+

With that information, you are then able to begin customising a rate-limiting solution
specific to your ownCloud installation.

Further Reading

• Rate limiting with Apache
◦ mod_cband
◦ mod_evasive
◦ mod_ratelimit
◦ mod_security
◦ Rate limiting with Fail2Ban
◦ Fail2Ban
◦ Fail2Ban Behind A Proxy/Load Balancer

• Rate limiting with HaProxy
• Rate limiting with F5

Operating system

Give PHP read access to /dev/urandom

ownCloud uses a RFC 4086 (Randomness Requirements for Security) compliant mixer
to generate cryptographically secure pseudo-random numbers. This means that when
generating a random number ownCloud will request multiple random numbers from
different sources and derive from these the final random number.

The random number generation also tries to request random numbers from
/dev/urandom, thus it is highly recommended to configure your setup in such a way
that PHP is able to read random data from it.

296 | Server Configuration

configuration/server/occ_command.pdf#security
configuration/server/occ_command.pdf#security
http://dembol.org/blog/mod_cband/
https://github.com/jzdziarski/mod_evasive
https://httpd.apache.org/docs/2.4/mod/mod_ratelimit.html
https://johnleach.co.uk/words/2012/05/15/rate-limiting-with-apache-and-mod-security/
https://www.fail2ban.org/wiki/index.php/Main_Page
https://centos.tips/fail2ban-behind-a-proxyload-balancer/
https://gist.github.com/procrastinatio/6b6579230d99be5bfa26d04acd788e7a
https://www.fir3net.com/Loadbalancers/F5-BIG-IP/f5-ltm-ratelimiting.html
https://tools.ietf.org/html/rfc4086#section-5.2
https://tools.ietf.org/html/rfc4086#section-5.2
https://tools.ietf.org/html/rfc4086#section-5.2


When having an open_basedir configured within your php.ini file, make
sure to include /dev/urandom.

Enable hardening modules such as SELinux

It is highly recommended to enable hardening modules such as SELinux. where
possible. See SELinux Configuration to learn more about SELinux.

Deployment

Place data directory outside of the web root

It is highly recommended to place your data directory outside of the Web root (i.e.
outside of /var/www). It is easiest to do this on a new installation.

Disable preview image generation

ownCloud is able to generate preview images of common filetypes such as images or
text files. By default the preview generation for some file types that we consider
secure enough for deployment is enabled by default. However, administrators should
be aware that these previews are generated using PHP libraries written in C which
might be vulnerable to attack vectors.

For high security deployments we recommend disabling the preview generation by
setting the enable_previews switch to false in config.php. As an administrator you are
also able to manage which preview providers are enabled by modifying the
enabledPreviewProviders option switch.

Use HTTPS

Using ownCloud without using an encrypted HTTPS connection opens up your server
to a man-in-the-middle (MITM) attack, and risks the interception of user data and
passwords. It is a best practice, and highly recommended, to always use HTTPS on
production servers, and to never allow unencrypted HTTP.

How to setup HTTPS on your Web server depends on your setup; please consult the
documentation for your HTTP server. The following examples are for Apache.

Redirect all unencrypted traffic to HTTPS

To redirect all HTTP traffic to HTTPS administrators are encouraged to issue a
permanent redirect using the 301 status code. When using Apache this can be
achieved by adding a setting such as the following in the Apache VirtualHosts
configuration containing the <VirtualHost *:80> entry:

Redirect permanent / https://example.com/

Enable HTTP Strict Transport Security

While redirecting all traffic to HTTPS is good, it may not completely prevent man-in-
the-middle attacks. Thus administrators are encouraged to set the HTTP Strict
Transport Security header, which instructs browsers to not allow any connection to the
ownCloud instance using HTTP, and it attempts to prevent site visitors from bypassing
invalid certificate warnings.

This can be achieved by setting the following settings within the Apache VirtualHost
file containing the <VirtualHost *:443> entry:

Server Configuration | 297

installation/selinux_configuration.pdf

<IfModule mod_headers.c>
 Header always set Strict-Transport-Security "max-age=15552000;
includeSubDomains"
</IfModule>

If you don’t have access to your Apache configuration it is also possible to add this to
the main .htaccess file shipped with ownCloud. Make sure you’re adding it below the
line:

DO NOT CHANGE ANYTHING ABOVE THIS LINE

This example configuration will make all subdomains only accessible via HTTPS. If you
have subdomains not accessible via HTTPS, remove includeSubDomains.

 This requires the mod_headers extension in Apache.

Proper SSL configuration

Default SSL configurations by Web servers are often not state-of-the-art, and require
fine-tuning for an optimal performance and security experience. The available SSL
ciphers and options depend completely on your environment and thus giving a generic
recommendation is not really possible.

We recommend using the Mozilla SSL Configuration Generator to generate a suitable
configuration suited for your environment, and the free Qualys SSL Labs Tests gives
good guidance on whether your SSL server is correctly configured.

Also ensure that HTTP compression is disabled to mitigate the BREACH attack.

Use a dedicated domain for ownCloud

Administrators are encouraged to install ownCloud on a dedicated domain such as
cloud.domain.tld instead of domain.tld to gain all the benefits offered by the Same-
Origin-Policy.

Ensure that your ownCloud instance is installed in a DMZ

As ownCloud supports features such as Federated File Sharing we do not consider
Server Side Request Forgery (SSRF) part of our threat model. In fact, given all our
external storage adapters this can be considered a feature and not a vulnerability.

This means that a user on your ownCloud instance could probe whether other hosts
are accessible from the ownCloud network. If you do not want this you need to ensure
that your ownCloud is properly installed in a segregated network and proper firewall
rules are in place.

Serve security Related Headers by the Web server

Basic security headers are served by ownCloud already in a default environment.
These include:

• X-Content-Type-Options: nosniff: Instructs some browsers to not sniff the mimetype
of files. This is used for example to prevent browsers from interpreting text files as
JavaScript.

• X-XSS-Protection: 1; mode=block: Instructs browsers to enable their browser side
Cross-Site-Scripting filter.

298 | Server Configuration

https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://www.ssllabs.com/ssltest/

• X-Robots-Tag: none: Instructs search machines to not index these pages.
• X-Frame-Options: SAMEORIGIN: Prevents embedding of the ownCloud instance

within an iframe from other domains to prevent Clickjacking and other similar
attacks.

These headers are hard-coded into the ownCloud server, and need no intervention by
the server administrator.

For optimal security, administrators are encouraged to serve these basic HTTP
headers by the Web server to enforce them on response. To do this Apache has to be
configured to use the .htaccess file and the following Apache modules need to be
enabled:

• mod_headers
• mod_env

Administrators can verify whether this security change is active by accessing a static
resource served by the Web server and verify that the above mentioned security
headers are shipped.

Use Fail2ban

Another approach to hardening the server(s) on which your ownCloud installation rest
is using an intrusion detection system. An excellent one is Fail2ban. Fail2ban is
designed to protect servers from brute force attacks. It works by monitoring log files
(such as those for ssh, web, mail, and log servers) for certain patterns, specific to each
server, and taking actions should those patterns be found.

Actions include banning the IP from which the detected actions are being made from.
This serves to both make the process more difficult as well as to prevent DDOS-style
attacks. However, after a predefined time period, the banned IP is normally un-banned
again.

This helps if the login attempts were genuine, so the user doesn’t lock themselves out
permanently. An example of such an action is users attempting to brute force login to a
server via ssh. In this case, Fail2ban would look for something similar to the following
in /var/log/auth.log.

Mar 15 11:17:37 yourhost sshd[10912]: input_userauth_request: invalid user audra
[preauth]
Mar 15 11:17:37 yourhost sshd[10912]: pam_unix(sshd:auth): check pass; user
unknown
Mar 15 11:14:51 yourhost sshd[10835]: PAM 2 more authentication failures;
logname= uid=0 euid=0 tty=ssh ruser= rhost=221.194.44.231 user=root
Mar 15 11:14:57 yourhost sshd[10837]: pam_unix(sshd:auth): authentication
failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=221.194.44.231 user=root
Mar 15 11:14:59 yourhost sshd[10837]: Failed password for root from
221.194.44.231 port 46838 ssh2
Mar 15 11:15:04 yourhost sshd[10837]: message repeated 2 times: [Failed
password for root from 221.194.44.231 port 46838 ssh2]
Mar 15 11:15:04 yourhost sshd[10837]: Received disconnect from 221.194.44.231:
11: [preauth]


If you’re not familiar with what’s going on, this snippet highlights a
number of failed login attempts being made.

Server Configuration | 299

https://www.fail2ban.org/wiki/index.php/Main_Page

Using Fail2ban to secure an ownCloud login

On Ubuntu, you can install Fail2ban using the following commands:

apt update && apt upgrade
apt install fail2ban

Fail2ban installs several default filters for Apache, and various other services, but
none for ownCloud. Given that, we have to define our own filter. To do so, you first
need to make sure that ownCloud uses your local timezone for writing log entries;
otherwise, fail2ban cannot react appropriately to attacks. To do this, edit your
config.php file and add the following line:

'logtimezone' => 'Europe/Berlin',


Adjust the timezone to the one that your server is located in, based on
PHP’s list of supported timezones.

This change takes effect as soon as you save config.php. You can test the change by:

1. Entering false credentials at your ownCloud login screen
2. Checking the timestamp of the resulting entry in ownCloud’s log file.

Next, define a new Fail2ban filter rule for ownCloud. To do so, create a new file called
/etc/fail2ban/filter.d/owncloud.conf, and insert the following configuration:

[Definition]
failregex={.*Login failed: \'.*\' \(Remote IP: \'<HOST>\'\)"}
ignoreregex =

This filter needs to be loaded when Fail2ban starts, so a further configuration entry is
required to be added in /etc/fail2ban/jail.d/defaults-debian.conf, which you can see
below:

[owncloud]
enabled = true
port = 80,443
protocol = tcp
filter = owncloud
maxretry = 3
bantime = 10800
logpath = /var/owncloud_data/owncloud.log

This configuration:

1. Enables the filter rules for TCP requests on ports 80 and 443.
2. Bans IPs for 10800 seconds (3 hours).
3. Sets the path to the log file to analyze for malicious logins

300 | Server Configuration

https://secure.php.net/manual/en/timezones.php


The most important part of the configuration is the logpath parameter.
If this does not point to the correct log file, Fail2ban will either not
work properly or refuse to start.

After saving the file, restart Fail2ban by running the following command:

service fail2ban restart

To test that the new ownCloud configuration has been loaded, use the following
command:

fail2ban-client status

If "owncloud" is listed in the console output, the filter is both loaded and active. If you
want to test the filter, run the following command, adjusting the path to your
owncloud.log, if necessary:

fail2ban-regex /var/owncloud_data/owncloud.log /etc/fail2ban/filter.d/owncloud.conf

The output will look similar to the following, if you had one failed login attempt:

fail2ban-regex /var/www/owncloud_data/owncloud.log
/etc/fail2ban/filter.d/owncloud.conf

Running tests
=============

Use failregex file : /etc/fail2ban/filter.d/owncloud.conf
Use log file : /var/www/owncloud_data/owncloud.log

Results
=======

Failregex: 1 total
|- #) [# of hits] regular expression
| 1) [1] {.*Login failed: \'.*\' \(Remote IP: \'<HOST>\'\)"}
`-

Ignoreregex: 0 total

Date template hits:
|- [# of hits] date format
| [40252] ISO 8601
`-

Lines: 40252 lines, 0 ignored, 1 matched, 40251 missed

The Failregex counter increments by 1 for every failed login attempt. To un-ban an IP,

Server Configuration | 301

which was locked either during testing or unintentionally, use the following command:

fail2ban-client set owncloud unbanip <IP>

You can check the status of your ownCloud filter with the following command:

fail2ban-client status owncloud

This will produce an output similar to this:

Status for the jail: owncloud
|- filter
| |- File list: /var/www/owncloud_data/owncloud.log
| |- Currently failed: 1
| `- Total failed: 7
`- action
 |- Currently banned: 0
 | `- IP list:
 `- Total banned: 1

Importing System-wide and Personal SSL Certificates

Introduction

Modern Web browsers try to keep us safe, and so they blast us with scary warnings
when sites have the smallest errors in their SSL certificates, or when they use self-
signed SSL certificates. ownCloud admins encounter this when creating Federation
shares, or setting up external storage mounts. There is no reason against using self-
signed certificates on your own networks; they’re fast, free, and easy.

Importing Personal SSL Certificates

ownCloud has several methods for importing self-signed certificates so that you don’t
have to hassle with Web browser warnings. When you allow your users to create their
own external storage mounts or Federation shares, they can import SSL certificates
for those shares on their Personal pages.

Click the Import root certificate button to open a file picker. You can distribute
copies of your SSL certificates to your users (via an ownCloud share!), or users can
download them from their Web browsers. Click on the little padlock icon and click
through until you see a [View Certificate] button, then keep going until you can
download it. In Firefox and Chromium there is an [Export] button for downloading
your own copy of a site’s SSL certificate.

302 | Server Configuration

Site-wide SSL Import

The personal imports only work for individual users. You can enable site-wide SSL
certificates for all of your users on your ownCloud admin page. To enable this, you
must add this line to your config.php file:

'enable_certificate_management' => true,

Then you’ll have an [Import root certificate] button on your admin page, just like
the one on your personal page. Navigate to it by clicking Settings › General › SSL
Root Certificates which is located almost at the bottom.

Using OCC to Import and Manage SSL Certificates

The occ command has options for listing and managing your SSL certificates:

Server Configuration | 303

security:certificates list trusted certificates
security:certificates:import import trusted certificate
security:certificates:remove remove trusted certificate

See Using the occ Command to learn about how to use occ.

Enable index.php-less URLs

Introduction

Since ownCloud 9.0.3 you need to explicitly configure and enable index.php-less URLs
(e.g. https://example.com/apps/files/ instead of
https://example.com/index.php/apps/files/). The following documentation provides the
needed steps to configure this for the Apache Web server.

Prerequisites

Before being able to use index.php-less URLs you need to enable the mod_rewrite and
mod_env Apache modules. Furthermore a configured AllowOverride All directive within
the vhost of your Web server is needed. Please have a look at the Apache manual for
how to enable and configure these.

Furthermore these instructions are only working when using Apache together with the
mod_php Apache module for PHP. Other modules like php-fpm or mod_fastcgi are
unsupported.

Finally the user running your Web server (e.g. www-data) needs to be able to write
into the .htaccess file shipped within the ownCloud root directory (e.g.,
/var/www/owncloud/.htaccess). If you have applied strong permissions, the user might
be unable to write into this file and the needed update will fail. You need to revert this
strong permissions temporarily by following the steps described in setting permissions
for updating.

Configuration steps

The first step is to configure the overwrite.cli.url and htaccess.RewriteBase config.php
options (See config_sample_php_parameters). If you’re accessing your ownCloud
instance via https://example.com/ the following two options need to be added /
configured:

'overwrite.cli.url' => 'https://example.com',
'htaccess.RewriteBase' => '/',

If the instance is accessed via https://example.com/owncloud the following
configuration is needed:

'overwrite.cli.url' => 'https://example.com/owncloud',
'htaccess.RewriteBase' => '/owncloud',

As a second step ownCloud needs to enable index.php-less URLs. This is done:

• during the next update of your ownCloud instance
• by manually running the occ command occ maintenance:update:htaccess (See

occ_command)

304 | Server Configuration

configuration/server/occ_command.pdf
installation/manual_installation.pdf#set-strong-directory-permissions
maintenance/update.pdf#setting-permissions-for-updating
maintenance/update.pdf#setting-permissions-for-updating

Afterwards your instance should have index.php-less URLs enabled.

Troubleshooting

If accessing your ownCloud installation fails after following these instructions and you
see messages like this in your ownCloud log:

The requested uri(\\/login) cannot be processed by the script
'\\/owncloud\\/index.php'

make sure that you have configured the two config.php options listed above correctly.

Using the occ Command

ownCloud’s occ command (ownCloud console) is ownCloud’s command-line interface.
You can perform many common server operations with occ, such as installing and
upgrading ownCloud, managing users and groups, encryption, passwords, LDAP
setting, and more.

occ is in the owncloud/ directory; for example /var/www/owncloud on Ubuntu Linux.
occ is a PHP script. You must run it as your HTTP user to ensure that the correct
permissions are maintained on your ownCloud files and directories.

Run occ As Your HTTP User

The HTTP user is different on the various Linux distributions.

• The HTTP user and group in Debian/Ubuntu is www-data.
• The HTTP user and group in Fedora/CentOS is apache.
• The HTTP user and group in Arch Linux is http.
• The HTTP user in openSUSE is wwwrun, and the HTTP group is www.

 See Setting Strong Permissions to learn how to find your HTTP user.

If your HTTP server is configured to use a different PHP version than the default
(/usr/bin/php), occ should be run with the same version. For example, in CentOS 6.5
with SCL-PHP54 installed, the command looks like this:

sudo -u apache /opt/rh/php54/root/usr/bin/php /var/www/html/owncloud/occ



If your ownCloud instance is set up in a docker container, you need a
user in the group docker to perform occ commands. An example
command looks like this:

docker exec --user www-data <owncloud-container-name> php occ
<your-command>

For more information on docker, refer to section Installing with Docker

Example Commands

Running occ with no options lists all commands and options, like this example on
Ubuntu:

Server Configuration | 305

installation/manual_installation.pdf#set-strong-directory-permissions
installation/docker/index.pdf

sudo -u www-data php occ
ownCloud version 10.0.8

Usage:
 command [options] [arguments]

==== Options
 -h, --help Display this help message
 -q, --quiet Do not output any message
 -V, --version Display this application version
 --ansi Force ANSI output
 --no-ansi Disable ANSI output
 -n, --no-interaction Do not ask any interactive question
 --no-warnings Skip global warnings, show command output only
 -v|vv|vvv, --verbose Increase the verbosity of messages: 1 for normal output,
 2 for more verbose output and 3 for debug

Available commands:
 check Check dependencies of the server environment
 help Displays help for a command
 list Lists commands
 status Show some status information
 upgrade Run upgrade routines after installation of
 a new release. The release has to be installed before

This is the same as sudo -u www-data php occ list. Run it with the -h option for syntax
help:

sudo -u www-data php occ -h

Display your ownCloud version:

sudo -u www-data php occ -V
 ownCloud version 10.0.8

Query your ownCloud server status:

sudo -u www-data php occ status
 - installed: true
 - version: 10.0.8.5
 - versionstring: 10.0.8
 - edition: Community

occ has options, commands, and arguments. Commands are required. Options are
optional. Arguments can be required or optional. The, generic, syntax is:

306 | Server Configuration

occ [options] command [arguments]

Get detailed information on individual commands with the help command, like this
example for the maintenance:mode command.

sudo -u www-data php occ help maintenance:mode
Usage:
 maintenance:mode [options]

Options
 --on Enable maintenance mode
 --off Disable maintenance mode
 --output[=OUTPUT] Output format (plain, json or json_pretty, default is plain)
[default: "plain"]
 -h, --help Display this help message
 -q, --quiet Do not output any message
 -V, --version Display this application version
 --ansi Force ANSI output
 --no-ansi Disable ANSI output
 -n, --no-interaction Do not ask any interactive question
 --no-warnings Skip global warnings, show command output only
 -v|vv|vvv, --verbose Increase the verbosity of messages: 1 for normal output,
 2 for more verbose output and 3 for debug

The status command from above has an option to define the output format. The default
is plain text, but it can also be json

sudo -u www-data php occ status --output=json
{"installed":true,"version":"9.0.0.19","versionstring":"9.0.0","edition":""}

or json_pretty

sudo -u www-data php occ status --output=json_pretty
{
 "installed": true,
 "version": "10.0.8.5",
 "versionstring": "10.0.8",
 "edition": "Community"
}

This output option is available on all list and list-like commands, which include status,
check, app:list, config:list, encryption:status and encryption:list-modules.

Core Commands

This command reference covers the ownCloud core commands.

Server Configuration | 307

App Commands

The app commands list, enable, and disable apps.

app
 app:check-code check code to be compliant
 app:disable disable an app
 app:enable enable an app
 app:getpath Get an absolute path to the app directory
 app:list List all available apps

List Available Apps

List all of your installed apps or optionally provide a search pattern to restrict the list
of apps to those whose name matches the given regular expression. The output shows
whether they are enabled or disabled.

sudo -u www-data php occ app:list [--] [<search-pattern>]

Arguments

search-pattern Show only those apps whose names match the given search
pattern (regular expression).

Options

--disabled Only display disabled apps. If the app was previously enabled, the
app version is also displayed. When used, the output will contain
the app’s version number as well, if it was previously enabled.

--enabled Only display enabled apps. When used, the output will contain the
app’s version number as well.

--output[=OUTPU
T]

The output format to use (plain, json or json_pretty). [default:
"plain"]

--shipped=<SHIP
PED>

If SHIPPED is set to true, only shipped apps will be listed. If
SHIPPED is set to false, only non-shipped apps will be listed.

Enable an App

Enable an app, for example the Market app.

sudo -u www-data php occ app:enable market
market enabled

Disable an App

sudo -u www-data php occ app:disable market
market disabled

308 | Server Configuration


Be aware that the following apps cannot be disabled: DAV,
FederatedFileSharing, Files and Files_External.

app:check-code has multiple checks: it checks if an app uses ownCloud’s public API
(OCP) or private API (OC_), and it also checks for deprecated methods and the validity
of the info.xml file. By default all checks are enabled. The Activity app is an example of
a correctly-formatted app.

sudo -u www-data php occ app:check-code notifications
App is compliant - awesome job!

If your app has issues, you’ll see output like this.

sudo -u www-data php occ app:check-code foo_app
Analysing /var/www/owncloud/apps/files/foo_app.php
4 errors
 line 45: OCP\Response - Static method of deprecated class must not be called
 line 46: OCP\Response - Static method of deprecated class must not be called
 line 47: OCP\Response - Static method of deprecated class must not be called
 line 49: OC_Util - Static method of private class must not be called

You can get the full file path to an app.

sudo -u www-data php occ app:getpath notifications
/var/www/owncloud/apps/notifications

Background Jobs Selector

Use the background command to select which scheduler you want to use for
controlling background jobs. This is the same as using the Cron section on your
ownCloud Admin page.

background
 background:ajax Use ajax to run background jobs
 background:cron Use cron to run background jobs
 background:webcron Use webcron to run background jobs

Examples

Set the background scheduler to Ajax
sudo -u www-data php occ background:ajax

Set the background scheduler to Cron
sudo -u www-data php occ background:cron

Set the background scheduler to Webcron
sudo -u www-data php occ background:webcron

Server Configuration | 309

configuration/server/background_jobs_configuration.pdf

 See background jobs configuration to learn more.

Config Commands

The config commands are used to configure the ownCloud server.

config
 config:app:delete Delete an app config value
 config:app:get Get an app config value
 config:app:set Set an app config value
 config:import Import a list of configuration settings
 config:list List all configuration settings
 config:system:delete Delete a system config value
 config:system:get Get a system config value
 config:system:set Set a system config value

Config App Commands

These commands manage the configurations of apps.

config:app:delete

sudo -u www-data php occ config:app:delete [options] [--] <app> <name>

Arguments

app Name of the app.

name Name of the config to delete.

Options

--error-if-not
-exists

Checks whether the config exists before deleting it.

--output=[OUTPUT
]

The output format to use (plain, json or json_pretty, default is
plain).

Examples:

sudo -u www-data php occ config:app:delete myappname provisioning_api
Config value provisioning_api of app myappname deleted

The delete command will by default not complain if the configuration was not set
before. If you want to be notified in that case, set the --error-if-not-exists flag.

sudo -u www-data php occ config:app:delete doesnotexist --error-if-not-exists
Config provisioning_api of app appname could not be deleted because it did not
exist

310 | Server Configuration

configuration/server/background_jobs_configuration.pdf

config:app:get

sudo -u www-data php occ config:app:get [options] [--] <app> <name>

Arguments

app Name of the app.

name Name of the config to get.

Options

--default-value[=DEFAULT
-VALUE]

If no default value is set and the config does not exist, the
command will exit with 1.

--output=[OUTPUT] The output format to use (plain, json or json_pretty,
default is plain).

Examples

sudo -u www-data php occ config:app:get activity installed_version
2.2.1

config:app:set

sudo -u www-data php occ config:app:set [options] [--] <app> <name>

Arguments

app Name of the app.

name Name of the config to set.

Options

--value=[VALUE] The new value of the config.

--update-only Only updates the value. If it is not set before, it is not being added.

--output=[OUTPUT
]

The output format to use (plain, json or json_pretty, default is
plain).

Examples

sudo -u www-data php occ config:app:set \
 files_sharing \
 incoming_server2server_share_enabled \
 --value=true \
 --type=boolean
Config value incoming_server2server_share_enabled for app files_sharing set to yes

The config:app:set command creates the value, if it does not already exist. To update

Server Configuration | 311

an existing value, set --update-only:

sudo -u www-data php occ config:app:set \
 doesnotexist \
 --value=true \
 --type=boolean \
 --update-only
Value not updated, as it has not been set before.

General Config Commands

These commands manage listing and importing configurations.

config:import

The exported content can also be imported again to allow the fast setup of similar
instances. The import command will only add or update values. Values that exist in the
current configuration, but not in the one that is being imported are left untouched.

sudo -u www-data php occ config:import filename.json

It is also possible to import remote files, by piping the input:

sudo -u www-data php occ config:import < local-backup.json


While it is possible to update/set/delete the versions and installation
statuses of apps and ownCloud itself, it is not recommended to do this
directly. Use the occ app:enable, occ app:disable and occ update
commands instead.

config:list

The config:list command lists all configuration values for your ownCloud setup as well
as for any apps.

sudo -u www-data php occ config:list [options] [--] [<app>]

Arguments

app Name of the app. You can use "system" to get the config.php
values, or "all" (the default) for all apps and system.

Options

--private Use this option when you want to include sensitive configs, like
passwords and salts.

By default, passwords and other sensitive data are omitted from the report so that the
output can be posted publicly (e.g., as part of a bug report). You can see a sample
output in the example below.

312 | Server Configuration

{
 "system": {
 "passwordsalt": "***REMOVED SENSITIVE VALUE***",
 "secret": "***REMOVED SENSITIVE VALUE***",
 "trusted_domains": [
 "localhost",
],
 "datadirectory": "\/var\/www\/localhost\/data",
 "overwrite.cli.url": "http:\/\/localhost",
 "dbtype": "mysql",
 "version": "10.3.0.4",
 "dbname": "owncloud",
 "dbhost": "localhost",
 "dbtableprefix": "oc_",
 "dbuser": "***REMOVED SENSITIVE VALUE***",
 "dbpassword": "***REMOVED SENSITIVE VALUE***",
 "logtimezone": "UTC",
 "shareapi_allow_public_notification": "yes",
 "apps_paths": [
 {
 "path": "\/var\/www\/localhost\/apps",
 "url": "\/apps",
 "writable": false
 },
 {
 "path": "\/var\/www\/localhost\/apps-external",
 "url": "\/apps-external",
 "writable": true
 }
],
 "installed": true,
 "instanceid": "ocfp00rezy80",
 "loglevel": 2,
 "maintenance": false
 },
 "apps": {
 "backgroundjob": {
 "lastjob": "13"
 },
 "comments": {
 "enabled": "yes",
 "installed_version": "0.3.0",
 "types": "logging,dav"
 },
 "core": {
 "backgroundjobs_mode": "cron",
 "enable_external_storage": "yes",
 "first_install_version": "10.3.0.2",
 "installedat": "1569845065.1792",
 "lastcron": "1571930489",

Server Configuration | 313

 "lastupdateResult": "[]",
 "lastupdatedat": "1572536814",
 "oc.integritycheck.checker": "{\"systemtags\":{\"EXCEPTION\":{\"class\":
\"OC\\\\IntegrityCheck\\\\Exceptions\\\\MissingSignatureException\",\"message\":\"Si
gnature data not found.\"}},\"comments\":{\"EXCEPTION\":{\"class\":\"OC
\\\\IntegrityCheck\\\\Exceptions\\\\MissingSignatureException\",\"message\":\"Signat
ure data not found.\"}}}",
 "public_files": "files_sharing\/public.php",
 "public_webdav": "dav\/appinfo\/v1\/publicwebdav.php",
 "shareapi_allow_mail_notification": "yes",
 "umgmt_set_password": "false",
 "umgmt_show_backend": "true",
 "umgmt_show_email": "true",
 "umgmt_show_is_enabled": "true",
 "umgmt_show_last_login": "true",
 "umgmt_show_password": "false",
 "umgmt_show_quota": "true",
 "umgmt_show_storage_location": "false",
 "vendor": "owncloud"
 },
 "dav": {
 "enabled": "yes",
 "installed_version": "0.5.0",
 "types": "filesystem"
 },
 "federatedfilesharing": {
 "enabled": "yes",
 "installed_version": "0.5.0",
 "types": "filesystem"
 },
 "federation": {
 "enabled": "yes",
 "installed_version": "0.1.0",
 "types": "authentication"
 },
 "files": {
 "cronjob_scan_files": "500",
 "enabled": "yes",
 "installed_version": "1.5.2",
 "types": "filesystem"
 },
 "files_external": {
 "allow_user_mounting": "yes",
 "enabled": "yes",
 "installed_version": "0.7.1",
 "types": "filesystem",
 "user_mounting_backends": "googledrive,owncloud,sftp,smb,dav,\\OC\\Files
\\Storage\\SFTP_Key,\\OC\\Files\\Storage\\SMB_OC"
 },
 "files_sharing": {

314 | Server Configuration

 "enabled": "yes",
 "installed_version": "0.12.0",
 "types": "filesystem"
 },
 "files_trashbin": {
 "enabled": "yes",
 "installed_version": "0.9.1",
 "types": "filesystem"
 },
 "files_versions": {
 "enabled": "yes",
 "installed_version": "1.3.0",
 "types": "filesystem"
 },
 "provisioning_api": {
 "enabled": "yes",
 "installed_version": "0.5.0",
 "types": "prevent_group_restriction"
 },
 "systemtags": {
 "enabled": "yes",
 "installed_version": "0.3.0",
 "types": "logging"
 },
 "updatenotification": {
 "enabled": "yes",
 "installed_version": "0.2.1",
 "types": ""
 }
 }
}

Displaying Sensitive Information

To generate a full report which includes sensitive values, such as passwords and salts,
use the --private option, as in the following example.

sudo -u www-data php occ config:list --private

Filtering Information Reported

The output can be filtered to just the core information, core and apps, or one specific
app. In the example below, you can see how to filter for each of these categories.

Server Configuration | 315

List only system configuration details
sudo -u www-data php occ config:list -- system

List system and app configuration details
This is the default, so doesn't need to be explicitly specified
sudo -u www-data php occ config:list -- all

List configuration details of the dav app
sudo -u www-data php occ config:list -- dav

Below is an example of listing the config details for a single app.

{
 "apps": {
 "files_versions": {
 "enabled": "yes",
 "installed_version": "1.3.0",
 "types": "filesystem"
 }
 }
}

Config System Commands

These commands manage system configurations.

config:system:delete

sudo -u www-data php occ config:system:delete [options] [--] <name> (<name>)...

Arguments

name Name of the config to delete, specify multiple for array parameter.

Options

--error-if-not
-exists

Checks whether the config exists before deleting it.

--output=[OUTPUT
]

The output format to use (plain, json or json_pretty, default is
plain).

Examples:

sudo -u www-data php occ config:system:delete maintenance:mode
System config value maintenance:mode deleted

316 | Server Configuration

config:system:get

sudo -u www-data php occ config:system:get [options] [--] <name> (<name>)...

Arguments

name Name of the config to get. Specify multiple for array parameter.

Options

--default-value[=DEFAULT
-VALUE]

If no default value is set and the config does not exist, the
command will exit with 1.

--output=[OUTPUT] The output format to use (plain, json or json_pretty,
default is plain).

Examples:

sudo -u www-data php occ config:system:get version
10.7.0.4

config:system:set

sudo -u www-data php occ config:system:set [options] [--] <name> (<name>)...

Arguments

name Name of the config parameter, specify multiple for array
parameter.

Options

--type=[TYPE] Value type to use (string, integer, double, boolean, json, default is
string).
Note: you must use json to write multi array values.

--value=[VALUE] The new value of the config.

--update-only Only updates the value. If it is not set before, it is not being added.

--output=[OUTPUT
]

The output format to use (plain, json or json_pretty, default is
plain).


In order to write a boolean, float, JSON, or integer value to the
configuration file, you need to specify the type of your command. This
applies only to the config:system:set command. See table above for
available types.

Examples

Disable the maintenance mode:

Server Configuration | 317

sudo -u www-data php occ config:system:set maintenance \
 --value=false \
 --type=boolean

ownCloud is in maintenance mode - no app have been loaded
System config value maintenance set to boolean false

Create the app_paths config setting (using a JSON payload because of multi array
values):

sudo -u www-data php occ config:system:set apps_paths \
 --type=json \
 --value='[
 {
 "path":"/var/www/owncloud/apps",
 "url":"/apps",
 "writable": false
 },
 {
 "path":"/var/www/owncloud/apps-external",
 "url":"/apps-external",
 "writable": true
 }
]'

Adding Redis to the configuration:

sudo -u www-data php occ config:system:set \
 redis \
 --value '{"host": "127.0.0.1", "port": "6379"}' \
 --type json

System config value redis set to json {"host": "127.0.0.1", "port": "6379"}

Some configurations (e.g., the trusted domain setting) are an array of data. The array
starts counting with 0. In order to set (and also get) the value of one key, you can
specify multiple config names separated by spaces:

sudo -u www-data php occ config:system:get trusted_domains
localhost
owncloud.local
sample.tld

To replace sample.tld with example.com trusted_domains ⇒ 2 needs to be set:

318 | Server Configuration

sudo -u www-data php occ config:system:set trusted_domains 2
--value=example.com
System config value trusted_domains => 2 set to string example.com

sudo -u www-data php occ config:system:get trusted_domains
localhost
owncloud.local
example.com

Config Reports

If you’re working with ownCloud support and need to send them a configuration
summary, you can generate it using the configreport:generate command. This
command generates the same JSON-based report as the Admin Config Report, which
you can access under admin → Settings → Admin → General → Generate Config Report
→ Download ownCloud config report.

From the command-line in the root directory of your ownCloud installation, run it as
your webserver user as follows, (assuming your webserver user is www-data):

sudo -u www-data php occ configreport:generate

This will generate the report and send it to STDOUT. You can optionally pipe the output
to a file and then attach it to an email to ownCloud support, by running the following
command:

sudo -u www-data php occ configreport:generate > generated-config-report.txt

Alternatively, you could generate the report and email it all in one command, by
running:

sudo -u www-data php occ configreport:generate | mail \
 -s "configuration report" \
 -r <the email address to send from> \
 support@owncloud.com

 These commands are not available in single-user (maintenance) mode.

Command Line Installation

ownCloud can be installed entirely from the command line. After downloading the
tarball and copying ownCloud into the appropriate directories, or after installing
ownCloud packages (See Linux Package Manager Installation and Manual Installation
on Linux) you can use occ commands in place of running the graphical Installation
Wizard.


These instructions assume that you have a fully working and configured
webserver. If not, please refer to the documentation on configuring
configure-web-server for detailed instructions.

Apply correct permissions to your ownCloud directories; see strong_permissions. Then

Server Configuration | 319

installation/linux_installation.pdf
installation/manual_installation.pdf
installation/manual_installation.pdf
installation/manual_installation.pdf
installation/command_line_installation.pdf

choose your occ options. This lists your available options:

sudo -u www-data php occ occ
ownCloud is not installed - only a limited number of commands are available
ownCloud version 10.0.8

Usage:
 [options] command [arguments]

== Options
 --help (-h) Display this help message
 --quiet (-q) Do not output any message
 --verbose (-v|vv|vvv) Increase the verbosity of messages: 1 for normal output,
 2 for more verbose output and 3 for debug
 --version (-V) Display this application version
 --ansi Force ANSI output
 --no-ansi Disable ANSI output
 --no-interaction (-n) Do not ask any interactive question

Available commands:
 check Check dependencies of the server environment
 help Displays help for a command
 list Lists commands
 status Show some status information
 app
 app:check-code Check code to be compliant
 l10n
 l10n:createjs Create javascript translation files for a given app
 maintenance
 maintenance:install Install ownCloud

Command Description

Display your maintenance:install options.

sudo -u www-data php occ help maintenance:install
ownCloud is not installed - only a limited number of commands are available
Usage:

maintenance:install [--database=["..."]] [--database-connection-string=["..."]] \
 [--database-name=["..."]] [--database-host=["..."]] \
 [--database-user=["..."]] [--database-pass=["..."]] \
 [--database-table-prefix=["..."]] [--admin-user=["..."]] \
 [--admin-pass=["..."]] [--data-dir=["..."]]

Options

320 | Server Configuration

--database Supported database type (default: sqlite). The supported values
are:

• mysql: MySQL/MariaDB
• oci: Oracle (ownCloud Enterprise edition only)
• pgsql: PostgreSQL
• sqlite: SQLite3 (ownCloud Community edition only)

--database
-connection-string

An Oracle-specific connection string.


As soon as this parameter is provided, other
parameters like database-host and database-
name are not used and do not need to be
provided. For example:

Example

sales=
 (DESCRIPTION=
 (ADDRESS= (PROTOCOL=tcp)(HOST=sales-
server)(PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=sales.us.acme.com)))

--database-name Name of the database.

--database-host Hostname of the database (default: localhost).

--database-user User name to connect to the database.

--database-pass Password of the database user.

--database-table
-prefix

Prefix for all tables (default: oc_).

--admin-user Password of the admin account.

--data-dir Path to data directory (default: /var/www/owncloud/data).

Example

This example completes the installation:

cd /var/www/owncloud/
sudo -u www-data php occ maintenance:install \
 --database "mysql" \
 --database-name "owncloud" \
 --database-user "root" \
 --database-pass "password" \
 --admin-user "admin" \
 --admin-pass "password"
ownCloud is not installed - only a limited number of commands are available
ownCloud was successfully installed

Server Configuration | 321

Command Line Upgrade

These commands are available only after you have downloaded upgraded packages or
tar archives, and before you complete the upgrade. List all options, like this example
on CentOS Linux:

Command Description

sudo -u www-data php occ upgrade --help
Usage:
upgrade [options]

Options

--major Automatically update apps to new major versions during minor
updates of ownCloud Server.

--no-app-disable Skip disabling of third party apps.

When you are performing an update or upgrade on your ownCloud server (see the
Maintenance section of this manual), it is better to use occ to perform the database
upgrade step, rather than the Web GUI, in order to avoid timeouts. PHP scripts
invoked from the Web interface are limited to 3600 seconds. In larger environments
this may not be enough, leaving the system in an inconsistent state. After performing
all the preliminary steps (see the maintenance upgrade documentation) use this
command to upgrade your databases, like this example on CentOS Linux:

sudo -u www-data php occ upgrade
ownCloud or one of the apps require upgrade - only a limited number of
commands are available
Turned on maintenance mode
Checked database schema update
Checked database schema update for apps
Updated database
Updating <activity> ...
Updated <activity> to 2.1.0
Update successful
Turned off maintenance mode

Note how it details the steps. Enabling verbosity displays timestamps:

sudo -u www-data php occ upgrade -v
ownCloud or one of the apps require upgrade - only a limited number of commands
are available
2017-06-23T09:06:15+0000 Turned on maintenance mode
2017-06-23T09:06:15+0000 Checked database schema update
2017-06-23T09:06:15+0000 Checked database schema update for apps
2017-06-23T09:06:15+0000 Updated database
2017-06-23T09:06:15+0000 Updated <files_sharing> to 0.6.6
2017-06-23T09:06:15+0000 Update successful
2017-06-23T09:06:15+0000 Turned off maintenance mode

322 | Server Configuration

maintenance/upgrade.pdf

If there is an error it throws an exception, and the error is detailed in your ownCloud
logfile, so you can use the log output to figure out what went wrong, or to use in a bug
report.

Turned on maintenance mode
Checked database schema update
Checked database schema update for apps
Updated database
Updating <files_sharing> ...
Exception
ServerNotAvailableException: LDAP server is not available
Update failed
Turned off maintenance mode

DAV Commands

A set of commands to create address books, calendars, and to migrate address books:

dav
 dav:cleanup-chunks Cleanup outdated chunks
 dav:create-addressbook Create a dav address book
 dav:create-calendar Create a dav calendar
 dav:sync-birthday-calendar Synchronizes the birthday calendar
 dav:sync-system-addressbook Synchronizes users to the system address book

 These commands are not available in single-user (maintenance) mode.

dav:cleanup-chunks cleans up outdated chunks (uploaded files) more than a certain
number of days old. By default, the command cleans up chunks more than 2 days old.
However, by supplying the number of days to the command, the range can be
increased. For example, in the example below, chunks older than 10 days will be
removed.

sudo -u www-data php occ dav:cleanup-chunks 10

example output
Cleaning chunks older than 10 days(2017-11-08T13:13:45+00:00)
Cleaning chunks for admin
 0 [>---------------------------]

The syntax for dav:create-addressbook and dav:create-calendar is dav:create-
addressbook [user] [name]. This example creates the addressbook mollybook for the
user molly:

sudo -u www-data php occ dav:create-addressbook molly mollybook

This example creates a new calendar for molly:

Server Configuration | 323

sudo -u www-data php occ dav:create-calendar molly mollycal

Molly will immediately see these on her Calendar and Contacts pages. Your existing
calendars and contacts should migrate automatically when you upgrade. If something
goes wrong you can try a manual migration. First delete any partially-migrated
calendars or address books. Then run this command to migrate user’s contacts:

sudo -u www-data php occ dav:migrate-addressbooks [user]

Run this command to migrate calendars:

sudo -u www-data php occ dav:migrate-calendars [user]

dav:sync-birthday-calendar adds all birthdays to your calendar from address books
shared with you. This example syncs to your calendar from user bernie:

sudo -u www-data php occ dav:sync-birthday-calendar bernie

dav:sync-system-addressbook synchronizes all users to the system addressbook.

sudo -u www-data php occ dav:sync-system-addressbook

Database Conversion

The SQLite database is good for testing, and for ownCloud servers with small single-
user workloads that do not use sync clients, but production servers with multiple users
should use MariaDB, MySQL, or PostgreSQL. You can use occ to convert from SQLite
to one of these other databases.

db
 db:convert-type Convert the ownCloud database to the newly configured one

You need:

• Your desired database and its PHP connector installed.
• The login and password of a database admin user.
• The database port number, if it is a non-standard port.

This is example converts SQLite to MySQL/MariaDB:

sudo -u www-data php occ db:convert-type mysql oc_dbuser 127.0.0.1 oc_database

 For a more detailed explanation see converting database types.

Full Text Search

Use these commands when you manage full text search related tasks.

324 | Server Configuration

configuration/database/db_conversion.pdf

Command Description

search
 search:index:create Create initial Search Index for one or all users.
 This command could not update the search index correctly
 after the initial indexing.
 search:index:rebuild Rebuild the search index for a given User.
 If you want to rebuild the whole index, run "search:index:reset"
 and then "search:index:build --all"
 search:index:reset Reset the index
 search:index:update Update the search index by running all pending background
jobs.

Create the Full Text Search Index

The command search:index:create creates the initial full text search index for one, or
all, users.

sudo -u www-data php occ search:index:create <user_id> (<user_id>)...

Arguments

<user_id> The id of the user (or space-separated list of user ids) to create a
full text search index for. A full text search index is created for all
users, if this value is omitted.

Example 1

This example creates a full text search index for the user with user id testuser.

sudo -u www-data php occ search:index:create testuser

Indexing user testuser

Example 2

This example creates a full text search index for the users with user ids admin and
testuser.

sudo -u www-data php occ search:index:create admin testuser

Indexing user admin
Indexing user testuser

Rebuild the Full Text Search Index

The command search:index:rebuild rebuilds the full text search index for one, multiple,
or all users.

Server Configuration | 325

sudo -u www-data php occ search:index:rebuild <user_id> (<user_id>)...

Arguments

<user_id> The id of the user (or space-separated list of user ids) to rebuild a full
text search index for.

--all Rebuild the index for all users.

-f --force Use this option to reset the index without further questions.

Example 1

This example rebuilds the full text search index for the user with user id testuser.

Listing 8. Rebuild the index for a single user

sudo -u www-data php occ search:index:rebuild testuser

Indexing user testuser

This will delete all full text search index data for testuser! Do you want to proceed?
 [0] no
 [1] yes
 > 1
Rebuilding full text search Index for testuser

Example 2

This example rebuilds the full text search index for the users with user ids admin and
testuser.

Listing 9. Rebuild the index for multiple users

sudo -u www-data php occ search:index:rebuild admin testuser

This will delete all search index data for admin, testuser! Do you want to proceed?
 [0] no
 [1] yes
 > 1
Rebuilding Search Index for admin
Rebuilding Search Index for testuser

Rebuild the Entire Index

The entire index can be rebuilt by running the following two commands:

sudo -u www-data php occ search:index:reset
sudo -u www-data php occ search:index:build --all

326 | Server Configuration

Reset the Full Text Search Index

The command search:index:reset resets (recreates and clears) the full text search
index for all users.

sudo -u www-data php occ search:index:reset

Arguments

-f --force Use this option to reset the index without further questions.

Example

sudo -u www-data php occ search:index:reset
This will delete the whole search index! Do you want to proceed?
 [0] no
 [1] yes
 > 1
Search index has been reset.

Update the Full Text Search Index

The command search:index:update updates the full text search index by running all
pending background jobs.

sudo -u www-data php occ search:index:update

Arguments

-q --quiet Suppress all output from the command.

Example

This example updates the full text search index for all users.

sudo -u www-data php occ search:index:update
Start Updating the Elastic search index:
No pending jobs found.

Enable and Disable App Mode

To do an initial full indexing without the full text search_elastic app interfering, it can
be put in passive mode.

sudo -u www-data php occ config:app:set search_elastic mode --value passive

When the search_elastic app is in passive mode:

• The administrator will be able to run occ commands.

Server Configuration | 327

• The search_elastic app will not index any changes by itself.
• Search results will still be based on the core search.

Switching back to active mode can be done by running the following command:

sudo -u www-data php occ config:app:set search_elastic mode --value active

Configure Full Text Search to Only Index Metadata

If you only want to use the search_elastic app as a more scalable filenames search, you
can disable content indexing by setting nocontent to true (default is false), as in the
example below.

sudo -u www-data php occ config:app:set search_elastic nocontent --value true


if this setting is reverted to false after being set to true, all files must be
reindexed. Setting it to true does not require reindexing.

Encryption

occ includes a complete set of commands for managing encryption. When using a HSM
(Hardware Security Module, can also be emulated by software), additional occ
encryption-related commands can be used.

encryption
 config:app:set encryption encryptHomeStorage Encrypt the users home storage

 encryption:change-key-storage-root Change key storage root
 encryption:decrypt-all Disable server-side encryption and decrypt all files
 encryption:disable Disable encryption
 encryption:enable Enable encryption
 encryption:encrypt-all Encrypt all files for all users
 encryption:fix-encrypted-version Fix the encrypted version if the encrypted file(s)
are
 not downloadable.
 encryption:list-modules List all available encryption modules
 encryption:migrate Initial migration to encryption 2.0
 encryption:recreate-master-key Replace existing master key with new one.
Encrypt the
 file system with newly created master key
 encryption:select-encryption-type Select the encryption type. The encryption
types available
 are: masterkey and user-keys. There is also no way to
 disable it again.
 encryption:set-default-module Set the encryption default module
 encryption:show-key-storage-root Show current key storage root
 encryption:status Lists the current status of encryption

Commands only available when using HSM. For details see the HSM occ
documentation below.

328 | Server Configuration

encryption
 encryption:hsmdaemon Export or Import the Masterkey
 encryption:hsmdaemon:decrypt Decrypt a String
 config:app:set encryption Various encryption configuration commands for
HSM

Status

occ encryption:status shows whether you have active encryption and your default
encryption module. To enable encryption you must first enable the Encryption app and
then run occ encryption:enable:

sudo -u www-data php occ app:enable encryption
sudo -u www-data php occ encryption:enable
sudo -u www-data php occ encryption:status
 - enabled: true
 - defaultModule: OC_DEFAULT_MODULE

Encrypt the Users Home Storage

Server-side encryption for local storage like the users home and remote storages like
Google Drive can operate independently of each other. By doing so, you can encrypt a
remote storage without also having to encrypt the users home storage on your
ownCloud server. Possible values are 0 and 1

config:app:set encryption encryptHomeStorage --value '1'

Change Key Storage Root

encryption:change-key-storage-root is for moving your encryption keys to a different
folder. It takes one argument, newRoot, which defines your new root folder. The folder
must exist, and the path is relative to your root ownCloud directory.

sudo -u www-data php occ encryption:change-key-storage-root ../../etc/oc-keys

You can see the current location of your keys folder:

sudo -u www-data php occ encryption:show-key-storage-root
Current key storage root: default storage location (data/)

List Modules

encryption:list-modules displays your available encryption modules. You will see a list
of modules only if you have enabled the Encryption app. Use encryption:set-default-
module [module name] to set your desired module.

Encrypt All

encryption:encrypt-all encrypts all data files for all users. You must first put your
ownCloud server into single-user mode to prevent any user activity until encryption is

Server Configuration | 329

completed.

Arguments

-y or --yes Answer yes to all questions. This argument automatically answers,
potential, questions with "yes", which is particularly important for
automated deployments with Ansible or similar tools.

Decrypt All

encryption:decrypt-all decrypts all user data files, or optionally a single user:

sudo -u www-data php occ encryption:decrypt freda

Users must have enabled recovery keys on their Personal pages. You must first put
your ownCloud server into single-user mode, using the maintenance commands, to
prevent any user activity until decryption is completed.

Arguments

-m=[METHOD] Accepts the methods:
recovery or password
If the recovery method is chosen, then the recovery password will
be used to decrypt files.
If the password method is chosen, then individual user passwords
will be used to decrypt files.

-c=[COMMAND] Accepts the commands:
yes or no

This lets the command know whether to ask for permission to
continue or not.

Fix Encrypted Version

encryption:fix-encrypted-version fixes the encrypted version of files, if the encrypted
file(s) are not downloadable, for a given user.

Arguments

user The id of the user whose files need fixing.

Method Descriptions

Recovery method

This method reads the value from the environment variable
OC_RECOVERY_PASSWORD. This variable bounds the value of recovery password set in
the encryption page. If this variable is not set the recovery process will be halted. This
has to be used for decrypting all users. While opting recovery method user should not
forget to set OC_RECOVERY_PASSWORD in the shell.

Password method

This method reads the value from the environment variable OC_PASSWORD. This
variable bounds the value of user password. The password which user uses to login to

330 | Server Configuration

oC account. When password method is opted the user needs to set this variable in the
shell.

Continue Option Description

The continue option can be used to by pass the permissions asked like yes or no while
decrypting the file system. If the user is sure about what he/she is doing with the
command and would like to proceed, then -c yes when provided to the command would
not ask permissions. If -c no is passed to the command, then permissions would be
asked to the user. It becomes interactive.

Use encryption:disable to disable your encryption module. You must first put your
ownCloud server into single-user mode to prevent any user activity.

encryption:migrate migrates encryption keys after a major ownCloud version upgrade.
You may optionally specify individual users in a space-delimited list. See encryption
configuration to learn more.

encryption:recreate-master-key decrypts the ownCloud file system, replaces the
existing master key with a new one, and encrypts the entire ownCloud file system with
the new master key. Given the size of your ownCloud filesystem, this may take some
time to complete. However, if your filesystem is quite small, then it will complete quite
quickly. The -y switch can be supplied to automate acceptance of user input.

HSM Related Commands

Export or Import the Masterkey

sudo -u www-data php occ encryption:hsmdaemon [options]

Options

--export
-masterkey

Export the private master key in base64

--import
-masterkey=
IMPORT-
MASTERKEY

Import a base64 encoded private masterkey.

--export-masterkey prints the base64_encode of the file
data/files_encryption/OC_DEFAULT_MODULE/master_*.privateKey.

The private key file in the directory may named like master_08ea43b7.privateKey.

Test to Decrypt a String

Allows to test the hsmdaemon setup by providing an encrypted string to ownCloud and
test if it can be decrypted.

sudo -u www-data php occ encryption:hsmdaemon:decrypt [options] [--] <decrypt>

Arguments

decrypt The string to decrypt

Server Configuration | 331

configuration/files/encryption/encryption_configuration.pdf
configuration/files/encryption/encryption_configuration.pdf

Options

--username[=USE
RNAME]

The name of the user who is able to decrypt the provided string

--keyId[=KEYID] The keyId which was used to encrypt the provided string

Set the HSM URL

Set the url on which the hsmdaemon REST-API is reachable.

sudo -u www-data php occ config:app:set encryption hsm.url --value
'http://127.0.0.1:8513'

Set the JSON Web Token Secret

To access the hsmdaemon API, ownCloud must authenticate with a JWT (JSON Web
Token). The given secret is shared between the hsdmdaemon (see the
hsmdaemon.toml configuration file) and ownCloud to sign the JWT. See the HSM
documentation for an example how to generate a secret.

sudo -u www-data php occ config:app:set encryption hsm.jwt.secret --value
'7a7d1826-b514-4d9f-afc7-a7485084e8de'

Set the JWT Clockskew

The JWT described above has an expiry timestamp. In case the time clocks on
ownCloud and hsmdaemon system drift or skew appart, additional time is added to the
expiry time to counteract this situation. Set or change the clockskew only if ownCloud
advises to do so. Defaults to 120, value is in seconds.

sudo -u www-data php occ config:app:set encryption hsm.jwt.clockskew --value
'120'

Federation Sync

Synchronize the address books of all federated ownCloud servers.

Servers connected with federation shares can share user address books, and auto-
complete usernames in share dialogs. Use this command to synchronize federated
servers:

sudo -u www-data php occ federation:sync-addressbooks


This command is only available when the "Federation" app (federation)
is enabled.

File Operations

occ has five commands for managing files in ownCloud.

332 | Server Configuration

configuration/server/security/hsmdeamon/index.pdf
configuration/server/security/hsmdeamon/index.pdf

files
 files:check-cache Check if the target file exists in the primary storage
 files:checksums:verify Get all checksums in filecache and compares them by
 recalculating the checksum of the file.
 files:cleanup Deletes orphaned file cache entries.
 files:scan Rescans the filesystem.
 files:transfer-ownership All files and folders are moved to another user
 - outgoing shares are moved as well (incoming shares are
 not moved as the sharing user holds the ownership of the
respective files).
 files:troubleshoot-transfer-ownership
 Scan for problems that might have occurred while running
ownership transfer

 These commands are not available in single-user (maintenance) mode.

The files:check-cache command

The main purpose for this command is, to clean the cache for objectstores (objectstore
and files_primary_S3 apps) as primary storage, but it is not limited to only those. It
can be used for any other storage type as long it is the primary storage.

Files in the primary storage could be deleted outside of ownCloud, leaving information
in ownCloud’s file cache. This command intends to check if the target file can be read
from the primary backend storage and if not, allows you to remove the information
cached.



Removing files directly from the primary storage is not supported and
should not happen. As such, the cases where you need to run this
command should be extremely rare. This is why this command is only
provided to check for one file instead of scanning the whole of
ownCloud’s filesystem.

sudo -u www-data php occ files:check-cache --help
 Usage:
 files:check-cache [options] [--] <uid> <target-file>

Arguments

uid The user (user id) who owns the file

target-file The file we want to check

Options

--remove Remove the file from the cache if it’s missing in the backend

Examples of checking files for user maria:

Server Configuration | 333

sudo -u www-data php occ files:check-cache maria welcome.txt

welcome.txt has been accessed properly

sudo -u www-data php occ files:check-cache maria maria@smbhome/myfile.txt

Ignoring maria@smbhome/myfile.txt because it is shared or not inside the primary
storage

The files:checksums:verify command

ownCloud supports file integrity checking, by computing and matching checksums.
Doing so ensures that transferred files arrive at their target in the exact state as they
left their origin.

In some rare cases, wrong checksums are written to the database which leads to
synchronization issues, such as with the Desktop Client. To mitigate such problems a
new command is available: occ files:checksums:verify.

Executing the command recalculates checksums, either for all files of a user or within
a specified filesystem path on the designated storage. It then compares them with the
values in the database. The command also offers an option to repair incorrect
checksum values (-r, --repair).


Executing this command might take some time depending on the file
count.

Below is sample output that you can expect to see when using the command.

sudo -u www-data php occ files:checksums:verify

This operation might take very long.
Mismatch for files/welcome.txt:
 Filecache: SHA1:eeb2c08011374d8ad4e483a4938e1aa1007c089d
MD5:368e3a6cb99f88c3543123931d786e21 ADLER32:c5ad3a63
 Actual: SHA1:da39a3ee5e6b4b0d3255bfef95601890afd80709
MD5:d41d8cd98f00b204e9800998ecf8427e ADLER32:00000001
Mismatch for thumbnails/9/2048-2048-max.png:
 Filecache: SHA1:2634fed078d1978f24f71892bf4ee0e4bd0c3c99
MD5:dd249372f7a68c551f7e6b2615d49463 ADLER32:821230d4
 Actual: SHA1:da39a3ee5e6b4b0d3255bfef95601890afd80709
MD5:d41d8cd98f00b204e9800998ecf8427e ADLER32:00000001

Options

-r, --repair Repair filecache-entry with mismatched checksums.

-u, --user=USER Specific user to check.

334 | Server Configuration

-p, --path=PATH Path to check relative to user folder. [default: ""]. For example, if
the user’s id was "john" and the --path value was "tree/apple", the
command would check the ownCloud directory
/john/files/tree/apple.

The files:cleanup command

files:cleanup tidies up the server’s file cache by deleting all file entries that have no
matching entries in the storage table.

The files:scan command

The files:scan command

• Scans for new files.
• Scans not fully scanned files.
• Repairs file cache holes.
• Updates the file cache.

File scans can be performed per-user, for a space-delimited list of users, for groups of
users, and for all users.

sudo -u www-data php occ files:scan --help
 Usage:
 files:scan [options] [--] [<user_id>]...

Arguments

user_id Will rescan all files of the given user(s).

Options

--output=[OUTPUT
]

The output format to use (plain, json or json_pretty, default is
plain).

-p --path=[PATH] Limit rescan to this path, eg. --path="/alice/files/Music", the
user_id is determined by the path and the user_id parameter and
--all are ignored.

--group=[GROUP] Scan user(s) under the group(s). This option can be used as
--group=foo --group=bar to scan groups foo and bar (multiple
values allowed)

-g
--groups=[GROUP]

Scan user(s) under the group(s). This option can be used as
--groups=foo,bar to scan groups foo and bar (multiple values
allowed separated by commas)

-q --quiet Do not output any message.

--all Will rescan all files of all known users.

--repair Will repair detached filecache entries (slow).

--unscanned Only scan files which are marked as not fully scanned.

 If not using --quiet, statistics will be shown at the end of the scan.

Server Configuration | 335

The --path Option

When using the --path option, the path must be in one of the following formats:

"user_id/files/path"
"user_id/files/mount_name"
"user_id/files/mount_name/path"

For example:

--path="/alice/files/Music"

In the example above, the user_id alice is determined implicitly from the path
component given. To get a list of scannable mounts for a given user, use the following
command:

sudo -u www-data php occ files_external:list user_id


Mounts are only scannable at the point of origin. Scanning of shares
including federated shares is not necessary on the receiver side and
therefore not possible.


Mounts based on session credentials can not be scanned as the users
credentials are not available to the occ command set.

The --path, --all, --group, --groups and [user_id] parameters are exclusive - only one
must be specified.

The --repair Option

As noted above, repairs can be performed for individual users, groups of users, and for
all users in an ownCloud installation. What’s more, repair scans can be run even if no
files are known to need repairing and if one or more files are known to be in need of
repair. Two examples of when files need repairing are:

• If folders have the same entry twice in the web UI (known as a 'ghost folder'), this
can also lead to strange error messages in the desktop client.

• If entering a folder doesn’t seem to lead into that folder.


We strongly suggest that you backup the database before running this
command.

The --repair option can be run within two different scenarios:

• Requiring a downtime when used on all affected storages at once.
• Without downtime, filtering by a specified User Id.

The following commands show how to enable single user mode, run a repair file scan
in bulk on all storages, and then disable single user mode. This way is much faster
than running the command for every user separately, but it requires single user mode.

336 | Server Configuration

sudo -u www-data php occ maintenance:singleuser --on
sudo -u www-data php occ files:scan --all --repair
sudo -u www-data php occ maintenance:singleuser --off

The following command filters by the storage of the specified user.

sudo -u www-data php occ files:scan USERID --repair


If many users are affected, it could be convenient to create a shell
script, which iterates over a list of User ID’s.

The files:transfer-ownership command

You may transfer all files and outgoing shares from one user to another.

Incoming shares are not transferred.

If the target user does not exist - he will be created.

This command is useful before removing a user.

sudo -u www-data php occ files:transfer-ownership --help
 Usage:
 files:transfer-ownership [options] [--] <source-user> <destination-user>

Arguments

source-user owner of files which shall be moved

destination-user user who will be the new owner of the files

Options

--path=[PATH] selectively provide the path to transfer.
For example --path="folder_name"

-s,
--accept-skipped-shares

always confirm to continue in case of skipped shares.

For example, to move all files from <source-user> to <destination-user>, use the
following command:

sudo -u www-data php occ files:transfer-ownership \
 <source-user> \
 <destination-user>

You can also move a limited set of files from <source-user> to <destination-user> by
making use of the --path switch, as in the example below. Ownership of folder/to/move
and all files and folders which it contains will be transferred to <destination-user>.

Server Configuration | 337

sudo -u www-data php occ files:transfer-ownership \
 --path="folder/to/move" \
 <source-user> \
 <destination-user>

Please keep the following in mind when using this command:

1. The directory provided to the --path switch must exist inside data/<source-
user>/files.

2. The directory and its contents won’t be moved as-is between the users. It will be
moved into the destination user’s files directory, into a directory name which
follows the format: transferred from <source-user> on <timestamp>. Using the
example above, it will be stored under: data/<destination-user>/files/transferred
from <source-user> on 20170426_124510/

3. Currently file versions can’t be transferred. Only the latest version of moved files
will appear in the destination user’s account.

The files:troubleshoot-transfer-ownership command

This command is used to scan for problems, that might have occurred during a run of
ownership transfer using the above command files:transfer-ownership. It can also be
used to automatically attempt to fix problems. For example, transferred shares that
may now have an invalid share owner.


By default, the command performs a dry run and displays the problems
found to the console output.

sudo -u www-data php occ files:troubleshoot-transfer-ownership --help
 Usage:
 files:troubleshoot-transfer-ownership [options] [--] [<type>]

Arguments

type "all", "invalid-owner", "invalid-initiator",
[default: ""]

Options

-f, --fix perform auto-fix for found problems

-u, --uid=UID scope for particular user

Run the command with one of the type arguments:

sudo -u www-data php occ files:troubleshoot-transfer-ownership \
 <all|invalid-owner|invalid-initiator>

The command can attempt to fix the issues with the --fix flag,
or execute for a single user using --uid <uid>

338 | Server Configuration

sudo -u www-data php occ files:troubleshoot-transfer-ownership all \
 --fix \
 --uid=UID

Files External

These commands replace the data/mount.json configuration file used in ownCloud
releases before 9.0. Commands for managing external storage.

files_external
 files_external:applicable Manage applicable users and groups for a mount
 files_external:backends Show available authentication and storage backends
 files_external:config Manage backend configuration for a mount
 files_external:create Create a new mount configuration
 files_external:delete Delete an external mount
 files_external:export Export mount configurations
 files_external:import Import mount configurations
 files_external:list List configured mounts
 files_external:option Manage mount options for a mount
 files_external:verify Verify mount configuration

These commands replicate the functionality in the ownCloud Web GUI, plus two new
features: files_external:export and files_external:import.

Use files_external:export to export all admin mounts to stdout, and
files_external:export [user_id] to export the mounts of the specified ownCloud user.


These commands are only available when the "External storage
support" app (files_external) is enabled. It is not available in single-user
(maintenance) mode.

files_external:list

List configured mounts.

Usage

files_external:list [--show-password] [--full] [-a|--all] [-s|--short] [--] [<user_id>]

Arguments

user_id User ID to list the personal mounts for, if no user is provided
admin mounts will be listed.

Options

--show-password Show passwords and secrets

--mount-options Show all mount options independent if they are set to their default
value or not

--full Don’t truncate long values in table output

Server Configuration | 339

-a, --all Show both system-wide mounts and all personal mounts.

-s, --short Show only a reduced mount info.

-i, --importable
-format

Provide output values in a format compatible with
files_external:import

--output=[OUTPUT
]

The output format to use (plain, json or json_pretty, default is
plain).

Example

sudo -u www-data php occ files_external:list user_1 --short
+----------+------------------+----------+
| Mount ID | Mount Point | Type |
+----------+------------------+----------+
| 1 | /mount_1 | Personal |
| 2 | /mount_2 | Personal |
+----------+------------------+----------+



The --importable-format option helps to make the technical mount
settings visible. To see all settings you still need to use the other
options such as --show-password, --full and --all. When you want to
export the mount settings for later import, use the files_external:export
command. files_external:export ensures that all the necessary settings
are included in the output.

files_external:applicable

Manage applicable users and groups for a mount.

Usage

files_external:applicable
 [--add-user ADD-USER]
 [--remove-user REMOVE-USER]
 [--add-group ADD-GROUP]
 [--remove-group REMOVE-GROUP]
 [--remove-all]
 [--output [OUTPUT]]
 [--]
 <mount_id>

Arguments

mount_id Can be obtained using occ files_external:list.

Options

--add-user user to add as applicable (multiple values allowed).

--remove-user user to remove as applicable (multiple values allowed).

340 | Server Configuration

--add-group group to add as applicable (multiple values allowed).

--remove-group group to remove as applicable (multiple values allowed).

--remove-all Set the mount to be globally applicable.

--output=[OUTPUT
]

The output format to use (plain, json or json_pretty, default is
plain).

files_external:backends

Show available authentication and storage backends.

Usage

files_external:backends [options]
 [--]
 [<type>]
 [<backend>]

Arguments

type Only show backends of a certain type. Possible values are
authentication or storage.

backend Only show information of a specific backend.

Options

--output=[OUTPUT
]

The output format to use (plain, json or json_pretty, default is
plain.

files_external:config

Manage backend configuration for a mount.

Usage

files_external:config [options]
 [--]
 <mount_id>
 <key>
 [<value>]

Arguments

mount_id The ID of the mount to edit.

key Key of the config option to set/get.

value Value to set the config option to, when no value is provided the
existing value will be printed.

Server Configuration | 341

Options

--output=[OUTPUT
]

The output format to use (plain, json or json_pretty. The default is
plain).

files_external:create

Create a new mount configuration.

Usage

files_external:create [options]
 [--]
 <mount_point>
 <storage_backend>
 <authentication_backend>

Arguments

mount_point Mount point for the new mount.

storage_backend Storage backend identifier for the new mount, see occ
files_external:backends for possible values.

authentication_ba
ckend

Authentication backend identifier for the new mount, see occ
files_external:backends for possible values.

Options

--user=[USER] User to add the mount configurations for, if not set the mount will
be added as system mount.

-c,
--config=[CONFIG]

Mount configuration option in key=value format (multiple values
allowed).

--dry Don’t save the imported mounts, only list the new mounts.

--output=[OUTPUT
]

The output format to use (plain, json or json`pretty). The default is
plain.

Storage Backend Details

Storage Backend Identifier

Windows Network Drive windows_network_drive

WebDav dav

Local local

ownCloud owncloud

SFTP sftp

Amazon S3 amazons3

Dropbox dropbox

Google Drive googledrive

342 | Server Configuration

Storage Backend Identifier

SMB / CIFS smb

Authentication Details

Authentication method Identifier, name, configuration

Log-in credentials, save in
session

password::sessioncredentials

Log-in credentials, save in
database

password::logincredentials

User entered, store in
database

password::userprovided (*)

Global Credentials password::global

None null::null

Builtin builtin::builtin

Username and password password::password

OAuth1 oauth1::oauth1 (*)

OAuth2 oauth2::oauth2 (*)

RSA public key publickey::rsa (*)

OpenStack openstack::openstack (*)

Rackspace openstack::rackspace (*)

Access key (Amazon S3) amazons3::accesskey (*)

(*) - Authentication methods require additional configuration.

 Each Storage Backend needs its corresponding authentication methods.

files_external:delete

Delete an external mount.

Usage

files_external:delete [options] [--] <mount_id>

Arguments

mount_id The ID of the mount to edit.

Options

-y, --yes Skip confirmation.

--output=[OUTPUT
]

The output format to use (plain, json or json_pretty, default is
plain).

Server Configuration | 343

files_external:export

Usage

files_external:export [options] [--] [<user_id>]

Arguments

user_id User ID to export the personal mounts for, if no user is provided
admin mounts will be exported.

Options

-a, --all Show both system wide mounts and all personal mounts.

files_external:import

Import mount configurations.

Usage

files_external:import [options] [--] <path>

Arguments

path Path to a json file containing the mounts to import, use - to read
from stdin.

Options

--user=[USER] User to add the mount configurations for, if not set the mount will
be added as system mount.

--dry Don’t save the imported mounts, only list the new mounts.

--output=[OUTPUT
]

The output format to use (plain, json or json_pretty, default is
plain).

files_external:option

Manage mount options for a mount.

Usage

files_external:option <mount_id> <key> [<value>]

Arguments

mount_id The ID of the mount to edit.

key Key of the mount option to set/get.

value Value to set the mount option to, when no value is provided the
existing value will be printed.

344 | Server Configuration

files_external:verify

Verify mount configuration.

Usage

files_external:verify [options] [--] <mount_id>

Arguments

mount_id The ID of the mount to check.

Options

-c,
--config=[CONFIG]

Additional config option to set before checking in key=value pairs,
required for certain auth backends such as login credentials
(multiple values allowed).

--output=[OUTPUT
]

The output format to use (plain, json or json_pretty, default is
plain).

Full Text Search

Use these commands when you manage full text search related tasks.

Command Description

search
 search:index:create Create initial Search Index for one or all users.
 This command could not update the search index correctly
 after the initial indexing.
 search:index:rebuild Rebuild the search index for a given User.
 If you want to rebuild the whole index, run "search:index:reset"
 and then "search:index:build --all"
 search:index:reset Reset the index
 search:index:update Update the search index by running all pending background
jobs.

Create the Full Text Search Index

The command search:index:create creates the initial full text search index for one, or
all, users.

sudo -u www-data php occ search:index:create <user_id> (<user_id>)...

Arguments

<user_id> The id of the user (or space-separated list of user ids) to create a
full text search index for. A full text search index is created for all
users, if this value is omitted.

Server Configuration | 345

Example 1

This example creates a full text search index for the user with user id testuser.

sudo -u www-data php occ search:index:create testuser

Indexing user testuser

Example 2

This example creates a full text search index for the users with user ids admin and
testuser.

sudo -u www-data php occ search:index:create admin testuser

Indexing user admin
Indexing user testuser

Rebuild the Full Text Search Index

The command search:index:rebuild rebuilds the full text search index for one, multiple,
or all users.

sudo -u www-data php occ search:index:rebuild <user_id> (<user_id>)...

Arguments

<user_id> The id of the user (or space-separated list of user ids) to rebuild a full
text search index for.

--all Rebuild the index for all users.

-f --force Use this option to reset the index without further questions.

Example 1

This example rebuilds the full text search index for the user with user id testuser.

Listing 10. Rebuild the index for a single user

sudo -u www-data php occ search:index:rebuild testuser

Indexing user testuser

This will delete all full text search index data for testuser! Do you want to proceed?
 [0] no
 [1] yes
 > 1
Rebuilding full text search Index for testuser

346 | Server Configuration

Example 2

This example rebuilds the full text search index for the users with user ids admin and
testuser.

Listing 11. Rebuild the index for multiple users

sudo -u www-data php occ search:index:rebuild admin testuser

This will delete all search index data for admin, testuser! Do you want to proceed?
 [0] no
 [1] yes
 > 1
Rebuilding Search Index for admin
Rebuilding Search Index for testuser

Rebuild the Entire Index

The entire index can be rebuilt by running the following two commands:

sudo -u www-data php occ search:index:reset
sudo -u www-data php occ search:index:build --all

Reset the Full Text Search Index

The command search:index:reset resets (recreates and clears) the full text search
index for all users.

sudo -u www-data php occ search:index:reset

Arguments

-f --force Use this option to reset the index without further questions.

Example

sudo -u www-data php occ search:index:reset
This will delete the whole search index! Do you want to proceed?
 [0] no
 [1] yes
 > 1
Search index has been reset.

Update the Full Text Search Index

The command search:index:update updates the full text search index by running all
pending background jobs.

sudo -u www-data php occ search:index:update

Server Configuration | 347

Arguments

-q --quiet Suppress all output from the command.

Example

This example updates the full text search index for all users.

sudo -u www-data php occ search:index:update
Start Updating the Elastic search index:
No pending jobs found.

Enable and Disable App Mode

To do an initial full indexing without the full text search_elastic app interfering, it can
be put in passive mode.

sudo -u www-data php occ config:app:set search_elastic mode --value passive

When the search_elastic app is in passive mode:

• The administrator will be able to run occ commands.
• The search_elastic app will not index any changes by itself.
• Search results will still be based on the core search.

Switching back to active mode can be done by running the following command:

sudo -u www-data php occ config:app:set search_elastic mode --value active

Configure Full Text Search to Only Index Metadata

If you only want to use the search_elastic app as a more scalable filenames search, you
can disable content indexing by setting nocontent to true (default is false), as in the
example below.

sudo -u www-data php occ config:app:set search_elastic nocontent --value true


if this setting is reverted to false after being set to true, all files must be
reindexed. Setting it to true does not require reindexing.

Group Commands

The group commands provide a range of functionality for managing ownCloud groups.
This includes creating and removing groups and managing group membership. Group
names are case-sensitive, so "Finance" and "finance" are two different groups.

The full list of commands is:

348 | Server Configuration

group
 group:add Adds a group
 group:add-member Add members to a group
 group:delete Deletes the specified group
 group:list List groups
 group:list-members List group members
 group:remove-member Remove member(s) from a group

Creating Groups

You can create a new group with the group:add command. The syntax is:

group:add groupname

This example adds a new group, called "Finance":

sudo -u www-data php occ group:add Finance
 Created group "Finance"

Listing Groups

You can list the names of existing groups with the group:list command. The syntax is:

group:list [options] [<search-pattern>]

Groups containing the search-pattern string are listed. Matching is not case-sensitive.
If you do not provide a search-pattern then all groups are listed.

Options

--output=[OUTPUT] Output format (plain, json or json_pretty, default is plain)
[default: "plain"].

This example lists groups containing the string "finance".

sudo -u www-data php occ group:list finance
 - All-Finance-Staff
 - Finance
 - Finance-Managers

This example lists groups containing the string "finance" formatted with json_pretty.

Server Configuration | 349

sudo -u www-data php occ group:list --output=json_pretty finance
 [
 "All-Finance-Staff",
 "Finance",
 "Finance-Managers"
]

Listing Group Members

You can list the user IDs of group members with the group:list-members command.
The syntax is:

group:list-members [options] <group>

Options

--output=[OUTPUT] Output format (plain, json or json_pretty, default is plain)
[default: "plain"].

This example lists members of the "Finance" group.

sudo -u www-data php occ group:list-members Finance
 - aaron: Aaron Smith
 - julie: Julie Jones

This example lists members of the Finance group formatted with json_pretty.

sudo -u www-data php occ group:list-members --output=json_pretty Finance
 {
 "aaron": "Aaron Smith",
 "julie": "Julie Jones"
 }

Adding Members to Groups

You can add members to an existing group with the group:add-member command.
Members must be existing users. The syntax is:

group:add-member [-m|--member [MEMBER]] <group>

This example adds members "aaron" and "julie" to group "Finance":

sudo -u www-data php occ group:add-member --member aaron --member julie
Finance
 User "aaron" added to group "Finance"
 User "julie" added to group "Finance"

350 | Server Configuration

You may attempt to add members that are already in the group, without error. This
allows you to add members in a scripted way without needing to know if the user is
already a member of the group. For example:

sudo -u www-data php occ group:add-member --member aaron --member julie
--member fred Finance
 User "aaron" is already a member of group "Finance"
 User "julie" is already a member of group "Finance"
 User fred" added to group "Finance"

Removing Members from Groups

You can remove members from a group with the group:remove-member command. The
syntax is:

group:remove-member [-m|--member [MEMBER]] <group>

This example removes members "aaron" and "julie" from group "Finance".

sudo -u www-data php occ group:remove-member --member aaron --member julie
Finance
 Member "aaron" removed from group "Finance"
 Member "julie" removed from group "Finance"

You may attempt to remove members that have already been removed from the group,
without error. This allows you to remove members in a scripted way without needing
to know if the user is still a member of the group. For example:

sudo -u www-data php occ group:remove-member --member aaron --member fred
Finance
 Member "aaron" could not be found in group "Finance"
 Member "fred" removed from group "Finance"

Deleting a Group

To delete a group, you use the group:delete command, as in the example below:

sudo -u www-data php occ group:delete Finance

Integrity Check

Apps which have an official tag must be code signed. Unsigned official apps won’t be
installable anymore. Code signing is optional for all third-party applications.

Server Configuration | 351

integrity
 integrity:check-app Check app integrity using a signature.
 integrity:check-core Check core integrity using a signature.
 integrity:sign-app Signs an app using a private key.
 integrity:sign-core Sign core using a private key

After creating your signing key, sign your app like this example:

sudo -u www-data php occ integrity:sign-app \
 --privateKey=/Users/karlmay/contacts.key \
 --certificate=/Users/karlmay/CA/contacts.crt \
 --path=/Users/karlmay/Programming/contacts

Verify your app:

sudo -u www-data php occ integrity:check-app --path=/pathto/app appname

When it returns nothing, your app is signed correctly. When it returns a message then
there is an error.

integrity:sign-core is for ownCloud core developers only.

 See code signing to learn more.

l10n, Create Javascript Translation Files for Apps

This command creates JavaScript and JSON translation files for ownCloud
applications.


The command does not update existing translations if the source
translation file has been updated. It only creates translation files when
none are present for a given language.

l10n
 l10n:createjs Create Javascript translation files for a given app

The command takes two parameters; these are:

• app: the name of the application.
• lang: the output language of the translation files; more than one can be supplied.

To create the two translation files, the command reads translation data from a source
PHP translation file.

A Working Example

In this example, we’ll create Austrian German translations for the Comments app.

352 | Server Configuration

configuration/general_topics/code_signing.pdf


This example assumes that the ownCloud directory is
/var/www/owncloud and that it uses ownCloud’s standard apps
directory, app.

First, create a source translation file in /var/www/owncloud/apps/comments/l10n,
called de_AT.php. In it, add the required translation strings, as in the following
example. Refer to the developer documentation on creating translation files, if you’re
not familiar with creating them.

<?php
// The source string is the key, the translated string is the value.
$TRANSLATIONS = [
 "Share" => "Freigeben"
];
$PLURAL_FORMS = "nplurals=2; plural=(n != 1);";

After that, run the following command to create the translation.

sudo -u www-data php occ l10n:createjs comments de_AT

This will generate two translation files, de_AT.js and de_AT.json, in
/var/www/owncloud/apps/comments/l10n.

Create Translations in Multiple Languages

To create translations in multiple languages simultaneously, supply multiple languages
to the command, as in the following example:

sudo -u www-data php occ l10n:createjs comments de_AT de_DE hu_HU es fr

Logging Commands

These commands view and configure your ownCloud logging preferences.

log
 log:manage Manage logging configuration
 log:owncloud Manipulate ownCloud logging backend

Command Description

Run log:owncloud to see your current logging status:

sudo -u www-data php occ log:owncloud
Log backend ownCloud: enabled
Log file: /opt/owncloud/data/owncloud.log
Rotate at: disabled

Server Configuration | 353

developer_manual:app/advanced/l10n.pdf#creating-your-own-translatable-files

Options

--enable Enable this logging backend.

--file=[FILE] Set the log file path.

--rotate-size=[ROTATE
-SIZE]

Set the file size for log rotation, 0 = disabled.

Use the --enable option to turn on logging. Use --file to set a different log file path. Set
your rotation by log file size in bytes with --rotate-size; 0 disables rotation. Run
log:manage to set your logging backend, log level, and timezone: The defaults are
owncloud, Warning, and UTC.

Options for log:manage:

--backend=[BACKEND] Set the logging backend [owncloud, syslog, errorlog].

--level=[LEVEL] Set the log level [debug, info, warning, error, fatal].

Log level can be adjusted by entering the number or the name:

sudo -u www-data php occ log:manage --level 4
sudo -u www-data php occ log:manage --level error


Setting the log level to debug (0) can be used for finding the cause of
an error, but should not be the standard as it increases the log file size.

Managing Background Jobs

Use the background:queue command to manage background jobs.

background:queue
 background:queue:delete Delete a job from the queue
 background:queue:execute Run a single background job from the queue
 background:queue:status List queue status

Deleting a Background Job

The command background:queue:delete deletes a queued background job. It requires
the job id of the job to be deleted.

background:queue:delete <Job ID>

Arguments

Job ID ID of the job to be deleted


Deleting a job cannot be undone. Be sure that you want to delete the
job before doing so.

This example deletes queued background job #12.

354 | Server Configuration

sudo -u www-data php occ background:queue:delete 12

Job has been deleted.

Executing a Background Job

The command background:queue:execute executes a queued background job. It
requires the job id of the job to be executed.

background:queue:execute [options] [--] <Job ID>

Arguments

Job ID ID of the job to be deleted

Options

-f
--force

Force run the job even if within timing interval

--accept-warning No warning about the usage of this command will be displayed

This example executes queued background job #12.

sudo -u www-data php occ background:queue:execute 12

This command is for maintenance and support purposes.
This will run the specified background job now. Regular scheduled runs of the job
will
continue to happen at their scheduled times.
If you still want to use this command please confirm the usage by entering: yes
yes
Found job: OCA\UpdateNotification\Notification\BackgroundJob with ID 12
Running job...
Finished in 0 seconds

List Queued Backgroundjobs

The command background:queue:status will list queued background jobs, including
details when it last ran.

background:queue:status

This example lists the queue status:

Server Configuration | 355

sudo -u www-data php occ background:queue:status

+----+---+---------------------------+---------------+
| Id | Job | Last run | Job Arguments |
+----+---+---------------------------+---------------+
| 1 | OCA\Files\BackgroundJob\ScanFiles | 2018-06-13T15:15:04+00:00 |
|
| 2 | OCA\Files\BackgroundJob\DeleteOrphanedItems | 2018-06-
13T15:15:04+00:00 | |
| 3 | OCA\Files\BackgroundJob\CleanupFileLocks | 2018-06-
13T15:15:04+00:00 | |
| 4 | OCA\DAV\CardDAV\SyncJob | 2018-06-12T19:15:02+00:00 |
|
| 5 | OCA\Federation\SyncJob | 2018-06-12T19:15:02+00:00 |
|
| 6 | OCA\Files_Sharing\DeleteOrphanedSharesJob | 2018-06-
13T15:15:04+00:00 | |
| 7 | OCA\Files_Sharing\ExpireSharesJob | 2018-06-12T19:15:02+00:00 |
|
| 8 | OCA\Files_Trashbin\BackgroundJob\ExpireTrash | 2018-06-
13T15:15:04+00:00 | |
| 9 | OCA\Files_Versions\BackgroundJob\ExpireVersions | 2018-06-
13T15:15:04+00:00 | |
| 10 | OCA\UpdateNotification\Notification\BackgroundJob | 2018-06-
12T19:15:03+00:00 | |
| 11 | OC\Authentication\Token\DefaultTokenCleanupJob | 2018-06-
13T15:15:04+00:00 | |
+----+---+---------------------------+---------------+

Maintenance Commands

Use these commands when you upgrade ownCloud, manage encryption, perform
backups and other tasks that require locking users out until you are finished.

maintenance
 maintenance:data-fingerprint Update the systems data-fingerprint after a
backup is restored
 maintenance:mimetype:update-db Update database mimetypes and update
filecache
 maintenance:mimetype:update-js Update mimetypelist.js
 maintenance:mode Set maintenance mode
 maintenance:repair Repair this installation
 maintenance:singleuser Set single user mode
 maintenance:update:htaccess Updates the .htaccess file

maintenance:mode locks the sessions of all logged-in users, including administrators,
and displays a status screen warning that the server is in maintenance mode. Users
who are not already logged in cannot log in until maintenance mode is turned off.
When you take the server out of maintenance mode logged-in users must refresh their
Web browsers to continue working.

356 | Server Configuration

sudo -u www-data php occ maintenance:mode --on
sudo -u www-data php occ maintenance:mode --off

Putting your ownCloud server into single-user mode allows admins to log in and work,
but not ordinary users. This is useful for performing maintenance and troubleshooting
on a running server.

sudo -u www-data php occ maintenance:singleuser --on
Single user mode enabled

Turn it off when you’re finished:

sudo -u www-data php occ maintenance:singleuser --off
Single user mode disabled

Run maintenance:data-fingerprint to tell desktop and mobile clients that a server
backup has been restored. This command changes the ETag for all files in the
communication with sync clients, informing them that one or more files were modified.
After the command completes, users will be prompted to resolve any conflicts between
newer and older file versions.

Migration Steps Command

You can run migration steps with the migrations command.

sudo -u www-data php occ migrations:execute <app> <version>

Arguments

app Name of the app this migration command shall work on.

version The version to execute.

Example

This example executes the migration step for the core app:

sudo -u www-data php occ migrations:execute core 20181220085457

Mimetype Update Commands

maintenance:mimetype:update-db updates the ownCloud database and file cache with
changed mimetypes found in config/mimetypemapping.json. Run this command after
modifying config/mimetypemapping.json. If you change a mimetype, run
maintenance:mimetype:update-db --repair-filecache to apply the change to existing
files.

Notifications

If you want to send notifications to users or groups use the following command.

Server Configuration | 357

1 notifications
2 notifications:generate Generates a notification.

Command Description

sudo -u www-data php occ notifications:generate [-u|--user USER] [-g|--group
GROUP] [-l|--link <linktext>] [--] <subject> [<message>]

Arguments:

subject The notification subject - maximum 255 characters.

message A more extended message - maximum 4000 characters.

linktext A link to an HTML page.

Options

-u [USER]
--user=[USER]

User id to whom the notification shall be sent.

-g [GROUP]
--group=[GROUP]

Group id to whom the notification shall be sent.

-l [LINK]
--link=[LINK]

A link associated with the notification.

At least one user or group must be set. A link can be useful for notifications shown in
client apps. Example:

sudo -u www-data php occ notifications:generate -g Office "Emergency Alert"
"Rebooting in 5min"

Poll Incoming Federated Shares For Updates

This command must be used if received federated shares are being referenced by
desktop clients but not regularly accessed via the webUI. This is because, for
performance reasons, federated shares do not update automatically. Instead, federated
share directories are only updated when users browse them using the webUI.

ownCloud and system administrators can use the incoming-shares:poll command to
poll federated shares for updates.


The command polls all received federated shares, so does not require a
path.

sudo -u www-data php occ incoming-shares:poll

358 | Server Configuration

user_manual:files/webgui/overview.pdf



When using federation, it is recommended to execute occ incoming-
shares:poll regularly using Cron jobs. The time interval between
executions is a trade-off between the availability of changes in
federated shares and resource consumption; which naturally depends a
lot on the number of federated shares and the frequency of changes
within those shares.

Executing the command once every 12 hours should be safe enough for
most instances. However, the interval can be reduced to once every 2
hours, for instances with a small number of federated shares.

Depending on the desired resource consumption, this value should be
lowered or increased based on individual expectations. To find a value
that fits a specific setup, it is recommended to execute the command
once, measure the execution time and set the interval, so that the
background job can finish before the next execution is triggered.

Security

Use these commands when you manage security related tasks. Routes displays all
routes of ownCloud. You can use this information to grant strict access via firewalls,
proxies or load balancers etc.

Command Description

security:routes [options]

Options

--output=[OUTPUT
]

Output format (plain, json or json-pretty, default is plain).

--with-details Adds more details to the output.

Example 1:

sudo -u www-data php occ security:routes

+---+-----------------+
| Path | Methods |
+---+-----------------+
| /apps/federation/auto-add-servers | POST |
| /apps/federation/trusted-servers | POST |
| /apps/federation/trusted-servers/<id> | DELETE |
| /apps/files/ | GET |
| /apps/files/ajax/download.php | |
...

Example 2:

sudo -u www-data php occ security:routes --output=json-pretty

Server Configuration | 359

configuration/server/background_jobs_configuration.pdf#cron-jobs

[
 {
 "path": "\/apps\/federation\/auto-add-servers",
 "methods": [
 "POST"
]
 },

Example 3:

sudo -u www-data php occ security:routes --with-details

+---+---------+---
+--------------------------------+
| Path | Methods | Controller |
Annotations |
+---+---------+---
+--------------------------------+
| /apps/files/api/v1/sorting | POST |
OCA\Files\Controller\ApiController::updateFileSorting | NoAdminRequired |
| /apps/files/api/v1/thumbnail/{x}/{y}/{file} | GET |
OCA\Files\Controller\ApiController::getThumbnail |
NoAdminRequired,NoCSRFRequired |
...

The following commands manage server-wide SSL certificates. These are useful when
you create federation shares with other ownCloud servers that use self-signed
certificates.

security:certificates List trusted certificates
security:certificates:import Import trusted certificate
security:certificates:remove Remove trusted certificate

This example lists your installed certificates:

sudo -u www-data php occ security:certificates

Import a new certificate:

sudo -u www-data php occ security:certificates:import /path/to/certificate

Remove a certificate:

sudo -u www-data php occ security:certificates:remove [certificate name]

360 | Server Configuration

Sharing

This is an occ command to cleanup orphaned remote storages. To explain why this is
necessary, a little background is required. While shares are able to be deleted as a
normal matter of course, remote storages with shared:: are not included in this
process.

This might not, normally, be a problem. However, if a user has re-shared a remote
share which has been deleted it will. This is because when the original share is
deleted, the remote re-share reference is not. Internally, the fileid will remain in the
file cache and storage for that file will not be deleted.

As a result, any user(s) who the share was re-shared with will now get an error when
trying to access that file or folder. That’s why the command is available. So, to cleanup
all orphaned remote storages, run it as follows:

sudo -u www-data php occ sharing:cleanup-remote-storages

You can also set it up to run as a background job.

 These commands are not available in single-user (maintenance) mode.

System

 system
 system:cron Execute background jobs as cron

sudo -u www-data php occ -h system:cron
-Usage:
 system:cron [options]

Options

-p, --progress Shows a progress bar - for use in manual execution. Do not use
when executing from crontab

To execute background jobs using cron, you can use the system:cron command, as in
the following example:

sudo -u www-data php occ system:cron

If the --progress or -p argument is specified, then progress output will be displayed in
the console, as in the example below.

Executing: 12 - OCA\UpdateNotification\Notification\BackgroundJob
 13 [------------->--------------]

If neither of these arguments is provided, no output will be displayed by the command.

Server Configuration | 361

configuration/server/background_jobs_configuration.pdf
configuration/server/background_jobs_configuration.pdf#cron


Displaying progress information is useful when you want visual
confirmation that background jobs have been executed. However, in a
non-interactive environment, such as crontab, it should not be used.

Updating an Existing System Cron Configuration



If you have already automated background jobs via Cron, you must
update the relevant crontab entry using the example below as a guide.

Instead of the following configuration
/usr/bin/php -f /path/to/your/owncloud/cron.php

Use the following one instead
sudo -u www-data php occ system:cron



This command does not work if:

• Maintenance or Admin-only (single user) modes are enabled
• Background jobs are disabled

Trashbin


These commands are only available when the 'Deleted files' app
(files_trashbin) is enabled. These commands are not available in single-
user (maintenance) mode.

trashbin
 trashbin:cleanup Remove deleted files
 trashbin:expire Expires the users trash bin

The trashbin:cleanup command removes the deleted files of the specified users in a
space-delimited list, or all users if none are specified. This example removes all the
deleted files of all users:

sudo -u www-data php occ trashbin:cleanup
Remove all deleted files
Remove deleted files for users on backend Database
 freda
 molly
 stash
 rosa
 edward

This example removes the deleted files of users molly and freda:

sudo -u www-data php occ trashbin:cleanup molly freda
Remove deleted files of molly
Remove deleted files of freda

362 | Server Configuration

trashbin:expire deletes only expired files according to the trashbin_retention_obligation
setting in config.php (see the "Deleted Files" section documentation). The default is to
delete expired files for all users, or you may list users in a space-delimited list.

User Commands

The user commands provide a range of functionality for managing ownCloud users.
This includes: creating and removing users, resetting user passwords, displaying a
report which shows how many users you have, and when a user was last logged in.
The full list, of commands is:

user
 user:add Adds a user
 user:delete Deletes the specified user
 user:disable Disables the specified user
 user:enable Enables the specified user
 user:inactive Reports users who are known to owncloud,
 but have not logged in for a certain number of days
 user:lastseen Shows when the user was logged in last time
 user:list List users
 user:list-groups List groups for a user
 user:modify Modify user details
 user:report Shows how many users have access
 user:resetpassword Resets the password of the named user
 user:setting Read and modify user application settings
 user:sync Sync local users with an external backend service

Creating Users

You can create a new user with the user:add command.

sudo -u www-data php occ user:add \
 [--password-from-env] \
 [--display-name [DISPLAY-NAME]] \
 [--email [EMAIL]] \
 [-g|--group [GROUP]] \
 [--] \
 <uid>

Arguments

uid User ID used to login (must only contain a-z, A-Z, 0-9, -, _
and @).

--password-from-env Read the password from the OC_PASS environment
variable. A password is not required, if an email address is
provided. If a password is not provided, a temporary one
will be generated. It cannot be set to 0.

--display-name=[DISPLAY
-NAME]

This corresponds to the Full Name on the Users page in
your ownCloud Web UI.

Server Configuration | 363

configuration/server/config_sample_php_parameters.pdf

--email=[EMAIL] Email address for the user (optional). The user will be
emailed a link to set their password, if email is configured
correctly.

-g [GROUP]
--group=[GROUP]

The groups the user should be added to. The group will be
created if it does not exist. Multiple values are allowed.

Command Examples

This example adds new user, Layla Smith, and adds her to the users and db-admins
groups. If either group does not exist, it is created.

Listing 12. Create a user with a password, email address, and display name, and add
them to two groups

sudo -u www-data php occ user:add \
 --display-name="Layla Smith" \
 --group="users" \
 --group="db-admins" \
 --email=layla.smith@example.com layla
 Enter password:
 Confirm password:
 The user "layla" was created successfully
 Display name set to "Layla Smith"
 Email address set to "layla.smith@example.com"
 User "layla" added to group "users"
 User "layla" added to group "db-admins"

Listing 13. Create a user with a temporary password (the user will receive a link to set
their password).

sudo -u www-data php occ user:add \
 --display-name "Layla Smith" \
 --email "***********" \
 --group "users" \
 --group "db-admins" layla

The user "layla" was created successfully
Display name set to "Layla Smith"
Email address set to "************"
User layla added to group users
User layla added to group db-admins

Deleting A User

To delete a user, you use the user:delete command.

sudo -u www-data php occ user:delete <uid>

364 | Server Configuration

Arguments

uid The username.

sudo -u www-data php occ user:delete fred

Disable Users

Admins can disable users via the occ command too:

sudo -u www-data php occ user:disable <username>


Once users are disabled, their connected browsers will be
disconnected. Use the following command to enable the user again:

Enable Users

sudo -u www-data php occ user:enable <username>

Finding Inactive Users

To view a list of users who’ve not logged in for a given number of days, use the
user:inactive command.

sudo -u www-data php occ user:inactive [options] [--] <days>

Arguments

<days> The number of days (integer) that the user has not logged in
since.

Options

--output=[OUTPUT
]

Output format (plain, json or json_pretty, default is plain) [default:
"plain"].

The example below searches for users inactive for five days, or more.

sudo -u www-data php occ user:inactive 5

By default, this will generate output in the following format:

- 0:
 - uid: admin
 - displayName: admin
 - inactiveSinceDays: 5

You can see a counting number starting with 0, the user’s user id, display name, and

Server Configuration | 365

the number of days they’ve been inactive. If you’re passing or piping this information
to another application for further processing, you can also use the --output switch to
change its format. Using the output option json will render the output formatted as
follows.

[{"uid":"admin","displayName":"admin","inactiveSinceDays":5}]

Using the output option json_pretty will render the output formatted as follows.

[
 {
 "uid": "admin",
 "displayName": "admin",
 "inactiveSinceDays": 5
 }
]

Finding the User’s Last Login

To view a user’s most recent login, use the user:lastseen command:

sudo -u www-data php occ user:lastseen <uid>

Arguments

uid The username.

Example

sudo -u www-data php occ user:lastseen layla
 layla's last login: 09.01.2015 18:46

Listing Users

You can list existing users with the user:list command.

sudo -u www-data php occ user:list [options] [<search-pattern>]

User IDs containing the search-pattern string are listed. Matching is not case-
sensitive. If you do not provide a search-pattern then all users are listed.

Options

--output=[OUTPUT] Output format (plain, json or json-pretty, default is
plain).

366 | Server Configuration

-a [ATTRIBUTES]
--attributes=[ATTRIBUTE
S]

Adds more details to the output.
Allowed attributes, multiple values possible:
uid, displayName, email, quota, enabled, lastLogin,
home,
backend, cloudId, searchTerms [default:
[displayName]]

This example lists user IDs containing the string ron

sudo -u www-data php occ user:list ron
 - aaron: Aaron Smith

The output can be formatted in JSON with the output option json or json_pretty.

sudo -u www-data php occ user:list --output=json_pretty
 {
 "aaron": "Aaron Smith",
 "herbert": "Herbert Smith",
 "julie": "Julie Jones"
 }

This example lists all users including the attribute enabled.

sudo -u www-data php occ user:list -a enabled
 - admin: true
 - foo: true

Listing Group Membership of a User

You can list the group membership of a user with the user:list-groups command.

sudo -u www-data php occ user:list-groups [options] [--] <uid>

Arguments

uid User ID.

Options

--output=[OUTPUT
]

Output format (plain, json or json-pretty, default is plain).

Examples

This example lists group membership of user julie:

Server Configuration | 367

sudo -u www-data php occ user:list-groups julie
 - Executive
 - Finance

The output can be formatted in JSON with the output option json or json_pretty:

sudo -u www-data php occ user:list-groups --output=json_pretty julie
 [
 "Executive",
 "Finance"
]

Modify User Details

This command modifies either the users username or email address.

sudo -u www-data php occ user:modify [options] [--] <uid> <key> <value>

Arguments

uid User ID used to login.

key Key to be changed. Valid keys are: displayname and email.

value The new value of the key.

All three arguments are mandatory and can not be empty. Example to set the email
address:

sudo -u www-data php occ user:modify carla email foobar@foo.com

The email address of carla is updated to foobar@foo.com.

Generating a User Count Report

Generate a simple report that counts all users, including users on external user
authentication servers such as LDAP.

sudo -u www-data php occ user:report

There are no arguments and no options beside the default once to parametrize the
output.

368 | Server Configuration

sudo -u www-data php occ user:report
+------------------+----+
| User Report | |
+------------------+----+
| Database | 12 |
| LDAP | 86 |
| | |
| total users | 98 |
| | |
| user directories | 2 |
+------------------+----+

Setting a User’s Password

sudo -u www-data php occ user:resetpassword [options] [--] <user>


Password changes automatically log out all connected
browsers/devices.

Arguments

uid The user’s name.

Options

--password-from-env Read the password from the OC_PASS environment variable.

--send-email The email-id set while creating the user, will be used to send
link for password reset. This option will also display the link
sent to user.

--output-link The link to reset the password will be displayed.

password-from-env allows you to set the user’s password from an environment
variable. This prevents the password from being exposed to all users via the process
list, and will only be visible in the history of the user (root) running the command. This
also permits creating scripts for adding multiple new users.


To use password-from-env you must run as "real" root, rather than
sudo, because sudo strips environment variables.


To use send-email, the ownCloud instance must have email access fully
configured.

Examples

Add a new user, called Fred Jones:

Server Configuration | 369

export OC_PASS=newpassword
su -s /bin/sh www-data -c 'php occ user:add --password-from-env
 --display-name="Fred Jones" --group="users" fred'
The user "fred" was created successfully
Display name set to "Fred Jones"
User "fred" added to group "users"

You can reset any user’s password, including administrators (see Reset Admin
Password):

sudo -u www-data php occ user:resetpassword layla
 Enter a new password:
 Confirm the new password:
Successfully reset password for layla

You may also use password-from-env to reset passwords:

export OC_PASS=newpassword
su -s /bin/sh www-data -c 'php occ user:resetpassword \
 --password-from-env \
 layla'
Successfully reset password for layla

This example emails a password reset link to the user. Additionally, when the command
completes, it outputs the password reset link to the console:

sudo -u www-data php occ user:resetpassword \
 --send-email \
 --output-link \
 layla
The password reset link is:
http://localhost:8080/index.php/lostpassword/reset/form/rQAlCjNeQf3aphA6Hraq2/la
yla

If the specified user does not have a valid email address set, then the following error
will be output to the console, and the email will not be sent:

Email address is not set for the user layla

User Application Settings

To manage application settings for a user, use the user:setting command. This
command provides the ability to:

• Retrieve all settings for an application
• Retrieve a single setting
• Set a setting value

370 | Server Configuration

configuration/user/reset_admin_password.pdf
configuration/user/reset_admin_password.pdf

• Delete a setting

sudo -u www-data php occ user:setting [options] [--] <uid> [<app>] [<key>]

If you’re new to the user:setting command, the descriptions for the app and key
arguments may not be completely transparent. So, here’s a lengthier description of
both.

Argument Description

app When an value is supplied, user:setting limits the settings
displayed, to those for that, specific, application - assuming that
the application is installed, and that there are settings available
for it. Some example applications are core, files_trashbin, and
user_ldap. A complete list, unfortunately, cannot be supplied, as it
is impossible to know the entire list of applications which a user
could, potentially, install.

key This value specifies the setting key to be manipulated (set,
retrieved, or deleted) by the user:setting command.

Retrieving User Settings

To retrieve all settings for a user, you need to call the user:setting command and
supply at least the user’s username.

sudo -u www-data php occ user:setting <uid> [<app>] [<key>]

Arguments

uid User ID used to login.

app Restrict listing the settings for a given app. [default: ""].

key Setting key to set, get or delete [default: ""].

Example for all settings set for a given user

sudo -u www-data php occ user:setting layla
 - core:
 - lang: en
 - login:
 - lastLogin: 1465910968
 - settings:
 - email: layla@example.tld

Here we see that the user has settings for the application core, when they last logged
in, and what their email address is. Example for all settings set restricted to
application core for a given user

Server Configuration | 371

sudo -u www-data php occ user:setting layla core
 - core:
 - lang: en

In the output, you can see that one setting is in effect, lang, which is set to en.
Example for all settings set restricted to application core, key lang for a given user

sudo -u www-data php occ user:setting layla core lang en

This will display the value for that setting, such as en.

Setting and Deleting a Setting

sudo -u www-data php occ user:setting [options] [--] <uid> [<app>] [<key>]

Arguments

uid User ID used to login.

app Restrict the settings to a given app. [default: ""].

key Setting key to set, get or delete [default: ""].

Options

--output=[OUTPUT] Output format (plain, json or json-pretty, default is
plain).

--ignore-missing-user Use this option to ignore errors when the user does not
exist.

--default-value=[DEFAULT
-VALUE]

If no default value is set and the config does not exist,
the command
will exit with 1. Only applicable on get.

--value=[VALUE] The new value of the setting.

--update-only Only updates the value, if it is not set before, it is not
being added.

--delete Specify this option to delete the config.

--error-if-not-exists Checks whether the setting exists before deleting it.


In case you want to change the email address, use the user:modify
command.

Here’s an example of how you would set the language of the user layla.

sudo -u www-data php occ user:setting layla core lang --value=en

Deleting a setting is quite similar to setting a setting. In this case, you supply the
username, application (or setting category) and key as above. Then, in addition, you
supply the --delete flag.

372 | Server Configuration

sudo -u www-data php occ user:setting layla core lang --delete

Syncing User Accounts

This command syncs users stored in external backend services, such as LDAP,
Shibboleth, and Samba, with ownCloud’s, internal user database. However, it’s not
essential to run it regularly, unless you have a large number of users whose account
properties have changed in a backend outside of ownCloud. When run, it will pick up
changes from alternative user backends, such as LDAP, where properties like cn or
display name have changed, and sync them with ownCloud’s user database. If
accounts are found that no longer exist in the external backend, you are given the
choice of either removing or disabling the accounts.


It’s also one of the commands that you should run on a regular basis to
ensure that your ownCloud installation is running optimally.


This command replaces the old show-remnants functionality, and brings
the LDAP feature more in line with the rest of ownCloud’s functionality.

Usage

user:sync [options] [--] [<backend-class>]

Synchronize users from a given backend to the accounts table.

Arguments:

backend-class The quoted PHP class name for the backend, e.g.,
- LDAP: "OCA\User_LDAP\User_Proxy"
- Samba: "OCA\User\SMB"
- Shibboleth: "OCA\User_Shibboleth\UserBackend"

Options

-l, --list List all enabled backend classes.

-u [UID]
--uid=[UID]

Sync only the user with the given user id.

-s, --seenOnly Sync only seen users.

-c, --showCount Calculate user count before syncing.

-m [MISSING-ACCOUNT-
ACTION]

--missing-account
-action[=MISSING
-ACCOUNT-ACTION]

Action to take if the account isn’t connected to a
backend any longer.
Options are disable and remove.
Note that removing the account will also remove
the stored data and files for that account

-r, --re-enable When syncing multiple accounts re-enable
accounts that are disabled in ownCloud but
available in the synced backend.

Below are examples of how to use the command with an LDAP, Samba, and Shibboleth
backend.

Server Configuration | 373

configuration/server/background_jobs_configuration.pdf#available-background-jobs

LDAP

sudo -u www-data php occ user:sync "OCA\User_LDAP\User_Proxy"

Samba

sudo -u www-data php occ user:sync "OCA\User\SMB" -vvv

Below are examples of how to use the command with the LDAP backend along with
example console output.

Example 1

sudo -u www-data php occ user:sync "OCA\User_LDAP\User_Proxy" -m disable -r
 Analysing all users ...
 6 [============================]

 No removed users have been detected.

 No existing accounts to re-enable.

 Insert new and update existing users ...
 4 [============================]

Example 2

sudo -u www-data php occ user:sync "OCA\User_LDAP\User_Proxy" -m disable -r
 Analysing all users ...
 6 [============================]

 Following users are no longer known with the connected backend.
 Disabling accounts:
 9F625F70-08DD-4838-AD52-7DE1F72DBE30, Bobbie, bobbie@example.org
disabled
 53CDB5AC-B02E-4A49-8FEF-001A13725777, David, dave@example.org disabled
 34C3F461-90FE-417C-ADC5-CE97FE5B8E72, Carol, carol@example.org disabled

 No existing accounts to re-enable.

 Insert new and update existing users ...
 1 [============================]

Example 3

374 | Server Configuration

sudo -u www-data php occ user:sync "OCA\User_LDAP\User_Proxy" -m disable -r
 Analysing all users ...
 6 [============================]

 Following users are no longer known with the connected backend.
 Disabling accounts:
 53CDB5AC-B02E-4A49-8FEF-001A13725777, David, dave@example.org skipped,
already disabled
 34C3F461-90FE-417C-ADC5-CE97FE5B8E72, Carol, carol@example.org skipped,
already disabled
 B5275C13-6466-43FD-A129-A12A6D3D9A0D, Alicia3, alicia3@example.org
disabled

 Re-enabling accounts:
 9F625F70-08DD-4838-AD52-7DE1F72DBE30, Bobbie, bobbie@example.org
enabled

 Insert new and update existing users ...
 1 [============================]

Example 4

sudo -u www-data php occ user:sync "OCA\User_LDAP\User_Proxy" -m disable -r
 Analysing all users ...
 6 [============================]

 No removed users have been detected.

 Re-enabling accounts:
 53CDB5AC-B02E-4A49-8FEF-001A13725777, David, dave@example.org enabled
 34C3F461-90FE-417C-ADC5-CE97FE5B8E72, Carol, carol@example.org enabled
 B5275C13-6466-43FD-A129-A12A6D3D9A0D, Alicia3, alicia3@example.org
enabled

 Insert new and update existing users ...
 4 [============================]

Example 5

sudo -u www-data php occ user:sync "OCA\User_LDAP\User_Proxy" -m remove

Example 6

Server Configuration | 375

sudo -u www-data php occ user:sync "OCA\User_LDAP\User_Proxy"
If unknown users are found, what do you want to do with their accounts? (removing
the account will also remove its data)
[0] disable
[1] remove
[2] ask later

Syncing via cron job

Here is an example for syncing with LDAP four times a day on Ubuntu:

crontab -e -u www-data

* */6 * * * /usr/bin/php /var/www/owncloud/occ user:sync -vvv \
 --missing-account-action="disable" \
 -n "OCA\User_LDAP\User_Proxy"

Versions


These commands are only available when the "Versions" app
(files_versions) is enabled. These commands are not available in single-
user (maintenance) mode.

versions:cleanup

versions:cleanup can delete all versioned files, as well as the files_versions folder, for
either specific users, or for all users.

sudo -u www-data php occ versions:cleanup [<user_id>]...

Options

user_id Delete versions of the given user(s), if no user is given all
versions will be deleted.

The example below deletes all versioned files for all users:

sudo -u www-data php occ versions:cleanup
Delete all versions
Delete versions for users on backend Database
 freda
 molly
 stash
 rosa
 edward

You can delete versions for specific users in a space-delimited list:

376 | Server Configuration

sudo -u www-data php occ versions:cleanup freda molly
Delete versions of freda
Delete versions of molly

versions:expire

versions:expire deletes only expired files according to the versions_retention_obligation
setting in config.php (see the File versions section in config_sample_php_parameters).
The default is to delete expired files for all users, or you may list users in a space-
delimited list.

sudo -u www-data php occ versions:expire [<user_id>]...

Options

user_id Expire file versions of the given user(s), if no user is given file
versions for all users will be expired.

Apps Commands

This command reference covers the ownCloud maintained apps commands.

Activity

The activity commands are used for automating activity notifications in ownCloud
server.

 activity
 activity:send-emails Send all pending activity emails now

activity:send-emails

The activity:send-emails command sends all pending activity emails immediately,
regardless of the time they are scheduled.

sudo -u www-data php occ activity:send-emails

Anti-Virus

Marketplace URL: Anti-Virus

Use these commands to configure the Anti-Virus app. Parametrisation must be done
with the occ config command set.

List the Current Settings

sudo -u www-data php occ config:list files_antivirus

Set the Setting

To set a new value, use the command below and replace <Key> and value <Value>

Server Configuration | 377

https://marketplace.owncloud.com/apps/files_antivirus

accordingly.

sudo -u www-data php occ config:app:set files_antivirus <Key> --value=<Value>
--update-only

Antivirus Mode [string]

Antivirus Configuration.

Key av_mode

Default 'executable'

Possible Values 'executable'
'daemon'
'socket'

Antivirus Socket [string]

Antivirus Socket.

Key av_socket

Default '/var/run/clamav/clamd.ctl'

Antivirus Host [string]

Hostname or IP address of Antivirus Host.

Key av_host

Default

Antivirus Port [integer]

Port number of Antivirus Host, 1-65535.

Key av_port

Default

Possible Values 1-65535

Antivirus Command Line Options [string]

Extra command line options (comma-separated).

Key av_cmd_options

Default

Antivirus Path to Executable [string]

Path to clamscan executable.

Key av_path

Default '/usr/bin/clamscan'

378 | Server Configuration

Antivirus Maximum Filesize [integer]

File size limit, -1 means no limit.

Key av_max_file_size

Default '-1'

Possible Values '-1'
integer number

Antivirus Maximum Stream Lenth [integer]

Max Stream Length.

Key av_stream_max_length

Default '26214400'

Antivirus Action [string]

When infected files were found during a background scan.

Key av_infected_action

Default 'only_log'

Possible Values 'only_log'
'delete'

Antivirus Scan Process [string]

Define scan process.

Key av_scan_background

Default 'true'

Possible Values 'true'
'false'

Brute Force Protection

Marketplace URL: Brute-Force Protection

Use these commands to configure the Brute Force Protection app. Parametrisation
must be done with the occ config command set. The combination of uid and IP address
is used to trigger the ban.

List the Current Settings

sudo -u www-data php occ config:list brute_force_protection

Set the Setting

To set a new value, use the command below and replace <Key> and value <Value>
accordingly.

Server Configuration | 379

https://marketplace.owncloud.com/apps/brute_force_protection

sudo -u www-data php occ config:app:set brute_force_protection <Key> --value
=<Value> --update-only

Fail Tolerance [attempts]

Number of wrong attempts to trigger the ban.

Key brute_force_protection_fail_tolerance

Default 3

Time Treshold [seconds]

Time in which the number of wrong attempts must occur to trigger the ban.

Key brute_force_protection_time_threshold

Default 60

Ban Period [seconds]

Time how long the ban will be active if triggered.

Key brute_force_protection_ban_period

Default 300

Calendar

Marketplace URL: Calendar

For commands for managing the calendar, please see the DAV Command section in the
occ core command set.

Contacts

Marketplace URL: Contacts

For commands for managing contacts, please see the DAV Command section in the occ
core command set.

Data Exporter

This app is only available as a git clone. See the Data Exporter description for more
information how to install this app. Import and export users from one ownCloud
instance in to another. The export contains all user-settings, files and shares.

Export User Data

instance:export:user <userId> <exportDirectory>

Arguments

userId User to export.

exportDirectory Path to the directory to export data to.

380 | Server Configuration

https://marketplace.owncloud.com/apps/calendar
https://marketplace.owncloud.com/apps/contacts
https://github.com/owncloud/data_exporter.git
maintenance/export_import_instance_data.pdf

Import User Data

instance:import:user [options] [--] <importDirectory>

Arguments

userId User to export.

importDirectory Path to the directory to import data from.

Options

-a [UID]
--as=[UID]

Import the user under a different user id.

Migrate Shares

instance:export:migrate:share <userId> <remoteServer>

Arguments

userId The exported userId whose shares we want to
migrate.

remoteServer The remote ownCloud server where the
exported user is now, for example
"https://myown.server:8080/owncloud".

LDAP Integration

Marketplace URL: LDAP Integration

ldap
 ldap:check-user Checks whether a user exists on LDAP.
 ldap:create-empty-config Creates an empty LDAP configuration
 ldap:delete-config Deletes an existing LDAP configuration
 ldap:search Executes a user or group search
 ldap:set-config Modifies an LDAP configuration
 ldap:show-config Shows the LDAP configuration
 ldap:test-config Tests an LDAP configuration

Search for an LDAP user, using this syntax:

sudo -u www-data php occ ldap:search [--group] [--offset="..."] [--limit="..."] search

Searches match at the beginning of the attribute value only. This example searches for
givenNames that start with 'rob':

sudo -u www-data php occ ldap:search "rob"

Server Configuration | 381

https://marketplace.owncloud.com/apps/user_ldap

This will find "robbie", "roberta", and "robin". Broaden the search to find, for example,
jeroboam with the asterisk wildcard:

sudo -u www-data php occ ldap:search "*rob"

User search attributes are set with ldap:set-config (below). For example, if your search
attributes are givenName and sn you can find users by first name + last name very
quickly. For example, you’ll find 'Terri Hanson' by searching for te ha. Trailing
whitespace is ignored.

Check if an LDAP user exists. This works only if the ownCloud server is connected to
an LDAP server.

sudo -u www-data php occ ldap:check-user robert

ldap:check-user will not run a check when it finds a disabled LDAP connection. This
prevents users that exist on disabled LDAP connections from being marked as deleted.
If you know for sure that the user you are searching for is not in one of the disabled
connections, and exists on an active connection, use the --force option to force it to
check all active LDAP connections.

sudo -u www-data php occ ldap:check-user --force robert

ldap:create-empty-config creates an empty LDAP configuration. The first one you
create has no configID, like this example:

sudo -u www-data php occ ldap:create-empty-config
 Created new configuration with configID ''

This is a holdover from the early days, when there was no option to create additional
configurations. The second, and all subsequent, configurations that you create are
automatically assigned IDs.

sudo -u www-data php occ ldap:create-empty-config
 Created new configuration with configID 's01'

Then you can list and view your configurations:

sudo -u www-data php occ ldap:show-config

And view the configuration for a single configID:

sudo -u www-data php occ ldap:show-config s01

ldap:delete-config [configID] deletes an existing LDAP configuration.

382 | Server Configuration

sudo -u www-data php occ ldap:delete s01
Deleted configuration with configID 's01'

The ldap:set-config command is for manipulating configurations, like this example that
sets search attributes:

sudo -u www-data php occ ldap:set-config s01 ldapAttributesForUserSearch
"cn;givenname;sn;displayname;mail"

The command takes the following format:

ldap:set-config <configID> <configKey> <configValue>

All of the available keys, along with default values for configValue, are listed in the
table below.

Configuration Setting

hasMemberOfFilterSupport

hasPagedResultSupport

homeFolderNamingRule

lastJpegPhotoLookup 0

ldapAgentName cn=admin,dc=owncloudqa,d
c=com

ldapAgentPassword *

ldapAttributesForGroupSear
ch

ldapAttributesForUserSearch

ldapBackupHost

ldapBackupPort

ldapBase dc=owncloudqa,dc=com

ldapBaseGroups dc=owncloudqa,dc=com

ldapBaseUsers dc=owncloudqa,dc=com

ldapCacheTTL 600

ldapConfigurationActive 1

ldapDynamicGroupMemberU
RL

ldapEmailAttribute

ldapExperiencedAdmin 0

ldapExpertUUIDGroupAttr

ldapExpertUUIDUserAttr

Server Configuration | 383

Configuration Setting

ldapExpertUsernameAttr ldapGroupDisplayName cn

ldapGroupFilter ldapGroupFilterGroups

ldapGroupFilterMode 0

ldapGroupFilterObjectclass

ldapGroupMemberAssocAttr uniqueMember

ldapHost ldap://host

ldapIgnoreNamingRules

ldapLoginFilter (& objectclass=inetOrgPers
on(uid=%uid))

ldapLoginFilterAttributes

ldapLoginFilterEmail 0

ldapLoginFilterMode 0

ldapLoginFilterUsername 1

ldapNestedGroups 0

ldapOverrideMainServer

ldapPagingSize 500

ldapPort 389

ldapQuotaAttribute

ldapQuotaDefault

ldapTLS 0

ldapUserDisplayName displayName

ldapUserDisplayName2

ldapUserFilter objectclass=inetOrgPerson

ldapUserFilterGroups

ldapUserFilterMode 0

ldapUserFilterObjectclass inetOrgPerson

ldapUuidGroupAttribute auto

ldapUuidUserAttribute auto

turnOffCertCheck 0

useMemberOfToDetectMemb
ership

1

ldap:test-config tests whether your configuration is correct and can bind to the server.

sudo -u www-data php occ ldap:test-config s01
The configuration is valid and the connection could be established!

384 | Server Configuration

sudo -u www-data php occ config:app:set user_ldap updateAttributesInterval
--value=7200

In the example above, the interval is being set to 7200 seconds. Assuming the above
example was used, the command would output the following:

Config value updateAttributesInterval for app user_ldap set to 7200

If you want to reset (or unset) the setting, then you can use the following command:

sudo -u www-data php occ config:app:delete user_ldap updateAttributesInterval

Reuse Existing LDAP Accounts if Available

If you want to allow new LDAP logins to attempt to reuse existing oc_accounts entries
that match the resolved username attribute, and have backend set to User_Proxy, then
set the reuse_accounts config setting to yes.

Below is an example of how to do so.

sudo -u www-data php occ config:app:set user_ldap reuse_accounts --value=yes

This functionality is valuable for several reasons; these are:

• It handles the situation of when admins mistakenly delete one or more user
mappings, and subsequent logins then create new accounts.

• It allows auto-provisioned users with Shibboleth to be moved over to an LDAP
server, but be able to continue using ownCloud.

 == This functionality will not work in the following situations:

1. No user or group account exists with the supplied username.
2. A user or group account exists, but it uses a different backend. ==

File Lifecycle Management

Marketplace URL: File Lifecycle Management

The File Lifecycle Management extension allows service providers to manage the
lifecycle of files within ownCloud. For details please see the File Lifecycle
Management documentation.

The lifecycle commands configure the File Lifecycle Management app.

Server Configuration | 385

https://marketplace.owncloud.com/apps/files_lifecycle
enterprise/file_management/files_lifecycle.pdf
enterprise/file_management/files_lifecycle.pdf

Listing 14. App Configuration

lifecycle
 lifecycle:archive Archive files which have reached a certain age
 lifecycle:expire Expire files from Archive which have reached a certain age
 lifecycle:restore Restore files from Archive to the original location
 lifecycle:restore-all Restore all archived files in the system back to their
 original locations
 lifecycle:set-upload-time Set upload time for files which do not have one

config:app commands configure the Policies for the File Lifecycle Management app.

Listing 15. Policy Configuration

 config:app:get|set
 files_lifecycle archive_period Number of days since upload (or restore)
 after which files will be archived
 files_lifecycle expire_period Number of days since archiving after which files will
 be permanently deleted
 files_lifecycle excluded_groups Define groups of users that are exempt from the
 lifecycle policies
 files_lifecycle policy Restoration policies for users
 files_lifecycle disable_ui Enable/Disable the user interface components

App Configuration

Archive Aged Files

Archive files which have reached a certain age.

sudo -u www-data php occ lifecycle:archive [options]

Options

-d,
--dryrun[=DRYRUN]

Don’t apply changes to the system [default: false]

Expire Files From Archive

Expire files from archive which have reached a certain age.

sudo -u www-data php occ lifecycle:expire [options]

Options

-d,
--dryrun[=DRYRUN]

Don’t apply changes to the system [default: false]

386 | Server Configuration

Restore Files From Archive

Restore files from archive to the original location. Note that the location for archived
files always follows the pattern $userid/archive/files/…

sudo -u www-data php occ lifecycle:restore <path>

Arguments

path Enter path to a folder or to a single file

Example

Restore all files in folder project1 for user alice with path /work/projects/project1

sudo -u www-data php occ lifecycle:restore
/alice/archive/files/work/projects/project1

Restore All Files From Archive

Restore all archived files for all users in the system back to their original locations.
This command has no additional arguments or options.

sudo -u www-data php occ lifecycle:restore-all

Set Default Upload Time

Set upload time for files which do not have one.


Files without upload time are silently skipped by occ lifecycle:archive
This can happen with files that were uploaded before the files_lifecycle
app was configured or when it was temporarily disabled and therefore
do not have an upload time set.

sudo -u www-data php occ lifecycle:set-upload-time [options] [--] <date>

Arguments

date Date in format y-m-d. Example: 2018-07-23

Options

-d,
--dryrun[=DRYRUN]

Don’t apply changes to the system [default: false]

Policy Configuration

All policy configurations are set and queried with the config:app command set. The
examples below set a value. To query a value use config:app:get and the corresponding
key without any options or attributes.

Server Configuration | 387

Set the Archive Period

The number of days since upload (or restore) after which files will be archived.

The following example command sets the time passed since upload (or restore) for
archiving files to 90 days.

sudo -u www-data php occ config:app:set files_lifecycle archive_period --value='90'

Set the Expire Period

The number of days since archiving after which files will be permanently deleted.

The following example command sets the time passed to delete files to 180 days.

sudo -u www-data php occ config:app:set files_lifecycle expire_period --value='180'

Set Groups to be Excluded

Define groups of users that are exempt from the lifecycle policies (comma-separated
group ids).

The following example command specifies groups whose members will not be part of
the lifecycle management.

sudo -u www-data php occ config:app:set files_lifecycle excluded_groups
--value='group1,group2'

Restoration Policy for Users

Set a policy who can restore files. Use the value soft for self-service and hard for
admin/groupadmin-service.

The following example command sets the restauration policy for users to soft (default).

sudo -u www-data php occ config:app:set files_lifecycle policy --value='soft'

Disable User Interface

Disable the whole user interface for the File Lifecycle Management app.

The following example command disables the user interface for the File Lifecycle
Management app.

sudo -u www-data php occ config:app:set files_lifecycle disable_ui --value='yes'

You can reenable it by deleting the key:

sudo -u www-data php occ config:app:delete files_lifecycle disable_ui

388 | Server Configuration

LDAP Integration

Marketplace URL: LDAP Integration

ldap
 ldap:check-user Checks whether a user exists on LDAP.
 ldap:create-empty-config Creates an empty LDAP configuration
 ldap:delete-config Deletes an existing LDAP configuration
 ldap:search Executes a user or group search
 ldap:set-config Modifies an LDAP configuration
 ldap:show-config Shows the LDAP configuration
 ldap:test-config Tests an LDAP configuration

Search for an LDAP user, using this syntax:

sudo -u www-data php occ ldap:search [--group] [--offset="..."] [--limit="..."] search

Searches match at the beginning of the attribute value only. This example searches for
givenNames that start with 'rob':

sudo -u www-data php occ ldap:search "rob"

This will find "robbie", "roberta", and "robin". Broaden the search to find, for example,
jeroboam with the asterisk wildcard:

sudo -u www-data php occ ldap:search "*rob"

User search attributes are set with ldap:set-config (below). For example, if your search
attributes are givenName and sn you can find users by first name + last name very
quickly. For example, you’ll find 'Terri Hanson' by searching for te ha. Trailing
whitespace is ignored.

Check if an LDAP user exists. This works only if the ownCloud server is connected to
an LDAP server.

sudo -u www-data php occ ldap:check-user robert

ldap:check-user will not run a check when it finds a disabled LDAP connection. This
prevents users that exist on disabled LDAP connections from being marked as deleted.
If you know for sure that the user you are searching for is not in one of the disabled
connections, and exists on an active connection, use the --force option to force it to
check all active LDAP connections.

sudo -u www-data php occ ldap:check-user --force robert

ldap:create-empty-config creates an empty LDAP configuration. The first one you
create has no configID, like this example:

Server Configuration | 389

https://marketplace.owncloud.com/apps/user_ldap

sudo -u www-data php occ ldap:create-empty-config
 Created new configuration with configID ''

This is a holdover from the early days, when there was no option to create additional
configurations. The second, and all subsequent, configurations that you create are
automatically assigned IDs.

sudo -u www-data php occ ldap:create-empty-config
 Created new configuration with configID 's01'

Then you can list and view your configurations:

sudo -u www-data php occ ldap:show-config

And view the configuration for a single configID:

sudo -u www-data php occ ldap:show-config s01

ldap:delete-config [configID] deletes an existing LDAP configuration.

sudo -u www-data php occ ldap:delete s01
Deleted configuration with configID 's01'

The ldap:set-config command is for manipulating configurations, like this example that
sets search attributes:

sudo -u www-data php occ ldap:set-config s01 ldapAttributesForUserSearch
"cn;givenname;sn;displayname;mail"

The command takes the following format:

ldap:set-config <configID> <configKey> <configValue>

All of the available keys, along with default values for configValue, are listed in the
table below.

Configuration Setting

hasMemberOfFilterSupport

hasPagedResultSupport

homeFolderNamingRule

lastJpegPhotoLookup 0

ldapAgentName cn=admin,dc=owncloudqa,d
c=com

390 | Server Configuration

Configuration Setting

ldapAgentPassword *

ldapAttributesForGroupSear
ch

ldapAttributesForUserSearch

ldapBackupHost

ldapBackupPort

ldapBase dc=owncloudqa,dc=com

ldapBaseGroups dc=owncloudqa,dc=com

ldapBaseUsers dc=owncloudqa,dc=com

ldapCacheTTL 600

ldapConfigurationActive 1

ldapDynamicGroupMemberU
RL

ldapEmailAttribute

ldapExperiencedAdmin 0

ldapExpertUUIDGroupAttr

ldapExpertUUIDUserAttr

ldapExpertUsernameAttr ldapGroupDisplayName cn

ldapGroupFilter ldapGroupFilterGroups

ldapGroupFilterMode 0

ldapGroupFilterObjectclass

ldapGroupMemberAssocAttr uniqueMember

ldapHost ldap://host

ldapIgnoreNamingRules

ldapLoginFilter (& objectclass=inetOrgPers
on(uid=%uid))

ldapLoginFilterAttributes

ldapLoginFilterEmail 0

ldapLoginFilterMode 0

ldapLoginFilterUsername 1

ldapNestedGroups 0

ldapOverrideMainServer

ldapPagingSize 500

ldapPort 389

ldapQuotaAttribute

ldapQuotaDefault

Server Configuration | 391

Configuration Setting

ldapTLS 0

ldapUserDisplayName displayName

ldapUserDisplayName2

ldapUserFilter objectclass=inetOrgPerson

ldapUserFilterGroups

ldapUserFilterMode 0

ldapUserFilterObjectclass inetOrgPerson

ldapUuidGroupAttribute auto

ldapUuidUserAttribute auto

turnOffCertCheck 0

useMemberOfToDetectMemb
ership

1

ldap:test-config tests whether your configuration is correct and can bind to the server.

sudo -u www-data php occ ldap:test-config s01
The configuration is valid and the connection could be established!

sudo -u www-data php occ config:app:set user_ldap updateAttributesInterval
--value=7200

In the example above, the interval is being set to 7200 seconds. Assuming the above
example was used, the command would output the following:

Config value updateAttributesInterval for app user_ldap set to 7200

If you want to reset (or unset) the setting, then you can use the following command:

sudo -u www-data php occ config:app:delete user_ldap updateAttributesInterval

Reuse Existing LDAP Accounts if Available

If you want to allow new LDAP logins to attempt to reuse existing oc_accounts entries
that match the resolved username attribute, and have backend set to User_Proxy, then
set the reuse_accounts config setting to yes.

Below is an example of how to do so.

sudo -u www-data php occ config:app:set user_ldap reuse_accounts --value=yes

This functionality is valuable for several reasons; these are:

• It handles the situation of when admins mistakenly delete one or more user

392 | Server Configuration

mappings, and subsequent logins then create new accounts.
• It allows auto-provisioned users with Shibboleth to be moved over to an LDAP

server, but be able to continue using ownCloud.

 == This functionality will not work in the following situations:

1. No user or group account exists with the supplied username.
2. A user or group account exists, but it uses a different backend. ==

Password Policy

Marketplace URL: Password Policy

Command to expire a user or group of users’ passwords.

Command Description

sudo -u www-data php occ user:expire-password <uid> [<expiredate>]

Arguments

uid User ID.

expiredate The date and time when a password expires,
e.g. 2019-01-01 14:00:00 CET or -1 days.


The expiry date can be provided using any of PHP’s supported date and
time formats.

Options

-a, --all Will add password expiry to all known users. uid and group option
are discarded if the option is provided by user.

-u [UID]
--uid=[UID]

The uid of the user to expire the password for.
To expire the password of multiple users, pass the -u or --uid
option multiple times, as in this example: --uid "Alice" --uid "Bob".

-g [GROUP]
--group=[GROUP]

Add password expiry to user(s) in one or more groups.
This option can be used as --group foo --group bar to add expiry
passwords for users in multiple groups.

If an expiry date is not supplied, the password will expire with immediate effect. This
is because the password will be set as being expired 24 hours before the command
was run. For example, if the command was run at 2018-07-12 13:15:28 UTC, then the
password’s expiry date will be set to 2018-07-11 13:15:28 UTC.

After the command completes, console output, similar to that below, confirms when
the user’s password is set to expire.

The password for frank is set to expire on 2018-07-12 13:15:28 UTC.

Command Examples

Server Configuration | 393

https://marketplace.owncloud.com/apps/password_policy
https://php.net/manual/datetime.formats.php
https://php.net/manual/datetime.formats.php

The password for user "frank" will be set as being expired 24 hours before the
command was run.
sudo -u www-data php occ user:expire-password -u frank

Expire the user "frank"'s password in 2 days time.
sudo -u www-data php occ user:expire-password -u frank '+2 days'

Expire the user "frank"'s password on the 15th of August 2005, at 15:52:01 in the
local timezone.
sudo -u www-data php occ user:expire-password --uid frank '2005-08-
15T15:52:01+00:00'

Expire the user "frank"'s password on the 15th of August 2005, at 15:52:01 UTC.
sudo -u www-data php occ user:expire-password --uid frank '15-Aug-05 15:52:01
UTC'

Caveats

Please be aware of the following implications of enabling or changing the password
policy’s "days until user password expires" option.

• Administrators need to run the occ user:expire-password command to initiate expiry
for new users.

• Passwords will never expire for users who have not changed their initial password,
because they do not have a password history. To force password expiration use the
occ user:expire-password command.

• A password expiration date will be set after users change their password for the
first time. To force password expiration use the occ user:expire-password command.

• Passwords changed for the first time, will expire based on the active password
policy. If the policy is later changed, it will not update the password’s expiry date to
reflect the new setting.

• Password expiration dates of users where the administrator has run the occ
user:expire-password command won’t automatically update to reflect the policy
change. In these cases, Administrators need to run the occ user:expire-password
command again and supply a new expiry date.

Ransomware Protection (Enterprise Edition only)

Marketplace URL: Ransomware Protection

Use these commands to help users recover from a Ransomware attack. You can find
more information about the application in the Ransomware Protection documentation.

Command Description

sudo -u www-data php occ ransomguard:scan <timestamp> <user>

Arguments

<timestamp>
<user>

Report all changes in a user’s account, starting from timestamp.

394 | Server Configuration

https://marketplace.owncloud.com/apps/ransomware_protection
enterprise/security/ransomware-protection/index.pdf

sudo -u www-data php occ ransomguard:restore <timestamp> <user>

Arguments

<timestamp>
<user>

Revert all operations in a user account after a point in time.

sudo -u www-data php occ ransomguard:lock <user>

Arguments

<user> Set a user account as read-only for ownCloud and other WebDAV
clients when malicious activity is suspected.

sudo -u www-data php occ ransomguard:unlock <user>

Arguments

<user> Unlock a user account after ransomware issues have been
resolved.

S3 Objectstore

Marketplace URL: S3 Object Storage

List objects, buckets or versions of an object

sudo -u www-data php occ s3:list

Arguments

bucket Name of the bucket; it`s objects will be listed.

object Key of the object; it`s versions will be listed.

Create a bucket as necessary to be used

sudo -u www-data php occ s3:create-bucket

Arguments

bucket Name of the bucket to be created

Options

update-
configuration

If the bucket exists the configuration will be
updated.

Server Configuration | 395

https://marketplace.owncloud.com/apps/files_primary_s3

accept-warning No warning about the usage of this command
will be displayed.

SAML/SSO Shibboleth Integration (Enterprise Edition only)

Marketplace URL: SAML/SSO Integration

shibboleth:mode sets your Shibboleth mode to notactive, autoprovision, or ssoonly

shibboleth:mode [mode]

Two-factor Authentication

Marketplace URL: 2-Factor Authentication

If a two-factor provider app is enabled, it is enabled for all users by default (though
the provider can decide whether or not the user has to pass the challenge). In the case
of an user losing access to the second factor (e.g., a lost phone with two-factor SMS
verification), the admin can temporarily disable the two-factor check for that user via
the occ command:

Command Description

sudo -u www-data php occ twofactor:disable <username>

To re-enable two-factor authentication again, use the following command:

sudo -u www-data php occ twofactor:enable <username>

Language Configuration

In normal cases, ownCloud will automatically detect the language of the Web-GUI. If
this does not work as expected, or you want to make sure that ownCloud always starts
with a given language, you can use the default_language configuration parameter.

This parameter can be set in config/config.php

Parameters

'default_language' => 'en',

Please keep in mind, that this will not effect a users language preference, which can
be configured under Settings › Personal › General › Language once he has logged
in.

More supported languages can be found in directory <ownCloud_root>/settings/l10n.
List all files with ls *.js. The language code to be used is the filename without
extension.

Example:

396 | Server Configuration

https://marketplace.owncloud.com/apps/user_shibboleth
https://marketplace.owncloud.com/apps/twofactor_totp

en_GB.js --> en_GB

Please see Wikipedia for a match of language code to country.

Legal Settings Configuration

Introduction

Because of one or more legal frameworks around the world, some ownCloud instances
may need to display links to both an Imprint as well as a Privacy Policy on all pages
(both in the Web UI and within email templates). An Imprint document is a legally
mandated statement of the ownership and authorship of the ownCloud installation.
You can think of an Imprint as a rather fancy "About Us" page or an enhanced "Terms
and Conditions" page; in Germany, this is known as an "Impressum".


Imprint and Privacy Policy links are shown on all public pages and in e-
mail footers. Authenticated pages, such as files app or settings, do not
show them.

Some of the more global legal frameworks prominent are:

• The GDPR
• The Australian Privacy Act 1988
• The Canadian Personal Information Protection and Electronic Data Act (PIPEDA)
• The California Online Privacy Protection Act (CalOPPA)
• The Children’s Online Privacy Protection Rule (COPPA)

If you’re required to link to either one of these, you can specify the link to them in two
ways:

• Using the Web UI
• Using the Command Line

Using the Web UI

In the Web UI, under Settings › Admin › General, under the heading "Legal", you
can provide a link to an Imprint and a Privacy Policy URL, as you can see in the
screenshot below.

Configuring Imprint and Privacy Policy URLs in the ownCloud Web UI.

Server Configuration | 397

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://www.eugdpr.org/
https://www.oaic.gov.au/privacy-law/privacy-act/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/
http://consumercal.org/california-online-privacy-protection-act-caloppa/
http://www.coppa.org/

 The values entered will auto-save.

Using the Command Line

From the command line, you can use the occ config:app:get and occ config:app:set
commands, as in the code sample below.

Get the current values, if any, for the Imprint and Privacy Policy URLs
sudo -u www-data php occ config:app:get core legal.imprint_url
sudo -u www-data php occ config:app:get core legal.privacy_policy_url

Set the Imprint and Privacy Policy URLs
sudo -u www-data php occ config:app:set core legal.imprint_url --value=new_value
sudo -u www-data php occ config:app:set core legal.privacy_policy_url
--value=new_value

For more information about these commands, refer to the config command reference
in the occ commands documentation.

Viewing the URLs


Customized email templates and themes that were built prior to
ownCloud version 10.0.9 need to be updated.

Once the settings have been updated, you will see two links appear at the bottom the
ownCloud login page, one for each option, as in the screenshot below.

Logging Configuration

Introduction

Use your ownCloud log to review system status, or to help debug problems. You may
adjust logging levels, and choose between using the ownCloud log or your syslog.

Parameters

Logging levels range from DEBUG, which logs all activity, to FATAL, which logs only
fatal errors.

• 0: DEBUG: Debug, informational, warning, and error messages, and fatal issues.
• 1: INFO: Informational, warning, and error messages, and fatal issues.
• 2: WARN: Warning, and error messages, and fatal issues.
• 3: ERROR: Error messages and fatal issues.
• 4: FATAL: Fatal issues only.

By default the log level is set to 2 (WARN). Use DEBUG when you have a problem to
diagnose, and then reset your log level to a less-verbose level, as DEBUG outputs a lot
of information, and can affect your server performance.

398 | Server Configuration

configuration/server/occ_command.pdf#config-commands
configuration/server/occ_command.pdf#config-commands
https://doc.owncloud.com/server/admin_manual/release_notes.html#new-options-to-display-imprint-and-privacy-policy

Logging level parameters are set in the config/config.php file, or on the Admin page of
your ownCloud Web GUI.

ownCloud

All log information will be written to a separate log file which can be viewed using the
log viewer on your Admin page. By default, a log file named owncloud.log will be
created in the directory which has been configured by the datadirectory parameter in
config/config.php.

The desired date format can optionally be defined using the logdateformat parameter
in config/config.php. By default the PHP date function parameter c is used, and
therefore the date/time is written in the format 2013-01-10T15:20:25+02:00. By using
the date format in the example below, the date/time format will be written in the
format January 10, 2013 15:20:25.

"log_type" => "owncloud",
"logfile" => "owncloud.log",
"loglevel" => "3",
"logdateformat" => "F d, Y H:i:s",

syslog

All log information will be sent to your default syslog daemon.

"log_type" => "syslog",
"logfile" => "",
"loglevel" => "3",

The syslog format can be changed to remove or add information. In addition to the
%replacements% below %level% can be used, but it is used as a dedicated parameter
to the syslog logging facility anyway.

'log.syslog.format' =>
'[%reqId%][%remoteAddr%][%user%][%app%][%method%][%url%] %message%',

 For the old syslog message format use:

'log.syslog.format' => '{%app%} %message%',

Conditional Logging Level Increase

You can configure the logging level to automatically increase to debug when the first
condition inside a condition block is met. All conditions are optional !

• shared_secret: A unique token. If a http(s) request parameter named log_secret is
added to the request and set to this token, the condition is met.

• users: If the current request is done by one of the specified users, this condition is
met.

• apps: If the log message is invoked by one of the specified apps, this condition is
met.

• logfile: The log message invoked gets redirected to this logfile when a condition

Server Configuration | 399

http://www.php.net/manual/en/function.date.php

above is met.

Notes regarding the logfile key:

1. If no logfile is defined, the standard logfile is used.
2. Not applicable when using syslog.

The following example demonstrates how all three conditions can look like.
The first one that matches triggers the condition block writing the log entry to
the defined logfile.

'log.conditions' => [
 [
 'shared_secret' => '57b58edb6637fe3059b3595cf9c41b9',
 'users' => ['user1', 'user2'],
 'apps' => ['comments'],
 'logfile' => '/tmp/test2.log'
]
],

Based on the conditional log settings above, following logs are written to the same
logfile defined:

• Requests matching log_secret are debug logged.

curl -X PROPFIND -u sample-user:password \

https://your_domain/remote.php/webdav/?log_secret=57b58edb6637fe3059b3595c
f9c41b9

• user1 and user2 gets debug logged.
• Access to app comments gets debug logged.

Request Tracing

ownCloud logs the X-REQUEST-ID header from desktop and mobile clients in the
ownCloud log when sent with client requests.

The header helps when clients have a problem communicating with an ownCloud
server, because:

1. The user can include the value in bug reports; and
2. System administrators can filter log files for the header value.

Storing this information makes searching more efficient, as system administrators
don’t have to rely solely on normal log entry elements, such as timestamps and IP
addresses.

The Header’s Value

The header’s value is a UUID (version 4). These are generated from truly random (or
pseudo-random) numbers by the client and do not contain any sensitive information.
As a result it will not violate the user’s privacy nor allow users to be tracked.

400 | Server Configuration

https://tools.ietf.org/html/rfc4122

Required Server Configuration

Before the value can be stored in your web server’s log files, your system
administrator(s) need to configure two areas:

1. The web server: The web server’s logging configuration needs to be adjusted, e.g.,
Apache’s access and error log format, so that the value is stored in request log
entries. An example of configuring Apache’s CustomLog format is provided below.

2. Load balancers: All load balancers sitting in-between clients and your ownCloud
instance(s), e.g., Traefik, Big-IP, need to be configured to pass the header through.
This way it is possible to track ("trace") requests through larger environments.
Please refer to your load balancer’s configuration for details on how to adjust their
configuration.

Web Server Configuration Example

Listing 16. Example for Apache

CustomLog /var/log/apache2/access.log "%h %l %u %t \"%r\" %>s %O
\"%{Referer}i\" \"%{User-Agent}i\" \"%{X-Request-ID}i\""


The exact log format chosen is entirely up to your system
administrator(s).

Reverse Proxy Configuration

Introduction

ownCloud can be run through a reverse proxy, which can cache static assets such as
images, CSS, or Javascript files, move the load of handling HTTPS to a different server
or load balance between multiple servers.

Defining Trusted Proxies

For security, you must explicitly define the proxy servers that ownCloud is to trust.
Connections from trusted proxies will be specially treated to get the real client
information, for use in access control and logging. Parameters are configured in
config/config.php

Set the trusted_proxies parameter as an array of IP address to define the servers
ownCloud should trust as proxies. This parameter provides protection against client
spoofing, and you should secure those servers as you would your ownCloud server.

A reverse proxy can define HTTP headers with the original client IP address, and
ownCloud can use those headers to retrieve that IP address. ownCloud uses the de-
facto standard header X-Forwarded-For by default, but this can be configured with the
forwarded_for_headers parameter. This parameter is an array of PHP lookup strings,
for example X-Forwarded-For becomes HTTP_X_FORWARDED_FOR. Incorrectly setting
this parameter may allow clients to spoof their IP address as visible to ownCloud, even
when going through the trusted proxy! The correct value for this parameter is
dependent on your proxy software.

Overwrite Parameters

The automatic hostname, protocol or webroot detection of ownCloud can fail in certain
reverse proxy situations. This configuration allows the automatic detection to be
manually overridden.

Server Configuration | 401

https://docs.traefik.io/basics/#load-balancing
https://www.f5.com/products/big-ip-services

If ownCloud fails to automatically detect the hostname, protocol or webroot you can
use the overwrite parameters inside the config/config.php. The overwritehost
parameter is used to set the hostname of the proxy. You can also specify a port. The
overwriteprotocol parameter is used to set the protocol of the proxy. You can choose
between the two options HTTP and HTTPS. The overwritewebroot parameter is used to
set the absolute web path of the proxy to the ownCloud folder. When you want to keep
the automatic detection of one of the three parameters you can leave the value empty
or don’t set it. The overwritecondaddr parameter is used to overwrite the values
dependent on the remote address. The value must be a regular expression of the IP
addresses of the proxy. This is useful when you use a reverse SSL proxy only for
HTTPS access and you want to use the automatic detection for HTTP access.

Example

Multiple Domains Reverse SSL Proxy

If you want to access your ownCloud installation http://domain.tld/owncloud via a
multiple domains reverse SSL proxy https://ssl-proxy.tld/domain.tld/owncloud with the
IP address 10.0.0.1 you can set the following parameters inside the config/config.php.

With an Apache as reverse proxy (ssl-proxy.tld) you can use this configuration:

ProxyPass "/domain.tld/owncloud" "http://domain.tld/owncloud"
ProxyPassReverse "/domain.tld/owncloud" "http://domain.tld/owncloud"


If you want to use the SSL proxy during installation you have to create
config/config.php manually, otherwise you have to extend the existing
$CONFIG array.

Server Security

In this section you will find all the details you need to configure ownCloud securely.

• OAuth2
• Password Policy
• Brute-Force Protection
• Hardware Security Module Daemon
• jQuery Warnings

Brute-Force Protection

The Brute-Force Protection extension allows administrators to specify a maximum
number of unsuccessful user account login attempts. On reaching the unsuccessful
login limit, ownCloud temporarily bans further login attempts to those user accounts
from the originating IP address. The time frame of the ban is configurable by
ownCloud administrators.

To configure this app in the web interface, navigate to admin → settings →
admin/security.

402 | Server Configuration

configuration/server/security/oauth2.pdf
configuration/server/security/password_policy.pdf
configuration/server/security/brute_force_protection.pdf
configuration/server/security/hsmdaemon/softhsm2.pdf
configuration/server/security/jquery_warnings.pdf

To configure this app on the command line you can use occ commands.

OAuth2

What is it?

OAuth2 is summarized in RFC 6749 as follows:

The OAuth 2.0 authorization framework enables a third-party
application to obtain limited access to an HTTP service, either on
behalf of a resource owner by orchestrating an approval
interaction between the resource owner and the HTTP service, or
by allowing the third-party application to obtain access on its own
behalf.
— OAuth2 Overview

Here is an overview of how the process works:

Server Configuration | 403

configuration/server/occ_command.pdf#brute-force-protection
https://tools.ietf.org/html/rfc6749#section-4.1.1

 +----------+
 | Resource |
 | Owner |
 | |
 +----------+
 ^
 |
 (B)
 |
 +----|-----+ Client Identifier +---------------+
 | |----(A)-- & Redirection URI ---->| |
 | User- | | Authorization |
 | Agent |----(B)-- User authenticates --->| Server |
 | | | |
 | |<---(C)-- Authorization Code ----| |
 +----------+ +---------------+
 ^ | ^ |
 | | | |
 (A) (C) | |
 | | | |
 | v | |
 +---------+ | |
 | |----(D)-- Authorization Code ---------+ |
 | Client | & Redirection URI |
 | | |
 | |<---(E)----- Access Token -------------------+
 +---------+ (w/ Optional Refresh Token)

The OAuth2 App

OAuth2 support is available in ownCloud via an OAuth2 application which is available
from the ownCloud Marketplace. The app aims to:

1. Connect ownCloud clients (both desktop and mobile) in a standardized and secure
way.

2. Make 3rd party software integrations easier by providing an unified authorization
interface.

Requirements

To use the OAuth2 app, your ownCloud installation will need to meet the following
dependencies:

• Apache: If you are hosting your ownCloud installation using the Apache web
server, then mod_rewrite and mod_headers modules must be installed and enabled.
1. Redis: You will need to have a Redis server available, ideally the latest, stable,

version
2. PHP: You PHP installation must have the phpredis extension (>= 4.2) installed

and enabled.

404 | Server Configuration

https://marketplace.owncloud.com/apps/oauth2
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_headers.html
https://github.com/phpredis/phpredis



We strongly recommend that you configured PHP to store
sessions in Redis. Here is an example configuration.

; Redis configuration
SESSION_SAVE_HANDLER=redis
SESSION_SAVE_PATH=tcp://[REDIS_SERVER]:6379
REDIS_SESSION_LOCKING_ENABLED=1
REDIS_SESSION_LOCK_RETRIES=750
REDIS_SESSION_LOCK_WAIT_TIME=20000

The configuration parameters above are taken from the available
ones. According to an issue in the phpredis repository, the
default values are too small for common usage. It suggested
using the ones above instead. However, please adjust these
values to meet your needs.

Installation

To install the application, place the content of the OAuth2 app inside your
installation’s app directory, or use the Market application.

Basic Configuration

To enable token-only based app or client logins in config/config.php set
token_auth_enforced to true.

Restricting Usage

• Enterprise installations can limit the access of authorized clients, preventing
unwanted clients from connecting.

Endpoints

Description URI

Authorization URL /index.php/apps/oauth2/authorize

Access Token URL /index.php/apps/oauth2/api/v1/token

Protocol Flow

Client Registration

The clients first have to be registered in the admin settings:
/settings/admin?sectionid=authentication. You need to specify a name for the client
(the name is unrelated to the OAuth 2.0 protocol and is just used to recognize it later)
and the redirection URI. A client identifier and client secret are generated when
adding a new client, which both consist of 64 characters. For further information
about client registration, please refer to the official client registration RFC from the
IETF.

Authorization Request

For every registered client an authorization request can be made. The client redirects
the resource owner to the authorization URL and requests authorization. The following
URL parameters have to be specified:

Server Configuration | 405

https://github.com/phpredis/phpredis/blob/develop/README.markdown#session-locking
https://github.com/phpredis/phpredis/blob/develop/README.markdown#session-locking
https://github.com/owncloud/docs/issues/2491
https://tools.ietf.org/html/rfc6749#section-2
https://tools.ietf.org/html/rfc6749#section-2

Parameter Required Description

response_type yes Needs to be code because
at this time only the
authorization code flow is
implemented.

client_id yes The client identifier
obtained when registering
the client.

redirect_uri yes The redirection URI
specified when registering
the client.

state no Can be set by the client "to
maintain state between the
request and callback". See
`RFC 6749`_ for more
information.

For further information about client registration, please refer to the official
authorization request RFC from the IETF.

Authorization Response

After the resource owner’s authorization, the app redirects to the redirect_uri specified
in the authorization request and adds the authorization code as URL parameter code.
An authorization code is valid for 10 minutes. For further information about client
registration, please refer to the official authorization response RFC from the IETF.

Access Token Request

With the authorization code, the client can request an access token using the access
token URL. Client authentication is done using basic authentication with the client
identifier as username and the client secret as a password. The following URL
parameters have to be specified:

Parameter Required Description

grant_type Either authorization_code
or refresh_token.

code if the grant type
authorization_code is used.

redirect_uri if the grant type
authorization_code is used.

refresh_token if the grant type
refresh_token is used.

For further information about client registration, please refer to the official access
token request RFC from the IETF.

Access Token Response

The app responses to a valid access token request with a JSON response like the
following. An access token is valid for 1 hour and can be refreshed with a refresh
token.

406 | Server Configuration

https://tools.ietf.org/html/rfc6749#section-4.1.1
https://tools.ietf.org/html/rfc6749#section-4.1.1
https://tools.ietf.org/html/rfc6749#section-4.1.2
https://tools.ietf.org/html/rfc6749#section-2.3
https://tools.ietf.org/html/rfc6749#section-4.1.3
https://tools.ietf.org/html/rfc6749#section-4.1.3

{
 "access_token" :
"1vtnuo1NkIsbndAjVnhl7y0wJha59JyaAiFIVQDvcBY2uvKmj5EPBEhss0pauzdQ",
 "token_type" : "Bearer",
 "expires_in" : 3600,
 "refresh_token" :
"7y0wJuvKmj5E1vjVnhlPBEhha59JyaAiFIVQDvcBY2ss0pauzdQtnuo1NkIsbndA",
 "user_id" : "admin",
 "message_url" :
"https://www.example.org/owncloud/index.php/apps/oauth2/authorization-
successful"
}

For further information about client registration, please refer to the official access
token response RFC from the IETF.


For a succinct explanation of the differences between access tokens
and authorization codes, check out this answer on StackOverflow.

Limitations

• Since the app does not handle user passwords, only master key encryption works
(similar to the Shibboleth app).

• Clients cannot migrate accounts from Basic Authorization to OAuth2, if they are
currently using the user_ldap backend.

• It is not possible to explicitly end user sessions when using OAuth2. Have a read
through User Authentication with OAuth 2.0 to find out more.

Further Reading

• User Authentication with OAuth 2.0
• The problem with OAuth for Authentication.
• Session Authentication vs Token Authentication
• OAuth 2.0 Token Revocation

Password Policy

The Password Policy App

Server Configuration | 407

https://tools.ietf.org/html/rfc6749#section-4.1.4
https://tools.ietf.org/html/rfc6749#section-4.1.4
https://stackoverflow.com/a/16341985/222011
https://marketplace.owncloud.com/apps/user_shibboleth
https://oauth.net/articles/authentication/
https://oauth.net/articles/authentication/
http://www.thread-safe.com/2012/01/problem-with-oauth-for-authentication.html
https://security.stackexchange.com/questions/81756/session-authentication-vs-token-authentication
https://tools.ietf.org/html/rfc7009

From the 2.0.0 release of the Password Policy app, ownCloud administrators (both
enterprise and community edition) have the option of installing and enabling the
application. The Password Policy application enables administrators to define
password requirements for user passwords and public links.

Some of policy rules apply to both user passwords and public links, and some apply to
just one or the other. The table below shows where each option can be used.

Setting User Passwords Public Links

Specify valid password requirements * *

Disallow usage of a number of previous
passwords

*

Specify a password expiration period *

Forced password change on first login *

Disallowing passwords that match a
configurable number of previous
passwords (defaults to the previous 3).

*

Users can be notified a configurable
number of days before their password
expires

*

Users will be
notified when their
password has
expired.

*

Specify expiration
dates for public link
shares

* Specify the number
of days until link
expires if a
password is set

408 | Server Configuration

https://marketplace.owncloud.com/apps/password_policy

Setting User Passwords Public Links

* Specify the number
of days until link
expires if a
password is not set

*

Here is an example of what an administrator will see:


Active user sessions will not end when passwords expire. However, a
password change will be forced when the user session expires (e.g., on
logout). OAuth2 tokens for app or client authentication, and App
passwords are not affected.


Installing and enabling the application also extends the occ command
to support password policy management.

Server Configuration | 409

configuration/server/occ_command.pdf#password-policy


After enabling the "days until user password expires" policy setting
in the web UI, administrators need to run the occ user:expire-password
command to set an initial password change date for all existing users.

Warnings on Admin Page

Introduction

Your ownCloud server has a built-in configuration checker, and it reports its findings
at the top of your Admin page. These are some of the warnings you might see, and
what to do about them.

Cache Warnings

No memory cache has been configured. To enhance your performance please
configure a memcache if available.

ownCloud supports multiple PHP caching extentions:

• APCu
• Memcached
• Redis (minimum required PHP extension version: 2.2.6)

You will see this warning if you have no caches installed and enabled, or if your cache
does not have the required minimum version installed; older versions are disabled
because of performance problems.

If you see {Cache} below version {Version} is installed. for stability and performance
reasons we recommend to update to a newer {Cache} version then you need to
upgrade, or, if you’re not using it, remove it.

You are not required to use any caches, but caches improve server performance. See
caching_configuration.

Transactional file locking is disabled

Transactional file locking is disabled, this might lead to issues with race conditions.

Please see Transactional File Locking for how to correctly configure your environment
for transactional file locking.

Background Jobs

We recommend to enable system cron as any other cron method has possible
performance and reliability implications.

410 | Server Configuration

configuration/files/files_locking_transactional.pdf

Further Information can be found in the docs article on Background Jobs

You are accessing this site via HTTP

You are accessing this site via HTTP. We strongly suggest you configure your server
to require using HTTPS instead.

Please take this warning seriously; using HTTPS is a fundamental security measure.
You must configure your Web server to support it, and then there are some settings in
the Security section of your ownCloud Admin page to enable. The following pages
describe how to enable HTTPS on the Apache webserver.

• Enable SSL on Apache
• Use HTTPS

The test with getenv("PATH") only returns an empty response

Some environments are not passing a valid PATH variable to ownCloud. The PHP FPM
tips provides the information about how to configure your environment.

The "Strict-Transport-Security" HTTP header is not configured

The `Strict-Transport-Security` HTTP header is not configured to least `15552000`
seconds.
For enhanced security we recommend enabling HSTS as described in our security
tips.

The HSTS header needs to be configured within your Web server by following the
Enable HTTP Strict Transport Security documentation.

/dev/urandom is not readable by PHP

/dev/urandom is not readable by PHP which is highly discouraged for security
reasons.
Further information can be found in our documentation.

This message is another one which needs to be taken seriously. Please have a look at
the Give PHP read access to /dev/urandom documentation.

Your Web server is not yet set up properly to allow file synchronization

Your web server is not yet set up properly to allow file synchronization because the
WebDAV interface seems to be broken.

At the ownCloud community forums a larger FAQ is maintained containing various
information and debugging hints.

Outdated NSS / OpenSSL version

Server Configuration | 411

configuration/server/background_jobs_configuration.pdf
installation/manual_installation.pdf#enable-ssl
configuration/server/harden_server.pdf#use-https
installation/configuration_notes_and_tips.pdf#php-fpm
installation/configuration_notes_and_tips.pdf#php-fpm
configuration/server/harden_server.pdf#enable-http-strict-transport-security
configuration/server/harden_server.pdf#give-php-read-access-to-devurandom
configuration/server/harden_server.pdf#give-php-read-access-to-devurandom
https://central.owncloud.org/t/how-to-fix-caldav-carddav-webdav-problems/852

cURL is using an outdated OpenSSL version (OpenSSL/$version). Please
update your operating system or features such as installing and updating
apps via the ownCloud Marketplace or Federated Cloud Sharing will not
work reliably.

cURL is using an outdated NSS version (NSS/$version). Please update
your operating system or features such as installing and updating apps
via the ownCloud Marketplace or Federated Cloud Sharing will not work
reliably.

There are known bugs in older OpenSSL and NSS versions leading to misbehaviour in
combination with remote hosts using SNI. A technology used by most of the HTTPS
websites. To ensure that ownCloud will work properly you need to update OpenSSL to
at least 1.0.2b or 1.0.1d. For NSS the patch version depends on your distribution and
an heuristic is running the test which actually reproduces the bug. There are
distributions such as RHEL/CentOS which have this backport still pending.

Your Web server is not set up properly to resolve /.well-known/caldav/ or /.well-known/carddav/

Both URLs need to be correctly redirected to the DAV endpoint of ownCloud. Please
refer to Service Discovery for more info.

Some files have not passed the integrity check

Please refer to the Fixing Invalid Code Integrity Messages documentation how to
debug this issue.

Your database does not run with "READ COMMITED" transaction isolation level

Your database does not run with"READ COMMITED" transaction isolation level.
This can cause problems when multiple actions are executed in parallel.

Please refer to MySQL / MariaDB with Binary Logging Enabled) how to configure your
database for this requirement.

The HSM (Hardware Security Module) Daemon (hsmdaemon)

Introduction

The hsmdaemon is a daemon provided by ownCloud to delegate encryption to an HSM
(Hardware Security Module). This can be necessary as PHP cannot directly interface
with a PKCS11 stack, neither with an API wrapper because none exists, nor via the
OpenSSL bindings. Therefore a separate process is needed to decrypt anything with
the private key stored in an HSM.


When using hsmdaemon with an HSM, the keys may still be stored on
the same physical machine as ownCloud.


For hsmdaemon support, you need ownCloud Enterprise Edition >=
10.2. We recommend consulting with us when deploying storage
encryption with an HSM.

412 | Server Configuration

https://bugzilla.redhat.com/show_bug.cgi?id=1241172
configuration/general_topics/general_troubleshooting.pdf#service-discovery
configuration/general_topics/code_signing.pdf#fixing-invalid-code-integrity messages
configuration/database/linux_database_configuration.pdf#mysql-mariadb-with-binary-logging-enabled
https://en.wikipedia.org/wiki/Hardware_security_module
https://en.wikipedia.org/wiki/Hardware_security_module
https://en.wikipedia.org/wiki/PKCS_11


Starting with the Encryption App version 1.5.1, HSM can now work
with both binary and base64 encoding/decoding. If not otherwise
configured, binary is the default.

Running exec() to decrypt the key with a command line command to do the encryption
might leak the HSM credentials if the admin lists the currently running processes. To
prevent that, an HSM daemon will be used that can open a session to the HSM upon
startup.

This daemon will be used by ownCloud to decrypt the current master key upon
request. The communication happens via UNIX sockets or TCP sockets and is
authorized by a shared token that the daemon stores in the ownCloud database via a
REST/JSON route.

ownCloud internally uses OpenSSL to encrypt and decrypt keys and that is extended
to support en-/decrypt operations via the new daemon. The current solution encrypts
the ownCloud master key with a key from the HSM.



From the technical point of view the Crypt class is extended to handle
the key generation in the HSM device and also to get the key from
HSM. For the read/write operation on a file, the request goes to the
HSM and then, based on the keys fetched from HSM, the files are
encrypted or decrypted. The keys are not replaced.

How The HSM Daemon Interacts with ownCloud

Upon startup, the daemon will generate a token and send it to ownCloud via a new
REST/JSON route. After connecting with the HSM daemon, an unsophisticated, line-
based, protocol is used (every line ends with CRLF):

1. ownCloud sends the token read from database.
2. The daemon compares the received token with its token and returns an OK line.
3. ownCloud then sends the data it wants to decrypt as a Base64-encoded, one-line

string.
4. The daemon returns the decrypted data as a Base64-encoded one-line string.

Doing so ensures that an evil admin will need to wiretap the communication between
either the database or the HSM daemon and ownCloud.

Quick Overview

HSM support consists of two core parts:

1. An actual HSM PKCS11 module.
2. A hsmdaemon that provides a JWT - protected web API for the PKCS11 stack to

generate key pairs and decrypt data.

Deployment Recommendation

We recommend running hsmdaemon on every web server to reduce latency.

Installation

Integrating the hsmdaemon with ownCloud requires 3 steps; these are:

1. Install a PKCS11 Module
2. Install and Configure the hsmdaemon

Server Configuration | 413

https://www.php.net/manual/en/function.exec.php
http://beej.us/guide/bgipc/html/multi/unixsock.html
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/Base64
https://jwt.io/

3. Configure ownCloud


The installation instructions in this guide have been designed to work
with ownCloud’s supported operating systems. If you are using a
different operating system or distribution, please adjust the instructions
to suit your environment.

Install a PKCS11 Module

Install Using a Preconfigured PKCS11 Module

At least one PKCS11 library is necessary. This is typically provided by an HSM vendor.
If a PKCS11 library is not available, you can use the software HSM - SoftHSM2.

Initialise the Token

Now we can initialize the token:

sudo softhsm2-util --init-token --slot 0 --label "My token 1"

It will ask for two PINs, an SO and a User pin. See opendnssec for more information.
The SO PIN can e.g. be used to re-initialize the token and the user PIN is handed out
to the application so it can interact with the token.

Install PKCS11 CLI tools (optional)

To use the PKCS11 API on the CLI, we need to install OpenSC.

• Debian and Ubuntu
• openSUSE and SUSE Linux Enterprise Server
• Fedora and Red Hat Enterprise Linux and Centos

Initialise on Debian and Ubuntu

To install OpenSC on Debian and Ubuntu, run the following command:

sudo apt install -y opensc

Initialise on openSUSE and SUSE Linux Enterprise Server

To install OpenSC on openSUSE and SUSE Linux Enterprise Server, run the following
command:

sudo zypper install -y --auto-agree-with-licenses opensc

Initialise on Fedora and Red Hat Enterprise Linux and Centos

To install OpenSC on Fedora and Red Hat Enterprise Linux and Centos, run the
following command:

sudo yum install --assumeyes opensc

414 | Server Configuration

installation/system_requirements.pdf#server
configuration/server/security/hsmdaemon/softhsm2.pdf
configuration/server/security/hsmdaemon/softhsm2.pdf
https://www.opendnssec.org/softhsm/
https://github.com/OpenSC/OpenSC/wiki

List Tokens

You can list available tokens using the pkcs11-tool by running the following command:

sudo pkcs11-tool --module </path/to/libsofthsm2.so> -l --pin <user-pin> -O

The Module Parameter

The module parameter is either the library provided by the HSM vendor or libsofthsm2
which was installed with SoftHSM 2. If you are using libsofthsm2, the path to
libsofthsm2.so for each of the supported distributions is available below.

Distribution Path

Debian and Ubuntu /usr/lib/softhsm/libsofthsm2.so

openSUSE and SUSE Linux Enterprise
Server

/usr/lib64/pkcs11/libsofthsm2.so

Fedora and Red Hat Enterprise Linux and
Centos

/usr/lib64/pkcs11/libsofthsm2.so

 See the OpenSC Wiki for more information.

Install and Configure the hsmdaemon

Installing hsmdaemon requires several steps. These are:

1. Install the hsmdaemon Binary
2. Copy the Config File
3. Install the System Service
4. Configure the PKCS 11 Module Path
5. Configure Slot and Pin
6. Test the hsmdaemon
7. Configure Other Options

Install the hsmdaemon Binary

After you have obtained the hsmdaemon from ownCloud, you need to move the
hsmdaemon binary to a directory located in your system path and make the binary
executable:

sudo install -m 755 ./hsmdaemon /usr/local/bin/hsmdaemon

Copy the Config File

The default location where hsmdaemon looks for its config file is
/etc/hsmdaemon/hsmdaemon.toml. To create it from the example config file available
in the provided package, run the following commands:

Server Configuration | 415

https://linux.die.net/man/1/pkcs11-tool
https://github.com/OpenSC/OpenSC/wiki

Create the hsmdaemon configuration directory
sudo mkdir /etc/hsmdaemon

Copy the example config file
Allow only root and users in the root group to read & write the configuration file
sudo install -m 640 ./hsmdaemon.toml /etc/hsmdaemon/hsmdaemon.toml

Install the System Service

Now that the binary is available and the configuration file is in place, hsmdaemon
must be installed as a system service. To do so, run it with the install option as in the
example below.

sudo /usr/local/bin/hsmdaemon install
sudo service hsmdaemon start

If it installs successfully, you should see the following console output:

Install HSM Daemon: [OK]

It should now be running and set to start automatically at boot time.



The daemon is managed using the following three commands:

• sudo service hsmdaemon start
• sudo service hsmdaemon stop and
• sudo service hsmdaemon status

Configure the PKCS11 Module Path

To set the path to the PKCS11 module, update the line below in
/etc/hsmdaemon/hsmdaemon.toml, with the appropriate path on your system.

[pkcs11]
softhsm v2
module = "/usr/lib/x86_64-linux-gnu/softhsm/libsofthsm2.so"

List Available Slots

This command lists the available slots.

416 | Server Configuration

sudo hsmdaemon listslots

{"level":"debug","ts":"2019-02-
14T09:27:02.068+0100","caller":"hsmdaemon/keymanager.go:27","msg":"initialize
pkcs11 module","module":"/usr/lib/softhsm/libsofthsm2.so"}
{"level":"info","ts":"2019-02-
14T09:27:02.087+0100","caller":"hsmdaemon/keymanager.go:65","msg":"Slots
found","slotIds":[550099622,1989683358,2]}
Available slots:
Slot: 550099622,
 Slot info:
 Description: SoftHSM slot ID 0x20c9daa6
 Manufacturer ID: SoftHSM project
 Hardware version: 2.2
 Firmware version: 2.2
 Token present: yes
 Flags:
 Token info:
 Manufacturer ID: SoftHSM project
 Model: SoftHSM v2
 Hardware version: 2.2
 Firmware version: 2.2
 Serial number: e8ba06bca0c9daa6
 Initialized: yes
 User PIN init.: yes
 Label: oc token without pin
 MaxSessionCount: 0
 SessionCount: 18446744073709551615
 MaxRwSessionCount: 0
 RwSessionCount: 18446744073709551615
 MaxPinLen: 255
 MinPinLen: 4
 TotalPublicMemory: 18446744073709551615
 FreePublicMemory: 18446744073709551615
 TotalPrivateMemory: 18446744073709551615
 FreePrivateMemory: 18446744073709551615
 UTCTime: 2019021408270200
 Flags: CKF_RNG CKF_LOGIN_REQUIRED CKF_RESTORE_KEY_NOT_NEEDED
CKF_USER_PIN_COUNT_LOW
Slot: 1989683358,
 Slot info:
 Description: SoftHSM slot ID 0x7698289e
 Manufacturer ID: SoftHSM project
 Hardware version: 2.2
 Firmware version: 2.2

 See the OpenSC Wiki for more information.

Server Configuration | 417

https://github.com/OpenSC/OpenSC/wiki

Configure the Slot and Pin

Define which slot to use and if a PIN is needed. Update
/etc/hsmdaemon/hsmdaemon.toml with the information gathered in the pkcs11 section
as in the example below.

[pkcs11]
softhsm v2
module = "/usr/lib/x86_64-linux-gnu/softhsm/libsofthsm2.so"
The user pin supplied when running softhsm2-util --init-token, comment it out
or leave empty if no pin is necessary
pin = "1234"
Find your slot id with `sudo hsmdaemon listslots`
slot = 550099622

Test the hsmdaemon

Test Key Generation


If no PIN is supplied, generating a new key might be protected by an
operator card that has to be inserted in the HSM. In this case,
coordinate testing and final master key generation with your HSM
team.

For testing the key generation, run the following example command:

sudo hsmdaemon genkey test

Id: 9bac3719-2b8d-11e9-aeab-0242b5ece4c3, label: test

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAl1BO4vsI+xDk+x0nccl7
HQhMR/hwfa0+N8fyYNI8yzTTmYDqz9aaF20qG48+mjC0AUEt2kfKo94xM3UeEw4c
st4j1dpRJtmAJThcuN8OH3sa+3MeXWgGuWxjB1lxEEOqax2A6XzllDlbDsogwkOL
hSkUU9AaMRBtF8fASJGtJDP+iXwdb7OsFg78PS1wBAISYSUwk06xY7LwWIxge+hY
4oU+5x4itusdO6rz6kbcJtmUyDUb8DhKnN6OdkhnifUZLBG9HQyTa5OM+BAabbFZ
mTM2gZlUnGKXN7c4kaBPFt1IfjjVYu7pvj3B2uxUf4GywuSuWGWnAy89FqeXteRV
jwIDAQAB
-----END PUBLIC KEY-----

Test Showing Keys

To show an existing key, use the hsmdaemon showkey command with the key’s id as in
the following example.

sudo hsmdaemon showkey 9bac3719-2b8d-11e9-aeab-0242b5ece4c3

Test Data Encryption

For testing data encryption, run the following example commands:

418 | Server Configuration

The first argument is the `Id:` value from running the genkey command above.
The second is the `base64-encoded data` to be encrypted.

sudo hsmdaemon encrypt 9bac3719-2b8d-11e9-aeab-0242b5ece4c3 Zm9vYmFy

If successful, you should see output similar to the example below:

{"level":"debug","ts":"2019-03-
20T12:43:40.540+0100","caller":"hsmdaemon/keymanager.go:27","msg":"initialize
pkcs11 module","module":"/usr/lib/softhsm/libsofthsm2.so"}
{"level":"debug","ts":"2019-03-
20T12:43:40.545+0100","caller":"hsmdaemon/keymanager.go:205","msg":"openHS
MSession","slotID":858597139}
{"level":"info","ts":"2019-03-
20T12:43:40.549+0100","caller":"hsmdaemon/keymanager.go:621","msg":"Fetchin
g private key","keyID":"9bac3719-2b8d-11e9-aeab-0242b5ece4c3"}
{"level":"debug","ts":"2019-03-
20T12:43:40.549+0100","caller":"hsmdaemon/keymanager.go:641","msg":"Got
uuid","string":"13d34146-4b02-11e9-adbd-0023ae27c404"}
WcezVb2N6bF8wlDooKZcmFn3tZgoIpoFGx6wQetx9sp1nK7JW2Y4OKt7P+0VKKlFO7y
XaffVDD2Q6jZZCQukQVRV1zJrwbI9xU3YlOAwJFPP+WM/dZ1vdUwi7L05wq8UpL13LJ
WlMkvd1eIqKJS7apMnFk2hbnxXP6UKZmI++1tXvqbAc6fwhcB5J+JG6lmS4RwnD+eJC
3dq5t00zzdI6vuIM/y3UT7ESklmHl5bKl+N+d6yk6qLxnFnIJweL+M3Tf13+XPNAh5JxZ
pheJPvN3oL28uX76aizy4BCLnRgQ/ryUQeDF+a4zNF22sMwBh4Pt46KrYGNDZAnQpVz
mkrZQ==

Test Data Decryption

For testing data decryption, run the the following example commands:

sudo grep "generated keypair" /var/log/hsm.log

You should see output similar to the example below:

{"level":"debug","ts":"2021-06-19T03:10:01.562+0200","msg":"generated
keypair","tokenID":"1262668f-d09b-11eb-b283-960000c05f34"}
{"level":"debug","ts":"2021-06-19T03:10:03.043+0200","msg":"generated
keypair","tokenID":"1374447f-d09b-11eb-83c8-960000c05f34"}
{"level":"debug","ts":"2021-06-19T03:10:03.710+0200","msg":"generated
keypair","tokenID":"13cd3f95-d09b-11eb-83c8-960000c05f34"}

Server Configuration | 419

key_id=$(sudo grep "generated keypair" /var/log/hsm.log | head -1 | jq .tokenID -r)

hello="Hello, world!"

echo "$hello" | base64

SGVsbG8sIHdvcmxkIQo=

test_enc=$(sudo ./hsmdaemon encrypt $key_id $(echo "$hello" | base64) | tee
/dev/stderr)

ep6Y1aAVAYpAesZ1+sQzzUepjO82o34kjmm63Drmz+6KED4oIBARQkXeW/OoxgUg6
kQhQK1thA/3Ww33aaRxIESzVQF598qjXhhEXQ/OGL6BC+3tPclC7ujUZaA7CG1NDkM
neLFDd2+Tbax4OM+/w0zhfTMPgT0I1NrH/03owVglbWHjgLZmN/vxpPZKm/lyAV9tI2H
W36UjVLEMD2qtPFXqjLU4YjZOVnMdETxQNSCWIVauFw0+VQQ/RiAqiXzRXEgO6YKxO
Bk0n9IMT6XEH4MkMQTgb9pB12jrNSa9aMHbCvCneEmhd0CHBxPX499EkxxwtoEnXe
6PATXsOg3VRA==

sudo -u www-data php occ encryption:hsmdaemon:decrypt --keyId $key_id
"$test_enc"

decrypted string (base64 encoded): 'SGVsbG8sIHdvcmxkIQo='

sudo tail -5 /var/log/hsm.log

{"level":"debug","ts":"2021-06-
20T23:46:11.958+0200","msg":"openHSMSession","slotID":757826573}
{"level":"debug","ts":"2021-06-20T23:46:11.960+0200","msg":"created new
session"}
{"level":"debug","ts":"2021-06-20T23:46:11.960+0200","msg":"Got
uuid","string":"1262668f-d09b-11eb-b283-960000c05f34"}
{"level":"debug","ts":"2021-06-20T23:46:11.962+0200","msg":"found
object","id":"\u0012bf\ufffdЛ\u0011벃\ufffd\u0000\u0000\ufffd_4"}
{"level":"debug","ts":"2021-06-20T23:46:11.963+0200","msg":"Decrypted"}

Results

☑ The base64 encoded string matches before encryption and after decryption.
☑ The key-id seen in the log with "generated keypair" causes no errors during

encryption.
☑ The key-id re-appears in the log during decryption ("Got uuid")

420 | Server Configuration

Configure Other Options (optional)

For more options see the self-documented default config file hsmdaemon.toml.



During ownCloud config, you might want to run the hsmdaemon service
in the foreground to see what is going on. You can do so using the
following command (which also shows example console output,
formatted for readability):

sudo hsmdaemon

{
 "level": "info",
 "ts": "2019-02-14T09:32:59.081+0100",
 "caller": "hsmdaemon/hsmdaemon.go:146",
 "msg": "Server listening",
 "host": "localhost",
 "port": 8513,
 "version": "0.0.7",
 "build": "2019-02-08T10:47:55+00:00"
}

Configure ownCloud


If anyone accesses ownCloud while encryption is enabled, it will
automatically generate the keys. To prevent this shut down the web
server until encryption is appropriately configured.

Configuring ownCloud to work with the hsmdaemon requires the following steps:

• Generate a Secret for the hsmdaemon REST API
• Configure HSM-based Encryption
• Initialize and Check Generated Keys

Generate a Secret for the hsmdaemon REST API

Generate a shared secret to use for the hsmdaemon.

cat /proc/sys/kernel/random/uuid

7a7d1826-b514-4d9f-afc7-a7485084e8de

Use this generated secret for hsmdaemon in /etc/hsmdaemon/hsmdaemon.toml

[jwt]
secret = "7a7d1826-b514-4d9f-afc7-a7485084e8de"

Set the generated secret for ownCloud:

Server Configuration | 421

sudo -u www-data php occ config:app:set encryption hsm.jwt.secret --value
'7a7d1826-b514-4d9f-afc7-a7485084e8de'

If the command succeeds, you should see the following console output:

Config value hsm.jwt.secret for app encryption set to 7a7d1826-b514-4d9f-afc7-
a7485084e8de

Configure HSM-based Encryption

Enable the HSM mode and enable encryption by running the commands in the
following example:

sudo -u www-data php occ app:enable encryption
sudo -u www-data php occ config:app:set encryption hsm.url --value
'http://localhost:8513'
sudo -u www-data php occ encryption:select-encryption-type masterkey
sudo -u www-data php occ encryption:enable

If the commands are successful, you should see the following console output:

encryption enabled

Config value hsm.url for app encryption set to http://localhost:8513

Master key successfully enabled.

Encryption enabled
Default module: OC_DEFAULT_MODULE

Initialize and Check Generated Keys

Now start your web server and log in with any user to initialize the keys, have a look
at the output of the hsmdaemon to see key generation and decryption requests. Check
that the private key /path/to/data/files_encryption/OC_DEFAULT_MODULE/ is less than
1000 bytes. If it is not, then something is not configured correctly. You have to wipe
all keys and reset the database flags for encryption to get a clean start for the
ownCloud setup.

jQuery Warnings

While ownCloud is using an older version of jQuery we have fixed the known
vulnerabilities in the patches listed below. We closely follow any security related news
regarding the library for any new issues. The version shipped inside ownCloud is
secure.

Fixed issues:

• CVE-2020-11022 patched in 10.5.0
• CVE-2015-9251 patched in 10.0.9 RC3

422 | Server Configuration

https://github.com/owncloud/core/pull/37596
https://github.com/owncloud/core/pull/31972

ownCloud Server Tuning

Using Cron to Perform Background Jobs

See Background Jobs for a description and the benefits.

Enable Memory Caching

Caching improves performance by storing data, code, and other objects in memory.
Memory cache configuration for ownCloud is no longer automatically available from
ownCloud 8.1 but must be installed and configured separately. ownCloud supports
Redis, APCu, and Memcached as memory caching backends. See Memory Caching, for
further details.

Use Redis-based Transactional File Locking

File locking is enabled by default, using the database locking backend. However, this
places a significant load on your database. See the section Transactional File Locking
for how to configure ownCloud to use Redis-based Transactional File Locking.

Redis Tuning

Redis tuning improves both file locking (if used) and memory caching (when using
Redis). Here is a brief guide for tuning Redis to improve the performance of your
ownCloud installation, when working with sizeable instances.

TCP-Backlog

If you raised the TCP-backlog setting, the following warning appears in the Redis logs:

WARNING: The TCP backlog setting of 20480 cannot be enforced because
/proc/sys/net/core/somaxconn is set to the lower value of..

If so, please consider that newer versions of Redis have their own TCP-backlog value
set to 511, and that you have to increase if you have many connections. In high
requests-per-second environments, you need a significant backlog to avoid slow clients
connection issues.


The Linux kernel will silently truncate the TCP-backlog setting to the
value of /proc/sys/net/core/somaxconn. So make sure to raise both the
value of somaxconn and tcp_max_syn_backlog, to get the desired effect.

To fix this warning, set the value of net.core.somaxconn to 65535 in /etc/rc.local, so
that it persists upon reboot, by running the following command.

sudo echo sysctl -w net.core.somaxconn=65535 >> /etc/rc.local

After the next reboot, 65535 connections will be allowed, instead of the default value.

Transparent Huge Pages (THP)

If you are experiencing latency problems with Redis, the following warning may
appear in your Redis logs:

Server Configuration | 423

configuration/server/background_jobs_configuration.pdf
https://redis.io
http://php.net/manual/en/intro.apcu.php
https://memcached.org
configuration/server/caching_configuration.pdf
configuration/files/files_locking_transactional.pdf

WARNING you have Transparent Huge Pages (THP) support enabled in your kernel.
This creates both latency and memory usage issues with Redis.

If so, unfortunately, when a Linux kernel has Transparent Huge Pages enabled, Redis
incurs a significant latency penalty after the fork call is used, to persist information to
disk. Transparent Huge Pages are the cause of the following issue:

1. A fork call is made, resulting in two processes with shared huge pages being
created.

2. In a busy instance, a few event loops cause commands to target a few thousand
pages, causing the copy-on-write of almost the entire process memory.

3. Big latency and memory usage result.

As a result, make sure to disable Transparent Huge Pages using the following
command:

echo never > /sys/kernel/mm/transparent_hugepage/enabled

Redis Latency Problems

If you are having issues with Redis latency, please refer to the official Redis guide on
how to handle them.

Database Tuning

Using MariaDB/MySQL Instead of SQLite

MySQL or MariaDB are preferred because of the performance limitations of SQLite
with highly concurrent applications, like ownCloud.

See the section Linux Database Configuration for how to configure ownCloud for
MySQL or MariaDB. If your installation is already running on SQLite then it is possible
to convert to MySQL or MariaDB using the steps provided in database conversion.

Tune MariaDB/MySQL

A comprehensive guide to tuning MySQL and MariaDB is outside the scope of the
ownCloud documentation. However, here are three links that can help you find further
information:

• MySQLTuner.
• Percona Tools for MySQL
• Optimizing and Tuning MariaDB.

Tune PostgreSQL

A comprehensive guide to tuning PostgreSQL is outside the scope of the ownCloud
documentation. However, here are three links that can help you find further
information:

• Five Steps to PostgreSQL Performance
• Tuning the autovacuum proceff for tables with huge update workloads

(oc_filecache)

424 | Server Configuration

https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://redis.io/topics/latency
http://www.sqlite.org/whentouse.html
http://www.sqlite.org/whentouse.html
configuration/database/linux_database_configuration.pdf
configuration/database/db_conversion.pdf
https://github.com/major/MySQLTuner-perl/
https://tools.percona.com/wizard
https://mariadb.com/kb/en/optimization-and-tuning/
http://de.slideshare.net/PGExperts/five-steps-perform2013
http://grokbase.com/t/postgresql/pgsql-admin/103qcpdrpf/tuning-auto-vacuum-for-highly-active-tables#20100323hfs3jtjuaywwufukoqtexkpjti
http://grokbase.com/t/postgresql/pgsql-admin/103qcpdrpf/tuning-auto-vacuum-for-highly-active-tables#20100323hfs3jtjuaywwufukoqtexkpjti

SSL / Encryption App

SSL (HTTPS) and file encryption/decryption can be offloaded to a processor’s AES-NI
extension. This can both speed up these operations while lowering processing
overhead. This requires a processor with the AES-NI instruction set.

Here are some examples how to check if your CPU / environment supports the AES-NI
extension:

• For each CPU core present: grep flags /proc/cpuinfo or as a summary for all cores:
grep -m 1 ^flags /proc/cpuinfo If the result contains any aes, the extension is
present.

• Search eg. on the Intel web if the processor used supports the extension Intel
Processor Feature Filter. You may set a filter by "AES New Instructions" to get a
reduced result set.

• For versions of openssl >= 1.0.1, AES-NI does not work via an engine and will not
show up in the openssl engine command. It is active by default on the supported
hardware. You can check the openssl version via openssl version -a

• If your processor supports AES-NI but it does not show up eg via grep or coreinfo,
it is maybe disabled in the BIOS.

• If your environment runs virtualized, check the virtualization vendor for support.

Webserver Tuning

Tune Apache

Enable HTTP/2 Support

If you want to improve the speed of an ownCloud installation, while at the same time
increasing its security, you can enable HTTP/2 support for Apache. Please be aware
that most browsers require HTTP/2 to be used with SSL enabled.

Apache Processes

An Apache process uses around 12MB of RAM. Apache should be configured so that
the maximum number of HTTPD processes times 12MB is lower than the amount of
RAM. Otherwise the system begins to swap and the performance goes down.

Use KeepAlive

The KeepAlive directive enables persistent HTTP connections, allowing multiple
requests to be sent over the same TCP connection. Enabling it reduces latency by as
much as 50%. We recommend to keep the KeepAliveTimeout between 3 and 5. Higher
numbers can block the Server with inactive connections. In combination with the
periodic checks of the sync client the following settings are recommended:

KeepAlive On
KeepAliveTimeout 3
MaxKeepAliveRequests 200

Hostname Lookups

Server Configuration | 425

http://wikipedia.org/wiki/AES_instruction_set
http://ark.intel.com/MySearch.aspx?AESTech=true
http://ark.intel.com/MySearch.aspx?AESTech=true
https://httpd.apache.org/docs/2.4/howto/http2.html
https://caniuse.com/#feat=http2
https://en.wikipedia.org/wiki/HTTP_persistent_connection

cat /etc/httpd/conf/httpd.conf
 ...
HostnameLookups off

Log files

Log files should be switched off for maximum performance. To do that, comment out
the CustomLog directive. However, keep ErrorLog set, so errors can be tracked down.

Using Third Party PHP Components

ownCloud uses some third party PHP components to provide some of its functionality.
These components are part of the software package and are contained in the
/3rdparty folder.

Managing Third Party Parameters

When using third party components, keep the following parameters in mind:

• 3rdpartyroot – Specifies the location of the 3rd-party folder. To change the default
location of this folder, you can use this parameter to define the absolute file system
path to the folder location.

• 3rdpartyurl – Specifies the http web path to the 3rdpartyroot folder, starting at the
ownCloud web root.

An example of what these parameters might look like is as follows:

<?php

"3rdpartyroot" => OC::$SERVERROOT."/3rdparty",
"3rdpartyurl" => "/3rdparty",

Virus Scanner Support

Introduction

ClamAV is the only officially supported virus scanner available for use with ownCloud.

Feature List:

• Operates on all major operating systems, including Windows, Linux, and macOS
• Detects all forms of malware including Trojan horses, viruses, and worms
• Scans compressed files, executables, image files, Flash, PDF, as well as many

others

What’s more, ClamAV’s Freshclam daemon automatically updates its malware
signature database at scheduled intervals.

Installing ClamAV

Install ClamAV on Ubuntu with the following command:

sudo apt install clamav clamav-daemon

426 | Server Configuration

https://httpd.apache.org/docs/current/mod/mod_log_config.html#customlog
https://httpd.apache.org/docs/2.4/logs.html#errorlog
http://www.clamav.net/index.html

This automatically creates the default configuration files and launches the clamd and
freshclam daemons.

Enabling and Running ClamAV

Enable the clamd service file and start clamd.

systemctl enable clamav-daemon.service
systemctl start clamav-daemon.service

When successful, output similar to the following renders to the console:

Synchronizing state of clamav-daemon.service with SysV service script with
/lib/systemd/systemd-sysv-install.
Executing: /lib/systemd/systemd-sysv-install enable clamav-daemon

ClamAV Virus Database Updates

First we have to ensure the process is currently not running. Gently end the freshclam
process with this command:

sudo pkill -15 -x freshclam

Then we manually start the updating process. Start the refresh process again with this
command:

sudo freshclam

Automate the update process with this cron entry for example.

m h dom mon dow command
47 * * * * /usr/bin/freshclam --quiet


Please avoid any multiples of 10, because those are when the ClamAV
servers are hit the hardest for updates.

Install the ownCloud Anti-Virus App

The Anti-Virus app needs to be installed from the ownCloud Market (it’s available in
the "Security" category).

Server Configuration | 427

To install the App via occ command, execute:

sudo -u www-data php occ market:install files_antivirus

Configuring ClamAV within ownCloud


If the app is enabled but either not configured or incorrectly configured
it will strictly reject all uploads for the whole instance

ClamAV can be configured in two ways:

1. By using the occ config:app:set command set.
2. By using the Antivirus Configuration panel

Configure ClamAV Using The Antivirus Configuration Panel

Once ClamAV is installed, select Settings › General (Admin) and, in the "Log"
section, set [Log level] to "Everything (fatal issues, errors, warnings, info, debug)".

Now, navigate to Settings › Security (Admin), where you’ll find the "Antivirus
Configuration" panel. There, as below, you’ll see the configuration options which
ownCloud passes to ClamAV.

428 | Server Configuration

Configure ClamAV Using occ

All of the configuration settings for ClamAV are configurable by passing the relevant
key and value to the occ config:app:set files_antivirus command. For example:

sudo -u www-data php occ config:app:set \
 files_antivirus av_socket --value="/var/run/clamav/clamd.ctl"

Available Configuration Settings

Setting Description Default

av_cmd_options Extra command line options (comma-
separated) to pass to ClamAV.

av_host The hostname or IP address of the
Antivirus server.

av_infected_action The action to take when infected files
were found during a background scan.
It can be set to one of only_log and
delete.

only_log

av_max_file_size The maximum file size limit; -1 means
no limit.

-1

av_mode The operating mode. It can be set to one
of executable, daemon, and socket.

executable

av_path The path to the clamscan executable. /usr/bin/clam
scan

av_port The port number of the Antivirus server.
Allowed values are 1 - 65535.

av_socket The name of ClamAV’s UNIX socket file. /var/run/clam
av/clamd.ctl

av_stream_max_length The maximum stream length that
ClamAV will accept.

26214400

Server Configuration | 429

Mode Configuration

ClamAV runs in one of three modes:

• Daemon (Socket)
• Daemon
• Executable

Daemon (Socket)

In this mode, ClamAV runs in the background on the same server as the ownCloud
installation, or the socket can be made available via a share mount. When there is no
activity, clamd places a minimal load on your system. However, if your users upload
large volumes of files, you will see high CPU usage. Please keep this in mind.


You must run freshclam at least once for ClamAV to generate the
socket.

First, set [Mode] to "Daemon (Socket)". ownCloud should detect your clamd socket
and fill in the "Socket" field. This is the LocalSocket option in clamd.conf.

You can run ss to verify it, as in the example below:

sudo ss -a | grep -iq clamav && echo "ClamAV is running"



If you don’t have ss installed, you may have netstat installed. If so, you
can run the following to check if ClamAV is running:

netstat -a | grep -q clam && echo "ClamAV is running"

The Stream Length value sets the number of bytes to read in one pass; 10485760 bytes
(ten megabytes) is the default. This value should be no larger than the PHP
memory_limit settings or physical memory if memory_limit is set to -1 (no limit).

When infected files were found during a background scan gives you the choice of
either:

• Logging any alerts without deleting the files

430 | Server Configuration

• Immediately deleting infected files

Daemon

In this mode, ClamAV runs on a different server. This is a good option for ownCloud
servers with high volumes of file uploads.

First, set [Mode] to "Daemon". Then, you need to set [Host] to the hostname or IP
address of the remote server running ClamAV, and set [Port] to the server’s port
number.

 The port number is the value of TCPSocket in /etc/clamav/clamd.conf.

Executable

In this mode, ClamAV runs on the same server as the ownCloud installation, with the
clamscan command running only when a file is uploaded.


clamscan is slow and not always reliable for on-demand usage; it is
better to use one of the daemon modes.

Server Configuration | 431

First, set [Mode] to "Executable". Then, set [Path to clamscan] to the path to
clamscan, which is the interactive ClamAV scanning command, on your server.
ownCloud should automatically find it. However, if it doesn’t, run which clamscan to
find the command’s path.

When you are satisfied with how ClamAV is operating, you might want to go back and
change all of your logging to less verbose levels.

Configuration Warnings

The Antivirus App shows one of three warnings if it is misconfigured or ClamAV is not
available. You can see an example of all three below.

What To Do With Infected Files Found During Scans

During an upload these actions are taken:

• The upload is blocked.
• The event is logged in the owncloud server log
• The event is reported and/or logged by the client / Web UI.

During a background scan the app can take one of two actions:

• Log Only Log the event.
• Delete file: Delete the detected file.

Set [When infected files were found during a background scan] to the value
that suits your needs.

432 | Server Configuration

Rule Configuration

ownCloud provides the ability to customize how it reacts to the response given by an
antivirus scan. To do so, under Admin › Security (Admin) click [Advanced], which
you can see in the screenshot below, you can view and change the existing rules. You
can also add new ones.

Rules can match on either an exit status (e.g., 0, 1, or 40) or a pattern in the string
returned from ClamAV (e.g., /.: (.) FOUND$/).

Here are some points to bear in mind about rules:

• Scanner exit status rules are used to handle errors when ClamAV is run in CLI
mode, while

• Scanner output rules are used in daemon/socket mode.
• Daemon output is parsed by regexp.
• In case there are no matching rules, the status is: Unknown, and a warning will be

logged.

Default Ruleset

The default rule set for ClamAV is populated automatically with the following rules:

Exit Status or Signature Description Marks File As

0 Clean

1 Infected

40 Unknown option passed Unchecked

50 Database initialization
error

Unchecked

52 Not supported file type Unchecked

53 Can’t open directory Unchecked

54 Can’t open file Unchecked

55 Error reading file Unchecked

56 Can’t stat input file Unchecked

57 Can’t get absolute path
name of current working
directory

Unchecked

Server Configuration | 433

Exit Status or Signature Description Marks File As

58 I/O error Unchecked

62 Can’t initialize logger Unchecked

63 Can’t create temporary
files/directories

Unchecked

64 Can’t write to temporary
directory

Unchecked

70 Can’t allocate memory
(calloc)

Unchecked

71 Can’t allocate memory
(malloc)

Unchecked

/.*: OK$/ Clean

/.: (.) FOUND$/ Infected

/.: (.) ERROR$/ Unchecked

The rules are always checked in the following order:

1. Infected
2. Error
3. Clean

In case there are no matching rules, the status would be Unknown and a warning
would be logged.

Update An Existing Rule

To match on an exit status, change the "Match by" dropdown list to "Scanner exit
status" and in the "Scanner exit status or signature to search" field, add the
status code to match on.

To match on the scanner’s output, change the "Match by" dropdown list to "Scanner
output" and in the "Scanner exit status or signature to search" field, add the
regular expression to match against the scanner’s output.

Then, while not mandatory, add a description of what the status or scan output means.
After that, set what ownCloud should do when the exit status or regular expression
you set matches the value returned by ClamAV. To do so change the value of the
dropdown in the "Mark as" column.

The dropdown supports the following three options:

Option Description

Clean The file is clean and contains no viruses

Infected The file contains a virus

Unchecked No action should be taken

With all these changes made, click the [check mark] on the left-hand side of the
"Match by" column, to confirm the change to the rule.

434 | Server Configuration

Add A New Rule

To add a new rule, click the button marked [Add a rule] at the bottom left of the
rules table. Then follow the process outlined in Update An Existing Rule.

Delete An Existing Rule

To delete an existing rule, click the [rubbish bin] icon on the far right-hand side of
the rule that you want to delete.

How ClamAV Works With ownCloud

ownCloud integrates with antivirus tools by connecting to them via:

• A URL and port
• A socket
• Streaming the data from the command-line via a pipe with a configured executable

In the case of ClamAV, ownCloud’s Antivirus extension sends files as streams to a
ClamAV service (which can be on the same ownCloud server or another server within
the same network) which in turn scans them and returns a result to stdout.


Individual chunks are not scanned. The whole file is scanned when it is
moved to the final location.

The information is then parsed, or an exit code is evaluated if no result is available to
determine the response from the scan. Based on ownCloud’s evaluation of the
response (or exit code) an appropriate action is then taken, such as recording a log
message or deleting the file.


Scanner exit status rules are used to handle errors when ClamAV is run
in CLI mode. Scanner output rules are used in daemon/socket mode.

Things To Note

1. Files are checked when they are uploaded or updated (whether because they were
edited or saved) but not when they are downloaded.

2. ownCloud doesn’t support a cache of previously scanned files.
3. If the app is either not configured or is misconfigured, then it rejects file uploads.
4. If ClamAV is unavailable, then the app rejects file uploads.
5. A file size limit applies both to background jobs and to file uploads.
6. After installing ClamAV and the related tools, you will have two configuration files:

/etc/freshclam.conf and /etc/clamd.d/scan.conf.
7. We recommend that you enable verbose logging in both clamd.conf and

freshclam.conf until you get any kinks with your ClamAV installation worked out

User

In this section, you will find all the information you need for user-related configuration
in ownCloud.

• Users Page in ownCloud
• LDAP Authentication
• Password Reset for an Admin

User | 435

configuration/user/user_configuration.pdf
configuration/user/user_auth_ldap.pdf
configuration/user/reset_admin_password.pdf

• Password Reset for a User
• FTP, SMB, IMAP User Authentication
• User Provisioning API
• User Roles in ownCloud

Resetting a Lost Admin Password

The normal ways to recover a lost password are:

1. Click the password reset link on the login screen; this appears after a failed login
attempt. This works only if you have entered your email address on your Personal
page in the ownCloud Web interface, so that the ownCloud server can email a reset
link to you.

2. Ask another ownCloud server admin to reset it for you.

If neither of these is an option, then you have a third option, and that is using the occ
command. occ is in the owncloud directory, for example /var/www/owncloud/occ. occ
has a command for resetting all user passwords, user:resetpassword. It is best to run
occ as the HTTP user, as in this example on Ubuntu Linux:

$ sudo -u www-data php occ /var/www/owncloud/occ user:resetpassword admin
Enter a new password:
Confirm the new password:
Successfully reset password for admin

If your ownCloud username is not admin, then substitute your ownCloud username.

You can find your HTTP user in your HTTP configuration file. These are the default
Apache HTTP user:group on Linux distros:

• Centos, Red Hat, Fedora: apache:apache
• Debian, Ubuntu, Linux Mint: www-data:www-data
• openSUSE: wwwrun:www

See Using the occ Command to learn more about using the occ command.


Password changes automatically log out all connected
browsers/devices.

Resetting a User Password

The ownCloud login screen displays a Wrong password. Reset it? message after a
user enters an incorrect password, and then ownCloud automatically resets their
password. However, if you are using a read-only authentication backend such as LDAP
or Active Directory, this will not work. In this case you may specify a custom URL in
your config.php file to direct your user to a server than can handle an automatic reset:

'lost_password_link' => 'https://example.org/link/to/password/reset',


Password changes automatically log out all connected
browsers/devices.

436 | User

configuration/user/reset_user_password.pdf
configuration/user/user_auth_ftp_smb_imap.pdf
configuration/user/user_provisioning_api.pdf
configuration/user/user_roles.pdf
configuration/server/occ_command.pdf

User Authentication with IMAP, SMB, and FTP

Overview

You may configure additional user backends in ownCloud’s configuration file
(config/config.php) using the following syntax:

<?php

"user_backends" => [
 0 => [
 "class" => ...,
 "arguments" => [
 0 => ...
],
],
],


A non-blocking or correctly configured SELinux setup is needed for
these backends to work, if SELinux is enabled on your server. Please
refer to the SELinux configuration for further details.

Currently the External user support app (user_external), which is not enabled by
default, provides three backends. These are:

• IMAP
• SMB
• FTP

See Installing and Managing Apps for more information.

IMAP

Provides authentication against IMAP servers.

Option Value/Description

Class OC_User_IMAP.

Arguments A mailbox string as defined
in the PHP documentation.

Dependency PHP’s IMAP extension.
See Manual Installation on Linux

for instructions on how to install it.

Example

User | 437

installation/selinux_configuration.pdf
https://github.com/owncloud/user_external
installation/apps_management_installation.pdf
http://www.php.net/manual/en/function.imap-open.php
http://www.php.net/manual/en/book.imap.php
installation/manual_installation.pdf

<?php

"user_backends" => [
 0 => [
 "class" => "OC_User_IMAP",
 "arguments" => [
 // The IMAP server to authenticate against
 '{imap.gmail.com:993/imap/ssl}',
 // The domain to send email from
 'example.com'
],
],
],



The second arguments parameter ensures that only users from that
domain are allowed to login. When set, after a successful login, the
domain will be stripped from the email address and the rest used as an
ownCloud username. For example, if the email address is
guest.user@example.com, then guest.user will be the username used
by ownCloud.

SMB

Provides authentication against Samba servers.

Option Value/Description

Class OC_User_SMB.

Arguments The samba server to authenticate against.

Dependency PECL’s smbclient extension or
smbclient.

Example

<?php

"user_backends" => [
 [
 "class" => "OC_User_SMB",
 "arguments" => [
 'localhost'
],
],
],

FTP

Provides authentication against FTP servers.

438 | User

https://pecl.php.net/package/smbclient
configuration/files/external_storage/smb.pdf

Option Value/Description

Class OC_User_FTP.

Arguments The FTP server to authenticate against.

Dependency PHP’s FTP extension.
See Source Installation. for instructions
on how to install it.

Example

<?php

"user_backends" => [
 [
 "class" => "OC_User_FTP",
 "arguments" => [
 'localhost'
],
],
],

LDAP Integration

Introduction

The LDAP Integration app allows you to integrate your existing LDAP users in
ownCloud.

The LDAP application supports:

• LDAP group support
• File sharing with ownCloud users and groups
• Access via WebDAV and ownCloud Desktop Client
• Versioning, external Storage and all other ownCloud features
• Seamless connectivity to Active Directory, with no extra configuration required
• Support for primary groups in Active Directory
• Only read access to your LDAP (edit or delete of users on your LDAP is not

supported)

Configuration

First, install the LDAP Integration app. Then, go to your Admin page to configure it.
The LDAP configuration panel has four tabs. A correctly completed first tab ("Server")
is mandatory to access the other tabs. A green indicator light appears when the
configuration is correct. Hover your cursor over the fields to see some pop-up tooltips.

Server Tab

Start with the Server tab. You may configure multiple servers if you have them. At a
minimum, you must supply the LDAP server’s hostname. If your server requires
authentication, enter your credentials on this tab.

User | 439

http://www.php.net/manual/en/book.ftp.php
installation/manual_installation.pdf
https://marketplace.owncloud.com/apps/user_ldap

LDAPS Configuration

LDAPS encrypts the connection between your LDAP server and ownCloud via
SSL/TLS.

1. First you need the Windows Server CA certificate in the pem format with .crt suffix
2. Import the certificate to /usr/local/share/ca-certificates/
3. Execute update-ca-certificates

Server Configuration
Configure one or more LDAP servers. Click [Delete Configuration] to remove the
active configuration.

Host
The hostname or IP address of the LDAP server. It can also be an ldaps:// URI. If you
enter the port number, it speeds up server detection.

Examples:

• directory.my-company.com
• ldaps://directory.my-company.com
• directory.my-company.com:9876

Port
The port on which to connect to the LDAP server.

Example:

• 389 for unencrypted connection
• 636 for encrypted connection

User DN
The name as DN of a user who has permissions to do searches in the LDAP
directory. Leave it empty for anonymous access. We recommend that you have a
special LDAP system user for this.

Example:

• uid=owncloudsystemuser,cn=sysusers,dc=my-company,dc=com

Password
The password for the user given above. Empty for anonymous access.

Base DN
The base DN of LDAP, from where all users and groups can be reached. You may
enter multiple base DNs, one per line. Base DNs for users and groups can be set in
the Advanced tab. You can either enter this value manually, or click [Detect Base
DN] to have ownCloud attempt to determine the value.

Example:

• dc=my-company,dc=com

User Filter

Use this to control which LDAP users are listed as ownCloud users on your ownCloud

440 | User

server. In order to control which LDAP users can log in to your ownCloud server, use
the Login filter. You may bypass the form fields and enter a raw LDAP filter if you
prefer.

Only those Object Classes
ownCloud determines the object classes that are typically available for user objects
in your LDAP. ownCloud automatically selects the object class that returns the
highest number of users. You may select multiple object classes.

Only From those Groups
If your LDAP server supports the memberof-overlay in LDAP filters, you can define
that only users from one or more certain groups are allowed to appear in user
listings in ownCloud. By default, no value is selected. You may select multiple
groups.



Group membership is configured by adding memberUid,
uniqueMember or member attributes to an LDAP group see (Group
Member association) below. To efficiently look up the groups, a user
who is a member of the LDAP server must support a memberof-
overlay. It allows using the virtual memberOf or isMemberOf
attributes of an LDAP user in the user filter. If your LDAP server does
not support the memberof-overlay in LDAP filters, the input field is
disabled. Please contact your LDAP administrator.

• Active Directory uses memberOf and is enabled by default.
• OpenLDAP uses memberOf. Reverse Group Membership

Maintenance needs to be enabled.
• Oracle uses isMemberOf and is enabled by default.

Edit Raw Filter Instead
Clicking on this text toggles the filter mode, and you can enter the raw LDAP filter
directly. Example:

(&
 (objectClass=inetOrgPerson)
 (memberOf=cn=owncloudusers,ou=groups,dc=example,dc=com)
)

<x> Users Found
This is an indicator that tells you approximately how many users will be listed in
ownCloud. The number updates automatically after any changes.

Active Directory offers "Recursive retrieval of all AD group memberships of a user".
This means that you would be able to search the group you enter and all the other
child groups from this group for users. Enter this filter to access this feature for a
single group:

User | 441

https://msdn.microsoft.com/en-us/library/ms677943.aspx#memberOf
https://www.openldap.org/doc/admin24/overlays.html#Reverse%20Group%20Membership%20Maintenance
https://www.openldap.org/doc/admin24/overlays.html#Reverse%20Group%20Membership%20Maintenance
https://docs.oracle.com/cd/E29127_01/doc.111170/e28967/ismemberof-5dsat.htm

(&
 (objectClass=user)

(memberof:1.2.840.113556.1.4.1941:=CN=<groupname>,DC=example,DC=co
m)
)

Enter your group name instead of the <groupname> placeholder. If you want to
search multiple groups with this feature, adjust your filter like this:

(&
 (objectClass=user)
 (|

(memberOf:1.2.840.113556.1.4.1941:=CN=<groupname1>,CN=Users,DC=exa
mple,DC=com)

(memberOf:1.2.840.113556.1.4.1941:=CN=<groupname2>,CN=Users,DC=exa
mple,DC=com)
)
)

You can add as many groups to recurse by using the format: (|(m1)(m2)(m3)…..).
Here is the description from Microsoft (point #10):

The string 1.2.840.113556.1.4.1941 specifies
LDAP_MATCHING_RULE_IN_CHAIN. This applies only to DN
attributes. This is an extended match operator that walks the
chain of ancestry in objects all the way to the root until it finds a
match. This reveals group nesting. It is available only on
domain controllers with Windows Server 2003 SP2 or Windows
Server 2008 (or above).

For more information, see the following from Technet:

• Active Directory: LDAP Syntax Filters
• Active Directory Week: Explore Group Membership with PowerShell

Login Filter

The settings in the Login Filter tab determine which LDAP users can log in to your
ownCloud system and which attribute or attributes the provided login name is
matched against (e.g., LDAP/AD username, email address). You may select multiple
user details. You may bypass the form fields and enter a raw LDAP filter if you prefer.

You may override your User Filter settings on the User Filter tab by using a raw LDAP
filter.

442 | User

https://social.technet.microsoft.com/wiki/contents/articles/5392.active-directory-ldap-syntax-filters.aspx
http://social.technet.microsoft.com/wiki/contents/articles/5392.active-directory-ldap-syntax-filters.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2014/11/25/active-directory-week-explore-group-membership-with-powershell.aspx

LDAP Username
If this value is checked, the login value will be compared to the username in the
LDAP directory. The corresponding attribute, usually uid or samaccountname will
be detected automatically by ownCloud.

LDAP Email Address
If this value is checked, the login value will be compared to an email address in the
LDAP directory; specifically, the mailPrimaryAddress and mail attributes.



Disallowing login with LDAP Email Address requires enabling strict
login checking to be effective:

sudo -u www-data php occ config:system:set --type boolean --value
true strict_login_enforced

Other Attributes
This multi-select box allows you to select other attributes for the comparison. The
list is generated automatically from the user object attributes in your LDAP server.

Edit Raw Filter Instead
Clicking on this text toggles the filter mode, and you can enter the raw LDAP filter
directly. Example:

The %uid placeholder is replaced with the login name entered by the user upon
login.

Examples:

• Only Username:

(&
 (objectClass=inetOrgPerson)
 (memberOf=cn=owncloudusers,ou=groups,dc=example,dc=com)
 (uid=%uid)
)

• Username or Email Address:

(
 (&
 (objectClass=inetOrgPerson)
 (memberOf=cn=owncloudusers,ou=groups,dc=example,dc=com)
 (|(uid=%uid)(mail=%uid))
)
)

Group Filter

By default, no LDAP groups will be available in ownCloud. The settings in the group
filter tab determine which groups will be available in ownCloud. You may also elect to
enter a raw LDAP filter instead.

User | 443

Only those object classes
ownCloud will determine the object classes that are typically available for group
objects in your LDAP server. ownCloud will only list object classes that return at
least one group object. You can select multiple object classes. A typical object class
is group, or posixGroup.

Only From those Groups
ownCloud will generate a list of available groups found in your LDAP server. From
these groups, you can select the group or groups that get access to your ownCloud
server.

Edit Raw Filter Instead

Clicking on this text toggles the filter mode, and you can enter the raw LDAP
filter directly.

Example:

• objectClass=group
• objectClass=posixGroup

<x> Groups Found
This tells you approximately how many groups will be available in ownCloud. The
number updates automatically after any change.


Renaming of LDAP-Groups on the LDAP Server is not supported.
Changes like renaming groups in LDAP will not be propagated to
ownCloud.

Advanced Settings

The LDAP Advanced Setting section contains options that are not needed for a
working connection. This provides controls to disable the current configuration,
configure replica hosts, and various performance-enhancing options.

The Advanced Settings are structured into three parts:

• Connection Settings
• Directory Settings
• Special Attributes

Connection Settings

Configuration Active
Enables or Disables the current configuration. By default, it is turned off. When
ownCloud makes a successful test connection, it is automatically turned on.

Backup (Replica) Host
If you have a backup LDAP server, enter the connection settings here. ownCloud
will then automatically connect to the backup when the main server cannot be
reached. The backup server must be a replica of the main server so that the object
UUIDs match.

444 | User

Example:

• directory2.my-company.com

Backup (Replica) Port

The connection port of the backup LDAP server.
If no port is supplied, but only a host, then the main port (as specified above) will
be used.

Example:

• 389

Disable Main Server
You can manually override the main server and make ownCloud only connect to the
backup server. This is useful for planned downtimes for example Upgrades or
Updates of the Main Server. Backup Server Handling When ownCloud is not
able to contact the main LDAP server, ownCloud assumes it is offline and will not try
to connect again for the time specified in" Cache Time-To-Live".

Turn off SSL certificate validation
Turns off SSL certificate checking.

 Use it for testing only!

Cache Time-To-Live
A cache is introduced to avoid unnecessary LDAP traffic, for example caching
usernames so they don’t have to be looked up for every page, and speeding up
loading of the Users page. Saving the configuration empties the cache. The time is
given in seconds. Note that almost every PHP request requires a new connection to
the LDAP server. If you require fresh PHP requests we recommend defining a
minimum lifetime of 15s or so, rather than completely eliminating the cache.

Examples:

• Ten minutes: 600
• One hour: 3600

See the Caching section below for detailed information on how the cache operates.

Directory Settings

User Display Name Field
The attribute that should be used as display name in ownCloud.

Examples:

• displayName
• givenName
• sn

2nd User Display Name Field
An optional second attribute displayed in brackets after the display name, for
example using the mail attribute displays as Molly Foo (molly@example.com).

User | 445

mailto:molly@example.com

Examples:

• mail
• userPrincipalName
• sAMAccountName

Base User Tree
The base DN of LDAP, from where all users can be reached. This must be a complete
DN, regardless of what you have entered for your Base DN in the Basic setting. You
can specify multiple base trees, one on each line.

Examples:

• cn=programmers,dc=my-company,dc=com
• cn=designers,dc=my-company,dc=com

User Search Attributes
These attributes are used when searches for users are performed, for example in
the share dialogue. The user display name attribute is the default. You may list
multiple attributes, one per line.

If an attribute is not available on a user object, the user will not be listed, and will
be unable to login. This also affects the display name attribute. If you override the
default you must specify the display name attribute here.

Examples:

• displayName
• mail

Group Display Name Field
The attribute that should be used as ownCloud group name. ownCloud allows a
limited set of characters (a-zA-Z0-9.-_@). Once a group name is assigned it cannot
be changed.

Examples:

• cn

Base Group Tree
The base DN of LDAP, from where all groups can be reached. This must be a
complete DN, regardless of what you have entered for your Base DN in the Basic
setting. You can specify multiple base trees, one in each line.

Examples:

• cn=barcelona,dc=my-company,dc=com
• cn=madrid,dc=my-company,dc=com

Group Search Attributes
These attributes are used when a search for groups is done, for example in the
share dialogue. By default the group display name attribute as specified above is
used. Multiple attributes can be given, one in each line.

If you override the default, the group display name attribute will not be taken into
account, unless you specify it as well.

Examples:

446 | User

• cn
• description

Group Member Association
The attribute that is used to indicate group memberships, i.e., the attribute used by
LDAP groups to refer to their users. ownCloud detects the value automatically. You
should only change it if you have a very valid reason and know what you are doing.

Examples:

• member with FDN for Active Directory or for objectclass groupOfNames groups
• memberUid with RDN for objectclass posixGroup groups
• uniqueMember with FDN for objectclass groupOfUniqueNames groups


The Group Member association is used to efficiently query users of a
certain group, e.g., on the userManagement page or when resolving
all members of a group share.

Dynamic Group Member URL
The LDAP attribute that on group objects contains an LDAP search URL that
determines what objects belong to the group. An empty setting disables dynamic
group membership functionality. See Configuring Dynamic Groups for more details.

Nested Groups
This makes the LDAP connector aware that groups could be stored inside existing
group records. By default a group will only contain users, so enabling this option
isn’t necessary. However, if groups are contained inside groups, and this option is
not enabled, any groups contained within other groups will be ignored and not
returned in search results.

Paging Chunk Size
This sets the maximum number of records able to be returned in a response when
ownCloud requests data from LDAP. If this value is greater than the limit of the
underlying LDAP server (such as 3000 for Microsoft Active Directory) the LDAP
server will reject the request and the search request will fail. Given that, it is
important to set the requested chunk size to a value no larger than that which the
underlying LDAP server supports.

Special Attributes

Quota Field
The name of the LDAP attribute to retrieve the user quota limit from. You have to
decide which LDAP attribute you want to use and set a value to it in the Attribute
Editor.

Quota Default
Override ownCloud’s default quota for LDAP users who do not have a quota set in
the Quota Field.

1. After installation ownCloud uses an unlimited quota by default.
2. Administrators can modify this value, at any time, in the user management page.
3. However, when an LDAP quota is set it will override any values set in ownCloud.
4. If an LDAP per/attribute quota is set in the active directory, it will override the

LDAP Quota Default value.

User | 447

http://www.zytrax.com/books/ldap/ch11/dynamic.html


Administrators are not allowed to modify the user quota limit in the
user management page when steps 3 or 4 are in effect. At this point,
updates are only possible via LDAP. See the LDAP Schema for
ownCloud Quota

Quota Priority
If set, this is the current Quota Priority:

1. Quota Field overrides LDAP Quota Default
2. LDAP Quota Default overrides ownCloud Default Quota
3. ownCloud Default Quota overrides Unlimited Quota

Email Field
Set the user’s email from an LDAP attribute, e.g., mail. Leave it empty for default
behavior.

User Home Folder Naming Rule
By default, the ownCloud server creates the user directory in your ownCloud data
directory and gives it the ownCloud username, e.g.,
/var/www/owncloud/data/5a9df029-322d-4676-9c80-9fc8892c4e4b, if your data
directory is set to /var/www/owncloud/data.

It is possible to override this setting and name it after an LDAP attribute value, e.g.,
attr:cn. The attribute can return either an absolute path, e.g., /mnt/storage43/alice,
or a relative path which must not begin with a /, e.g., CloudUsers/CookieMonster.
This relative path is then created inside the data directory (e.g.,
/var/www/owncloud/data/CloudUsers/CookieMonster).

Since ownCloud 8.0.10 and up the home folder rule is enforced. This means that
once you set a home folder naming rule (get a home folder from an LDAP attribute),
it must be available for all users. If it isn’t available for a user, then that user will
not be able to login. Also, the filesystem will not be set up for that user, so their file
shares will not be available to other users. For older versions you may enforce the
home folder rule with the occ command, like this example on Ubuntu:

sudo -u www-data php occ config:app:set user_ldap
enforce_home_folder_naming_rule --value=1

Since ownCloud 10.0 the home folder naming rule is only applied when first
provisioning the user. This prevents data loss due to re-provisioning the users home
folder in case of unintentional changes in LDAP.

Expert Settings


Please check both the advanced and expert configurations carefully
before using in production.

In "Expert Settings", fundamental behavior can be adjusted to your needs. The
configuration should be well-tested before starting production use.

Internal Username
The internal username is the identifier in ownCloud for LDAP users. By default it
will be created from the UUID attribute. The UUID attribute ensures that the
username is unique, and that characters do not need to be converted. Only these

448 | User

https://github.com/valerytschopp/owncloud-ldap-schema
https://github.com/valerytschopp/owncloud-ldap-schema

characters are allowed: [\a-\zA-\Z0-\9_.@-]. Other characters are replaced with their
ASCII equivalents, or are simply omitted.

The LDAP backend ensures that there are no duplicate internal usernames in
ownCloud, i.e., that it is checking all other activated user backends (including local
ownCloud users). On collisions, a random number (between 1000 and 9999) will be
attached to the retrieved value. For example, if "alice" exists, the next username
may be alice_1337.

The internal username is the default name for the user home folder in ownCloud. It
is also a part of remote URLs, for instance for all *DAV services.

You can override all of this with the "Internal Username" setting. Leave it empty
for default behavior. Changes will affect only newly mapped LDAP users.

Examples:

• uid

Override UUID Detection
By default, ownCloud auto-detects the UUID attribute. The UUID attribute is used
to uniquely identify LDAP users and groups. The internal username will be created
based on the UUID, if not specified otherwise.

You can override the setting and pass an attribute of your choice. You must make
sure that the attribute of your choice can be fetched for both users and groups and
that it is unique. Leave it empty for default behavior. Changes will have effect only
on newly mapped LDAP users and groups.

It also will take effect when a user or group’s DN changes and an old UUID was
cached, which will result in a new user. Because of this, the setting should be
applied before putting ownCloud in production use and clearing the bindings the
(see User and Group Mapping` section below).

Examples:

• cn

Username-LDAP User Mapping
ownCloud uses usernames as keys to store and assign data. In order to precisely
identify and recognize users, each LDAP user will have a internal username in
ownCloud. This requires a mapping from an ownCloud username to an LDAP user.

The created username is mapped to the UUID of the LDAP user. Additionally, the
DN is cached to reduce LDAP interaction, but it is not used for identification. If the
DN changes, the change will be detected by ownCloud by checking the UUID value.

The same is valid for groups. The internal ownCloud name is used all over in
ownCloud. Clearing the mappings will have leftovers everywhere. Never clear the
mappings in a production environment, but only in a testing or experimental server.


Clearing the mappings is not configuration sensitive, it affects all
LDAP configurations!

Testing the Configuration

The "Test Configuration" button checks the values as currently given in the input
fields. You do not need to save before testing. By clicking on the button, ownCloud will
try to bind to the ownCloud server using the settings currently given in the input
fields. If the binding fails you’ll see a yellow banner with the error message:

User | 449

The configuration is invalid. Please have a look at the logs for further details.

When the configuration test reports success, save your settings and check if the users
and groups are fetched correctly on the Users page.

Syncing Users

While users who match the login and user filters can log in, only synced users will be
found in the sharing dialog. Whenever users log in, their display name, email, quota,
avatar and search attributes will be synced to ownCloud. If you want to keep the
metadata up to date you can set up a cron job, using the occ user:sync command.
Versions of ownCloud before 10.0 imported all users when the users page was loaded,
but this is no longer the case.



We recommend creating a Cron job, to automate regularly syncing
LDAP users with your ownCloud database. If you have many users, you
do not have to sync all of them to update a small number of users. You
can use the OCS User Sync API to sync individual users. It provides a
way to trigger user sync from outside of ownCloud.

How Often Should the Job Run?

This depends on the amount of users and speed of the update, but we recommend at
least once per day. You can run it more frequently, but doing so may generate too
much load on the server.

Reuse Existing User and Group LDAP Accounts

New LDAP logins can attempt to reuse existing user and group accounts if:

• They match the resolved username attribute.
• They have User_Proxy set as their backend.

To enable this functionality, the reuse_accounts config setting must be set to yes. To
enable it, run the following command.

sudo -u www-data php occ config:app:set user_ldap reuse_accounts --value=yes

ownCloud Avatar Integration

ownCloud supports user profile pictures, which are also called avatars. If a user has a
photo stored in the jpegPhoto or thumbnailPhoto attribute on your LDAP server, it will
be used as their avatar. In this case the user cannot alter their avatar (on their
Personal page) as it must be changed in LDAP. jpegPhoto is preferred over
thumbnailPhoto.

450 | User

configuration/server/occ_command.pdf#syncing-user-accounts
configuration/server/background_jobs_configuration.pdf#cron-jobs
developer_manual:core/apis/ocs/user-sync-api.pdf

If the jpegPhoto or thumbnailPhoto attribute is not set or empty, then users can upload
and manage their avatars on their ownCloud Personal pages. Avatars managed in
ownCloud are not stored in LDAP.

The jpegPhoto or thumbnailPhoto attribute is fetched once a day to make sure the
current photo from LDAP is used in ownCloud. LDAP avatars override ownCloud
avatars, and when an LDAP avatar is deleted then the most recent ownCloud avatar
replaces it.

Photos served from LDAP are automatically cropped and resized in ownCloud. This
affects only the presentation, and the original image is not changed.

Troubleshooting, Tips and Tricks

LDAPS

Use these commands to troubleshoot:

Test encrypted connection:

openssl s_client -connect 10.211.55.15:636

look for verify return:1

Try an ldapsearch query

ldapsearch \
-H ldaps://ad16.oc.local:636 \
-D "cn=Administrator,cn=users,dc=oc,dc=local" \
-b "dc=oc,dc=local" \
-w MyPassword

Check:

/etc/ldap/ldap.conf /etc/openldap/ldap.conf

look for

TLS_CACERT /etc/ssl/certs/ca-certificates.crt

Turn off certificate validation for testing:

TLS_REQCERT ALLOW

User | 451

Microsoft Active Directory

Compared to earlier ownCloud versions, no further tweaks need to be done to make
ownCloud work with Active Directory. ownCloud will automatically find the correct
configuration in the set-up process.

memberOf / Read MemberOf Permissions

If you want to use memberOf within your filter you might need to give your querying
user the permissions to use it. For Microsoft Active Directory this is described here.

Duplicating Server Configurations

In case you have a working configuration and want to create a similar one or
"snapshot" configurations before modifying them you can do the following:

1. Go to the "Server" tab
2. On "Server Configuration" choose "Add Server Configuration"
3. Answer the question "Take over settings from recent server configuration?"

with "yes".
4. (optional) Switch to "Advanced" tab and uncheck "Configuration Active" in the

"Connection Settings", so the new configuration is not used on Save
5. Click [Save]

Now you can modify and enable the configuration.

Filter out Deactivated Users

With this filter you can filter out the deactivated users and show only active users.

!(userAccountControl:1.2.840.113556.1.4.803:=2)

Here is what the full filter can look like.

&(|(objectclass=organizationalPerson))
 (!(userAccountControl:1.2.840.113556.1.4.803:=2))
 (|(|(memberof=CN=Domain
Users,CN=Users,DC=dp,DC=mosreg,DC=ru)(primaryGroupID=513)))
)

Caching

Using caching to speed up lookups. The ownCloud cache is populated on demand, and
remains populated until the Cache Time-To-Live for each unique request expires.
User logins are not cached, so if you need to improve login times set up a replica LDAP
server to share the load.

You can adjust the "Cache Time-To-Live" value to balance performance and freshness
of LDAP data. All LDAP requests will be cached for 10 minutes by default, and you can
alter this with the "Cache Time-To-Live" setting. The cache answers each request
that is identical to a previous request, within the time-to-live of the original request,
rather than hitting the LDAP server.

The "Cache Time-To-Live" is related to each single request. After a cache entry
expires there is no automatic trigger for re-populating the information, as the cache is

452 | User

https://serverfault.com/questions/167371/what-permissions-are-required-for-enumerating-users-groups-in-active-directory/167401#167401
configuration/server/caching_configuration.pdf

populated only by new requests, for example by opening the User administration page,
or searching in a sharing dialog.

There is one trigger which is automatically triggered by a certain background job
which keeps the user-group-mappings up-to-date, and always in cache.

Under normal circumstances, all users are never loaded at the same time. Typically
the loading of users happens while page results are generated, in steps of 30 until the
limit is reached or no results are left. For this to work on an oC-Server and LDAP-
Server, "Paged Results" must be supported, which assumes PHP >= 5.6.


Please ensure that you’re using the minimum supported PHP version
(7.2).

ownCloud remembers which user belongs to which LDAP-configuration. That means
each request will always be directed to the right server unless a user is defunct, for
example due to a server migration or unreachable server. In this case the other
servers will also receive the request.

LDAP Indexing

Turn on indexing. Deciding which attributes to index depends on your configuration
and which LDAP server you are using. See the openLDAP tuning guide for openLDAP,
and How to Index an Attribute in Active Directory for Active Directory.

Use Precise Base DNs

The more precise your base DN, the faster LDAP can search because it has fewer
branches to search.

Use Precise Filters

Use good filters to further define the scope of LDAP searches, and to intelligently
direct your server where to search, rather than forcing it to perform needlessly-
general searches.

ownCloud LDAP Internals

Some parts of how the LDAP backend works are described here.

User and Group Mapping

In ownCloud, the user or group name is used to have all relevant information in the
database assigned. To work reliably, a permanent internal user name and group name
are created and mapped to the LDAP DN and UUID. If the DN changes in LDAP, it will
be detected, and there will be no conflicts.

Those mappings are done in the database table ldap_user_mapping and
ldap_group_mapping. The user name is also used for the user’s folder (except if
something else is specified in User Home Folder Naming Rule), which contains files
and meta data.

From ownCloud 5, the internal user name and a visible display name are separated.
This is not the case for group names, yet, i.e., a group name cannot be altered.

That means that your LDAP configuration should be good and ready before putting it
into production. The mapping tables are filled early, but as long as you are testing, you
can empty the tables any time.

 Do not do this in production.

User | 453

https://www.openldap.org/doc/admin24/tuning.html#Indexes
https://technet.microsoft.com/en-us/library/aa995762(v=exchg.65).aspx

Handling with Backup Server

When ownCloud is not able to contact the main LDAP server, ownCloud assumes it is
offline and will not try to connect again for the time specified in "Cache Time-To-Live".
If you have a backup server configured ownCloud will connect to it instead. When you
have scheduled downtime, check [Disable Main Server] to avoid unnecessary
connection attempts.

User Management

Default View

The default view displays basic information about your users.

The Group filter on the left sidebar lets you quickly filter users by their group
memberships, and create new groups.

454 | User

Click the [gear] icon on the lower left sidebar to view the avaiable settings.

User accounts have the following properties:

Login Name (Username)
The unique ID of an ownCloud user, and it cannot be changed.

Full Name
The user’s display name that appears on file shares, the ownCloud Web interface,
and emails. Admins and users may change the Full Name anytime. If the Full Name
is not set it defaults to the login name.

Password
The admin sets the new user’s first password. Both the user and the admin can
change the user’s password at anytime.

E-Mail
The admin sets the new user’s E-Mail. The user then get’s an E-Mail to set his
Password. Both the user and the admin can change the user’s E-Mail at anytime.

Groups
You may create groups, and assign group memberships to users. By default new
users are not assigned to any groups.

Group Admin
Group admins are granted administrative privileges on specific groups, and can add
and remove users from their groups.

Quota
The maximum disk space assigned to each user. Any user that exceeds the quota
cannot upload or sync data. You have the option to include external storage in user
quotas.

Creating a New User

To create a user account:

• Enter the new user’s Login Name and their E-Mail
• Optionally, assign Groups memberships
• Click the [Create] button

User | 455

Login names may contain letters (a-z, A-Z), numbers (0-9), dashes (-), underscores (_),
periods (.) and at signs (@). After creating the user, you may fill in their Full Name if
it is different than the login name, or leave it for the user to complete.

Password Reset

You cannot recover a user’s password, but you can set a new one:

• Hover your cursor over the user’s Password field
• Click on the [pencil] icon
• Enter the user’s new password in the password field, and remember to provide the

user with their password

If you have encryption enabled, there are special considerations for user password
resets.

 See Encryption Configuration.

Renaming a User

Each ownCloud user has two names: a unique Login Name used for authentication,
and a Full Name, which is their display name. You can edit the display name of a user,

456 | User

configuration/files/encryption/encryption_configuration.pdf

but you cannot change the login name of any user.

To set or change a user’s display name:

• Hover your cursor over the user’s Full Name field
• Click on the [pencil] icon
• Enter the user’s new display name

Deleting Users

To delete a user, hover your cursor over their name on the Users page, and click the
trashcan icon that appears at the far right. You’ll then see a confirmation dialog
appear, asking if you’re sure that you want to delete the user.

If you click [Yes], the user is permanently deleted, including all of the files owned by
the user, including all files they have shared. If you need to preserve the user’s files
and shares, you must first download them from your ownCloud Files page, (which
compresses them into a zip file).

Alternatively, you can use a sync client to copy them to your local computer. If you
click [No], the confirmation dialog will disappear and the user is not deleted.


See File Sharing Configuration to learn how to create persistent file
shares that survive user deletions.

Granting Administrator Privileges

ownCloud has two types of administrators:

• ownCloud Administrators have full rights on your ownCloud server, and can
access and modify all settings. To assign the ownCloud Administrators role to a
user, simply add them to the admin group.

• Group Administrators. Group administrators have the rights to create, edit and
delete users in their assigned groups. Use the dropdown menus in the Group Admin
column to assign group admin privileges.

Managing Groups

You can assign new users to groups when you create them, and create new groups
when you create new users. You may also use the Add Group button at the top of the

User | 457

configuration/files/file_sharing_configuration.pdf

left pane to create new groups. New group members will immediately have access to
file shares that belong to their new groups.

Enabling Custom Groups

In previous versions of ownCloud, files and folders could only be shared with
individual users or groups created by administrators. This wasn’t the most efficient
way to work. From ownCloud 10.0, users can create groups on-the-fly, through a
feature called "Custom Groups", enabling them to share content in a more flexible way.

To enable Custom Groups:

1. From the ownCloud Market, which you can find in version 10.0 under the Apps
menu, click [Market].

2. Click [Collaboration] (1), to filter the list of available options and click the
[Custom groups] application (2).

3. Click [INSTALL] in the bottom right-hand corner of the Custom Groups application.

458 | User

With this done, Custom Group functionality will be available in your ownCloud
installation.

Overriding Default Behavior

Disabling Administrators from Administering Custom Groups

Depending on your Custom Groups and ownCloud’s global settings, configured by the
ownCloud admin, Custom Groups may behave differently:

• Creating or renaming a Custom Group using an existing name of another Custom
Group can be allowed or not depending on administrative settings.

• Custom Group creation can be limited to ownCloud group admins.
• Disable administration of Custom Groups by ownCloud administrators. This is

enabled by setting customgroups.disallow-admin-access-all to true in
config/config.php.

Hide Custom Groups App Based On Group Membership

The app can be hidden from the user’s personal settings page if the user belongs to
one or more disallowed groups, To specify the disallowed groups, list them against the
customgroups.disallowed-groups key in config/config.php, as in the following example.

User | 459

// Hide the Custom Groups app for users in the "guest_app" group.
'customgroups.disallowed-groups' => ['guest_app'],

Setting Storage Quotas

There are 4 types of quota settings in ownCloud when dealing with LDAP users.

Quota Field

Found in User Authentication › the Advanced Tab › Special Attributes, this
setting overwrites the rest. If set, this is what will be set for an LDAP user’s quota in
ownCloud.

Quota Default

Found in User Authentication › the Advanced Tab › Special Attributes, this is the
fallback option if no quota field is defined.

User Quota

This is what you set in the web UI drop down menu, and is how you set user quota.

Default Quota

This will be set if no quota is set, and is found in Users Tab › Gear Wheel › Default
Quota. If Quota Field is not set, but Quota Default is, and a systems administrator
tries to set a quota for an LDAP user with User Quota, it will not work, since it is
overridden by Quota Default.

Click the [gear] icon on the lower left pane to set a default storage quota. This is
automatically applied to new users. You may assign a different quota to any user by
selecting from the Quota dropdown, selecting either a preset value or entering a
custom value. When you create custom quotas, use the normal abbreviations for your
storage values such as 500 MB, 5 GB, 5 TB, and so on.

External Storage Quota

You now have a configurable option in config.php that controls whether external
storage is counted against user’s quotas. This is still experimental, and may not work
as expected. The default is to not count external storage as part of user storage
quotas. If you prefer to include it, then change the default false to true.:

'quota_include_external_storage' => false,

Storage Space Considerations

Metadata (such as thumbnails, temporary files, and encryption keys) takes up about
10% of disk space, but is not counted against user quotas. Users can check their used
and available space on their Personal pages. Only files that originate with users count
against their quotas, and not files shared with them that originate from other users.
For example, if you upload files to a different user’s share, those files count against
your quota. If you re-share a file that another user shared with you, that file does not
count against your quota, but the originating user’s.

460 | User

Encrypted files are a little larger than unencrypted files; the unencrypted size is
calculated against the user’s quota.

Deleted files that are still in the trash bin do not count against quotas. The trash bin is
set at 50% of quota. Deleted file aging is set at 30 days. When deleted files exceed
50% of quota then the oldest files are removed until the total is below 50%.

Versions

When version control is enabled, the older file versions are not counted against
quotas.

Public Links

When a user creates a public link share via URL, and allows uploads, any uploaded
files count against that user’s quota.

User Provisioning API

Introduction

The User Provisioning API provides instruction sets to communicate with the user
backend. External systems can use this API to create, edit, delete and query user
attributes.

Using the User Provisioning API

See User Provisioning API for available API endpoints and detailed examples.

ownCloud Roles

The following information is not an in-depth guide, but more of a high-level overview
of each type.

Anonymous

• Is not a regular user.
• Has access to specific content made available via public links.

◦ Can be password-protected (optional, enforced, policy-enforced).
◦ Can have an expiration date (optional, enforced, enforced dependent on

password).
• Has no personal space
• Has no file ownership (ownership of uploaded/created files is directed to sharer).
• Has no use of clients.
• Quota is that of the sharer.
• Permissions are those granted by the sharer for specific content, e.g., view-only,

edit, and File Drop.
• Can only use file and viewer apps, such as PDF Viewer and Collabora Online.

Guest

• The Guests app is available on the ownCloud Marketplace. You must install and
enable it first.

User | 461

developer_manual:core/apis/provisioning-api.pdf#instruction-set-for-users
https://marketplace.owncloud.com/apps/files_pdfviewer
https://marketplace.owncloud.com/apps/richdocuments
https://marketplace.owncloud.com/apps/guests

• Is a regular user with restricted permissions, identified via e-mail address.
• Has no personal space.
• Has no file ownership (ownership of uploaded/created files is directed to sharer).
• Has access to shared space. The permissions are granted by the sharer.
• Is not bound to the inviting user.

◦ Can log in as long as shares are available.
◦ Becomes deactivated when no shares are left; this is the shared with guests

filter.
◦ Reactivated when a share is received.
◦ Administrators will be able to automate user cleanup ("disabled for x days").

• Can use all clients.
• Fully auditable in the enterprise edition.
• Can be promoted to group administrator or administrator, but will still have no

personal space.
• Apps are specified by the admin (whitelist).



The Shared with Guests Filter
This filter makes it easy for sharers to view and remove their shares
with a guest, which also removes their responsibility for guests. When
all of a guest’s shares are removed, the guest is then disabled and can
no longer login.

Standard User

• Is a regular user (from LDAP, ownCloud user backend, or another backend).
• Has personal space. Permissions are granted by the administrator.
• Shared space: Permissions as granted by sharer.
• Apps: All enabled, might be restricted by group membership.

Federated User

• Is not an internal user.
• Can trust a federated system.
• Has access to shared space through users on the considered ownCloud system.
• Can share data with the considered system (accept-/rejectable).

ownCloud Group Administrator

• Is a regular user, such as from LDAP, an ownCloud user backend, or another
backend.

• Can manage users in their groups, such as adding and removing them, and
changing quota of users in the group.

• Can add new users to their groups and can manage guests.
• Can enable and disable users.
• Can impersonate users in their groups.
• Custom group creation may be restricted to group admins.

462 | User

faq/index.pdf#what-is-a-federated-system

ownCloud Administrator

• Is a regular user (from LDAP, ownCloud user backend, or another backend).
• Can configure ownCloud features via the UI, such as sharing settings, app-specific

configurations, and external storages for users.
• Can manage users, such as adding and removing, enabling and disabling, quota

and group management.
• Can restrict app usage to groups, where applicable.
• Configurable access to log files.
• Mounting of external shares and local shares (of external filesystems) is disabled by

default.

System Administrator

• Is not an ownCloud user.
• Has access to ownCloud code (e.g., config.php and apps folders) and command-line

tool (occ occ).
• Configures and maintains the ownCloud environment (PHP, Webserver, DB,

Storage, Redis, Firewall, Cron, and LDAP, etc.).
• Maintains ownCloud, such as updates, backups, and installs extensions.
• Can manage users and groups, such as via occ.
• Has access to the master key when storage encryption is used.
• Storage admin: Encryption at rest, which prevents the storage administrator from

having access to data stored in ownCloud.
• DB admin: Calendar/Contacts etc. DB entries not encrypted.

Auditor

• Is not an ownCloud user.
• Conducts usage and compliance audits in enterprise scenarios.
• App logs (especially Auditlog) can be separated from ownCloud log. This separates

the Auditor and Sysadmin roles. An audit.log file can be enabled, which the
Sysadmin can’t access.

• Best practice: parse separated log to an external analyzing tool.

Guests App

Share with external users conveniently just by entering an email address in the
sharing dialog. Recipients receive an email containing an activation link. They can log
in using their email address as user name and the password they chose during
activation. Guests may even use the ownCloud desktop clients and mobile apps to
connect to ownCloud and work on shared contents.

Guest users do not have storage space and can only work in contents that are shared
with them. Have a look at our informational YouTube video below, for an introduction
to the Guests app.

 https://www.youtube.com/watch?v=L42PBHgqKVI (YouTube video)

Installation

Go to Market and install the Guests app if not already installed with your bundle. The
Guests app requires the email server to be configured in your ownCloud because you

User | 463

configuration/server/occ_command.pdf
configuration/server/occ_command.pdf
https://marketplace.owncloud.com/apps/admin_audit
https://www.youtube.com/watch?v=L42PBHgqKVI

need to be able to invite your guests by mail.

Configuration

Check your Guests app’s configuration in the sharing section of the admin settings.
There you can change the Guest’s group name and add or exclude apps to the app
whitelist of the Guests app. Guests can not access apps that are not in that list.

Troubleshooting

If for some reason you don’t see some buttons, please try a different browser to
exclude the script/adblocking add-on as a cause. If you as a guest user can not open a
PDF document for example in your ownCloud, but you can download it - please check
the White List of your Guests app in the sharing section of the admin settings. You
have to specify that the guest users can access the required app.

OpenID Connect (OIDC)

Introduction

OpenID Connect is an open standard for single sign-on and identity and access
management. With ownCloud it can be used for user authentication and client
authorization against an external Identity Provider.

Benefits of using ownCloud with OpenID Connect

• Increased security by shifting user authentication to an external Identity Provider
• Seamless integration into single sign-on (SSO) environments as well as with third

party products
• Centralized client management within the Identity Provider
• Enterprise-grade security through the use of authentication security features (e.g.,

multi-factor authentication) and policies (e.g., automatic token expiration on
certain conditions) provided by Identity Providers

Prerequisites

• OpenID Connect requires an external Identity Provider
• A distributed memcache setup is required to operate this app - such as Redis or

Memcached. Please follow the documentation on how to set up caching.

Setup and configuration

Setting up ownCloud Server to work with OpenID Connect requires a couple of
components to work together:

• An external Identity Provider configured to work with the ownCloud components
• The OpenID Connect App installed on ownCloud Server
• Configuration for the OpenID Connect App in config.php on ownCloud Server
• Service discovery for the ownCloud Clients

The sections below will explain these areas and provide configuration examples using
Kopano Konnect as the external Identity Provider.

For the configuration examples, let’s assume we have

• ownCloud Server available as https://cloud.example.com
• Kopano Konnect available as https://idp.example.com

464 | User

https://openid.net/connect/
configuration/server/caching_configuration.pdf
https://marketplace.owncloud.com/apps/openidconnect
https://github.com/Kopano-dev/konnect
https://cloud.example.com
https://idp.example.com

Set up and configure the Identity Provider

In order to get your Identity Provider running and ready to be used with ownCloud,
you have to obtain Kopano Konnect and run it with a set of configuration values which
can be provided as environment variables. See the Kopano Konnect documentation for
details.

Specifically, you have to

• provide basic configuration
• set up a reverse proxy to expose the routes required to connect to Kopano Konnect.

You’ll find instructions in the Kopano Konnect documentation.
• register the ownCloud Clients


Kopano Konnect can be set up via Docker. Images are available on
Docker Hub (kopano/konnectd).

Register ownCloud Clients

To allow the ownCloud Clients (Web/Desktop/Android/iOS) to interact with the Identity
Provider, you have to register them as clients. In the case of Kopano Konnect you can
do this using Konnect’s identifier-registration.yaml. Below you find the default values
for the regular ownCloud Clients. Other environments might require a different set of
values.



When registering ownCloud as an OpenID Client, use
https://cloud.example.net/index.php/apps/openidconnect/redirect as the
redirect URL. If OpenID Connect Front-Channel Logout 1.0 is
supported, please enter https://cloud.example.net/index.php/apps/
openidconnect/logout as the logout URL within the client registration of
the OpenID Provider.

Client ID

• Server / Web: As specified in config.php
• Desktop:

xdXOt13JKxym1B1QcEncf2XDkLAexMBFwiT9j6EfhhHFJhs2KM9jbjTmf8JBXE69
• Android:

e4rAsNUSIUs0lF4nbv9FmCeUkTlV9GdgTLDH1b5uie7syb90SzEVrbN7HIpmWJeD
• iOS: mxd5OQDk6es5LzOzRvidJNfXLUZS2oN3oUFeXPP8LpPrhx3UroJFduGEYIBOxkY1

Client Secret

• Server / Web: As specified in config.php
• Desktop:

UBntmLjC2yYCeHwsyj73Uwo9TAaecAetRwMw0xYcvNL9yRdLSUi0hUAHfvCHFeFh
• Android:

dInFYGV33xKzhbRmpqQltYNdfLdJIfJ9L5ISoKhNoT9qZftpdWSP71VrpGR9pmoD
• iOS: KFeFWWEZO9TkisIQzR3fo7hfiMXlOpaqP8CFuTbSHzV1TUuGECglPxpiVKJfOXIx

Redirect URIs

• Android: oc://android.owncloud.com
• iOS: oc://ios.owncloud.com and oc.ios://ios.owncloud.com

User | 465

https://github.com/Kopano-dev/konnect#running-konnect
https://documentation.kopano.io/kopanocore_administrator_manual/configure_kc_components.html#configure-a-webserver-for-konnect
https://cloud.example.net/index.php/apps/openidconnect/redirect
https://openid.net/specs/openid-connect-frontchannel-1_0.html
https://cloud.example.net/index.php/apps/openidconnect/logout
https://cloud.example.net/index.php/apps/openidconnect/logout

Configure ownCloud Server

To set up ownCloud Server to work with OpenID Connect, you have to

1. Install the OpenID Connect App
2. Configure config.php
3. Set up service discovery



It is recommended to first figure out all configuration on a test system
and to bring it to the production system once it’s proven to work.
Enabling the OpenID Connect App on the production system should be
the last step in this process as it will then advertise OpenID Connect to
all clients.

List of OpenID Connect config.php parameters

These are the config.php parameters available to configure OpenID Connect on
ownCloud Server:

Parameters Description

provider-url the URL of the Identity Provider (for some
Identity Providers like Keycloak or Azure
AD this parameter holds more than just a
domain but also a path)

client-id the client ID for the ownCloud Web
interface as specified in the Identity
Provider client registration

client-secret the client secret for the ownCloud Web
interface as specified in the Identity
Provider client registration

mode the mode to search for users in ownCloud
- possible values are userid or email

search-attribute the attribute which is taken from the
access token JWT or user info endpoint to
identify a user

loginButtonName by default the OpenID Connect App will
add a button on the login page that will
redirect the user to the Identity Provider
and allow authentication via OIDC. This
parameter allows to modify the button
text.

autoRedirectOnLoginPage if set to true, the ownCloud login page will
redirect directly to the Identity Provider
login without requiring the user to click a
button.

redirect-url the full URL under which the ownCloud
OpenID Connect redirect url is reachable
(only needed in special setups)

insecure if set to true, no ssl verification will take
place when connecting to the Identity
Provider (DON’T use this in production)

466 | User

Parameters Description

scopes depending on the setup and needs of the
Identity Provider, the list of required
scopes is entered here

provider-params additional configuration depending on the
Identity Provider can be entered here
(usually only necessary if the Identity
Provider does not support service
discovery)

auth-params additional parameters which are sent to
the Identity Provider during the auth
requests

use-token-introspection-endpoint if set to true, the token introspection
endpoint is used to verify a given access
token (only needed if the access token is
not a JWT)

token-introspection-endpoint-client-id the client id to be used with the token
introspection endpoint

token-introspection-endpoint-client-secret the client secret to be used with the token
introspection endpoint

post_logout_redirect_uri a given URL where the Identity Provider
should redirect to after logout

allowed-user-backends use this parameter to limit the users
which are allowed to login to a specific
user backend like LDAP ('allowed-user-
backends' ⇒ ['LDAP'])

use-access-token-payload-for-user-info if set to true, any user information will be
read from the access token. If set to false,
the userinfo endpoint is used (requires
version >= 1.1.0)

Example configuration for Kopano Konnect

An example snippet that can be added to config.php is shown below. It is based on the
configuration of the Identity Provider (Kopano Konnect). Other environments might
require a different set of parameters and values.

'openid-connect' =>
array (
 'provider-url' => 'https://idp.example.com',
 'client-id' => '<owncloud-server-client-id>',
 'client-secret' => '<owncloud-server-client-secret>',
 'loginButtonName' => 'Kopano',
 'autoRedirectOnLoginPage' => false,
 'mode' => 'userid', // change this to 'email' if necessary (see Identity Provider
configuration)
 'search-attribute' => 'preferred_username', // change this to suit your environment
(see Identity Provider configuration)
),

User | 467

Set up service discovery

In order to allow the ownCloud Clients (Desktop/Android/iOS) to make use of OpenID
Connect, ownCloud Server needs to provide service discovery information under the
static path https://cloud.example.com/.well-known/openid-configuration. When enabled,
the OpenID Connect App provides the service discovery information on the endpoint
https://cloud.example.com/index.php/apps/openidconnect/config.

To make the endpoint available under the static service discovery path, it is
recommended to put a RewriteRule in place using .htaccess (the Apache modules proxy
and proxy_http have to be enabled):

RewriteRule ^\.well-known/openid-configuration /index.php/apps/openidconnect/config
[P]


Depending on the respective infrastructure setup there can be other
ways to solve this. In any case, please make sure not to use redirect
rules as this will violate the OpenID Connect specification.


Once service discovery is available as described above, the ownCloud
Clients will attempt to connect via OpenID Connect.

Supported Identity Providers

ownCloud Server can work with Identity Providers that support OpenID Connect.
There are many Identity Providers available and the OpenID Connect implementations
vary a lot in terms of supported features as well as configuration needs. Please get in
touch with ownCloud Consulting if you need help with a specific Identity Provider.

ownCloud desktop and mobile clients

ownCloud desktop and mobile clients detect if OIDC is available (service discovery),
and use this login method when a new account is created.

Which client versions support OIDC?

• Desktop >= 2.7.0
• Android >= 2.15
• iOS >= 1.2

Migrate clients from basic authentication to OIDC

If your users are logged in to their desktop and mobile clients via basic authentication
(username/password) against ownCloud Server and you are not using OAuth2 to
authorize the ownCloud clients, a migration to OIDC can be conducted as follows:

1. Make sure you have a working OIDC configuration based on the above sections
2. Enable the OpenID Connect App
3. Enable token only authentication

Once the OpenID Connect App is enabled, token only authentication is enforced, and
service discovery is properly set up, the ownCloud Clients will ask the users to re-
authenticate. After a successful re-authentication, the migration is done.

To connect legacy clients, users have to generate special app passwords (tokens).

468 | User

https://cloud.example.com/.well-known/openid-configuration
https://cloud.example.com/index.php/apps/openidconnect/config
configuration/server/config_sample_php_parameters.pdf#enforce-token-only-authentication-for-apps-and-clients-connecting-to-owncloud
user_manual:personal_settings/security.pdf#app-passwords-tokens

Migrate clients from OAuth2 to OIDC

If you use OAuth2 for client authorization, a migration to OIDC can be conducted as
follows:

1. Make sure you have a working configuration based on the above sections
2. Enable the OpenID Connect App (while having the OAuth2 App still enabled)
3. Disable the OAuth2 App

Once the OAuth2 App is disabled (and service discovery is properly set up), the
ownCloud Clients will ask the users to re-authenticate. After a successful re-
authentication, the migration is done.

Migrate web login (and client login) from SAML to OIDC

If you are using SAML/SSO, a migration to OIDC depends on your Identity Provider
and is not straight forward. Please get in touch with ownCloud Consulting to plan the
migration.

User | 469

Maintenance
In this section, you will find all that you need to help you maintain your ownCloud
installation.

How to Upgrade Your ownCloud Server

Introduction

We recommend that you keep your ownCloud server up to date. When an update is
available for your ownCloud server, you will see a notification at the top of your
ownCloud Web interface. When you click the [notification], it will bring you here.

Before beginning an upgrade, please keep the following points in mind:

• Review the release notes for important information about the needed migration
steps during that upgrade to help ensure a smooth upgrade process.

• Check ownCloud’s mandatory requirements (such as PHP versions and extensions),
which can change from one version to the next. Ensure that you review them and
update your server(s), if required, before upgrading ownCloud.

• Upgrading is disruptive, as your ownCloud server will be put into maintenance
mode.

• Large installations may take several hours to complete the upgrade.
• Review any installed third-party apps for compatibility with the new ownCloud

release.
• Downgrading is not supported as it risks corrupting your data. If you want to

revert to an older ownCloud version, make a new, fresh installation and then
restore your data from backup. Before attempting this, file a support ticket (if you
have paid support) or ask for help in the ownCloud forums to resolve your issue
without downgrading.

470 | How to Upgrade Your ownCloud Server

release_notes.pdf
installation/manual_installation/manual_installation_prerequisites.pdf
configuration/server/occ_command.pdf#maintenance-commands
configuration/server/occ_command.pdf#maintenance-commands
maintenance/manual_upgrade.pdf#review-third-party-apps



If required, you can skip major releases when upgrading your
ownCloud installation. However, we recommend that you first upgrade
to the latest point release of your respective minor version, e.g., 10.2.1.
See Upgrading Across Skipped Releases for more information.

If you are on ownCloud 8.2.11, 9.0.9, 9.1.X, or 10.X.Y you can go
directly to the latest server version.

Here are some examples:

Versio
n

Can Upgrade to
10.6.0 ?

Requirements

10.X.
Y

Yes

9.1.8 Yes

9.1.0 Yes

9.0.9 Yes

9.0.8 No Must upgrade to 9.0.9 first.

8.2.11 Yes

8.2.10 No Must upgrade to 8.2.11 first.

7.0.15 No Must upgrade to 8.0.16, then to 8.1.12, and
then to 8.2.11 first.

7.0.10 No Must upgrade to 7.0.15, then to 8.0.16, then
to 8.1.12, and then to 8.2.11 first.

Prerequisites

We strongly recommend that you always maintain regular backups as well as make a
fresh backup before every upgrade. We also recommend that you review any installed
third-party apps for compatibility with the new ownCloud release. Ensure that they are
all disabled before beginning the upgrade. After the upgrade is complete re-enable any
which are compatible with the new release.

 Unsupported apps may disrupt your upgrade.

Upgrade Options

There are two ways to upgrade your ownCloud server:

1. (Recommended) Perform a manual upgrade, using the latest ownCloud release.
2. (Discouraged) Use your distribution’s package manager, in conjunction with our

official ownCloud repositories. Note: This approach should not be used unattended
nor in clustered setups. We discourage upgrades with Linux Package Manager
because you might encounter unwanted side effects.


Enterprise customers: refer to Installing & Upgrading ownCloud
Enterprise Edition for more information.

How to Upgrade Your ownCloud Server | 471

maintenance/package_upgrade.pdf#upgrading-across-skipped-releases
maintenance/backup.pdf
maintenance/manual_upgrade.pdf#review-third-party-apps
maintenance/manual_upgrade.pdf
http://owncloud.org/install/
maintenance/package_upgrade.pdf
enterprise/installation/install.pdf
enterprise/installation/install.pdf

Manual ownCloud Upgrade

Introduction

This section describes how to manually upgrade your ownCloud installation.

Preparation

There are several steps necessary before you can start with upgrading your owncloud
instance.

Enable Maintenance Mode

Put your server in maintenance mode and disable Cron jobs. Doing so prevents new
logins, locks the sessions of logged-in users, and displays a status screen so that users
know what is happening.

There are two ways to enable maintenance mode.

1. The preferred method is to use the occ command — which you must run as your
webserver user.

Enable maintenance mode using the occ command.
sudo -u www-data php occ maintenance:mode --on

2. The other way is by changing the value in your config.php file and replacing
'maintenance' ⇒ false, with 'maintenance' ⇒ true,.


In a clustered environment, check that all nodes are in maintenance
mode.

Stop the Webserver

With those steps completed, stop your webserver.

Stop the web server
sudo service apache2 stop

Backup the Database

First, backup ownCloud and the server database as described in section Backing up
ownCloud. This is independent of the next upgrade steps but important in case
something goes wrong.

Review Third-Party Apps

Review any installed third-party apps for compatibility with the new ownCloud release.
Ensure that they are all disabled before beginning the upgrade. Third party apps are
all apps that are not distributed by ownCloud or not listed in Supported Apps in
ownCloud.

1. Disable via Command Line

472 | How to Upgrade Your ownCloud Server

configuration/server/occ_command.pdf#maintenance-commands
configuration/server/background_jobs_configuration.pdf#cron-jobs
configuration/server/occ_command.pdf#maintenance-commands
maintenance/backup.pdf
maintenance/backup.pdf
https://marketplace.owncloud.com/publishers/owncloud
installation/apps_supported.pdf
installation/apps_supported.pdf

This command lists all apps by <app-id> and app version
sudo -u www-data php occ app:list

This command disables the app with the given <app-id>
sudo -u www-data php occ app:disable <app-id>

2. Disable via Browser
Go to Settings › Admin › Apps and disable all third-party apps.

Move Current ownCloud Directory

Although you have already made a backup, move your current ownCloud directory to a
different location for easy access later:

This example assumes Ubuntu Linux and MariaDB
Rename ownCloud directory
mv /var/www/owncloud /var/www/backup_owncloud

Download the Latest Release

Download the latest ownCloud server release to where your previous installation was,
in this example the default directory /var/www/.

cd /var/www/
wget https://download.owncloud.org/community/owncloud-10.6.0.tar.bz2

Upgrade

If you have configured a script for guided installations, you can use it for the upgrade
as well. If not, proceed with the manual upgrade.


In this description we assume that your ownCloud installation was
located in the default directory: /var/www/owncloud and the new
release will reside there as well. The path might differ, depending on
your installation.

Extract the New Source

Extract the new server release in the location where your previous ownCloud
installation used to be.

tar -xf owncloud-10.6.0.tar.bz2

With the new source files now in place of where the old ones used to be, copy the
config.php file from your old ownCloud directory to your new ownCloud directory:

cp /var/www/backup_owncloud/config/config.php
/var/www/owncloud/config/config.php

If you keep your data/ directory inside your owncloud/ directory, move it from your old

How to Upgrade Your ownCloud Server | 473

https://owncloud.org/download/#owncloud-server-tar-ball
installation/manual_installation/script_guided_install.pdf

version of ownCloud to your new version:

mv /var/www/backup_owncloud/data /var/www/owncloud/data

If you keep your data outside of your owncloud directory, then you don’t have to do
anything with it, because its location is configured in your original config.php, and
none of the upgrade steps touch it.

Market and Marketplace App Upgrades

Before getting too far into the upgrade process, note how the Market app and its
configuration options affect the upgrade process. The Market app — and other apps
from the Marketplace — will not be updated when you upgrade ownCloud, if
upgrade.automatic-app-update is set to true in config.php.

In addition, if there are installed apps (whether compatible or incompatible with the
next version, or missing source code) and the Market app is enabled but there is no
available internet connection, these apps will need to be manually updated once the
upgrade is finished.

Copy Old Apps

If you are using third party or enterprise applications, look in your new
/var/www/owncloud/apps/ directory to see if they are present. If not, copy them from
your old apps/ directory to your new one.


Make sure that all app directories that are defined in the apps_paths
section of your config.php file do exist in your new /var/www/owncloud/
directory.

Permissions

To finalize the preparation of the upgrade, you need to set the correct ownership of
the new ownCloud files and folders.

sudo chown -R www-data:www-data /var/www/owncloud

Start the Upgrade

With the apps disabled and ownCloud in maintenance mode, start the upgrade process
from the command line:

Here is an example on Ubuntu Linux.
Execute this within the ownCloud root folder.
sudo -u www-data php occ upgrade

The upgrade operation can take anywhere from a few minutes to a few hours,
depending on the size of your installation. When it is finished you will see either a
success message or an error message that indicates why the process did not complete
successfully.

Disable Maintenance Mode

Assuming your upgrade succeeded, disable maintenance mode.

474 | How to Upgrade Your ownCloud Server

configuration/server/occ_command.pdf#command-line-upgrade

Disable maintenance mode using the occ command.
sudo -u www-data php occ maintenance:mode --off

Restart the Web Server

With all that done, restart your web server:

sudo service apache2 start

Finalize the Upgrade

With maintenance mode disabled and the web server running, login via the web
interface and perform the following steps:

1. Check that the version number reflects the new installation.
It can be reviewed at the bottom of Settings › Admin › General.

2. Check that your other settings are correct.
3. Go to the Settings › Admin › Apps page and review the core apps to make sure

the right ones are enabled.
4. After the upgrade is complete, re-enable any third-party apps that are compatible

with the new release. Use occ app:enable <app-id> or go to Settings › Admin ›
Apps › "Show disabled apps" and enable all compatible third-party apps.

 Install or enable unsupported apps at your own risk.

Rollback

If you need to rollback your upgrade, see the Restoring ownCloud documentation.

Troubleshooting

When upgrading ownCloud and you are running MySQL or MariaDB with binary
logging enabled, your upgrade may fail with these errors in your MySQL/MariaDB log:

An unhandled exception has been thrown:
exception 'PDOException' with the message 'SQLSTATE[HY000]: General error: 1665
Cannot execute statement: impossible to write to binary log since
BINLOG_FORMAT = STATEMENT and at least one table uses a storage engine limited
to
row-based logging. InnoDB is limited to row-logging when transaction isolation level
is READ COMMITTED or READ UNCOMMITTED.'

Please refer to MySQL / MariaDB with Binary Logging Enabled on how to correctly
configure your environment.

In the unlikely case that files do not show up in the web-ui after the upgrade, use the
files:scan command to make them visible again. Here is an example of how to do so:

sudo -u www-data php occ files:scan --all

How to Upgrade Your ownCloud Server | 475

maintenance/restore.pdf
configuration/database/linux_database_configuration.pdf#mysql-mariadb-with-binary-logging-enabled
configuration/server/occ_command.pdf#the-filesscan-command

See the Docs & Guides page for further resources for both home and enterprise users.

Sometimes, ownCloud can get stuck in an upgrade. This is usually due to the process
taking too long and running into a PHP time-out. Stop the upgrade process this way:

sudo -u www-data php occ maintenance:mode --off

Then start the manual process:

sudo -u www-data php occ upgrade

If this does not work properly, try the repair function:

sudo -u www-data php occ maintenance:repair

Upgrade ownCloud From Packages

Upgrade Steps

The alternative to a manual upgrade is configuring your system to use ownCloud’s
Open Build Service repository. Then stay current by using your Linux package
manager to install fresh ownCloud packages. However, you should exclude the
ownCloud package during system upgrades. For more information, check out the
section on Linux Package Manager Installation

 This approach should not be used unattended nor in clustered setups.

In general, we discourage upgrades with a Linux package manager because you might
encounter unwanted side effects and you’ll have to manage the PHP installation
separately. For further information on upgrading PHP, see section Upgrade PHP on
RedHat 7 and CentOS 7

If you want to proceed anyway, read the the release notes for important information
first.

Before installing upgraded packages, perform the following steps:

• Disable all third-party apps.
• Make a fresh backup.

Now you can upgrade your ownCloud packages, then run sudo -u www-data php occ
upgrade.


The optional parameter to skip migration tests was removed in
ownCloud 10.0. See Testing a Migration for background information.

After the upgrade is finished, perform the following actions:

• Apply strong permissions to your ownCloud directories.
• Take your ownCloud server out of maintenance mode.
• Re-enable third-party apps.

476 | How to Upgrade Your ownCloud Server

https://owncloud.com/docs-guides/
https://download.owncloud.org/download/repositories/stable/owncloud/
installation/linux_packetmanager_install.pdf
upgrading/upgrade_php.pdf
upgrading/upgrade_php.pdf
release_notes.pdf
maintenance/manual_upgrade.pdf#review-third-party-apps
maintenance/backup.pdf
configuration/server/occ_command.pdf#command-line-upgrade
configuration/server/occ_command.pdf#command-line-upgrade
maintenance/upgrade.pdf
installation/manual_installation.pdf#set-strong-directory-permissions
configuration/server/occ_command.pdf#maintenance-commands



If required, you can skip major releases when upgrading your
ownCloud installation. However, we recommend that you first upgrade
to the latest point release of your respective minor version, e.g., 10.2.1.
See Upgrading Across Skipped Releases for more information.

If you are on ownCloud 8.2.11, 9.0.9, 9.1.X, or 10.X.Y you can go
directly to the latest server version.

Here are some examples:

Versio
n

Can Upgrade to
10.6.0 ?

Requirements

10.X.
Y

Yes

9.1.8 Yes

9.1.0 Yes

9.0.9 Yes

9.0.8 No Must upgrade to 9.0.9 first.

8.2.11 Yes

8.2.10 No Must upgrade to 8.2.11 first.

7.0.15 No Must upgrade to 8.0.16, then to 8.1.12, and
then to 8.2.11 first.

7.0.10 No Must upgrade to 7.0.15, then to 8.0.16, then
to 8.1.12, and then to 8.2.11 first.


When upgrading from oC 9.0 to 9.1 with existing Calendars or Address
books please have a look at the release notes for important information
about the needed migration steps during that upgrade.

Upgrading Only ownCloud or the Complete System

Upgrading ownCloud from our Open Build Service repository like any normal Linux
upgrade. For example, on Debian or Ubuntu Linux this is the standard system upgrade
command:

sudo apt-get update && apt-get upgrade

Or you can upgrade just ownCloud with this command:

sudo apt-get update && apt-get install owncloud-files

On Fedora, CentOS, and Red Hat Linux use yum to see all available updates:

sudo yum check-update

You can apply all available updates with this command:

How to Upgrade Your ownCloud Server | 477

maintenance/package_upgrade.pdf#upgrading-across-skipped-releases
release_notes.pdf#changes-in-9-1
https://download.owncloud.org/download/repositories/stable/owncloud/

sudo yum update

Or update only ownCloud:

sudo yum update owncloud-files

Your Linux package manager only downloads the current ownCloud packages. Then
your ownCloud server is immediately put into maintenance mode. You may not see this
until you refresh your ownCloud page.

Then use occ to complete the upgrade. You must run occ as your HTTP user. This
example is for Debian/Ubuntu as well as CentOS/RHEL/Fedora:

sudo -u www-data php occ upgrade

The optional parameter to skip migration tests during this step was removed in
ownCloud 10.0.


See Testing a Migration for background information, and Using the
OCC command to learn more about occ.

Setting Strong Directory Permissions

After upgrading, verify that your ownCloud directory permissions are set accordingly.

478 | How to Upgrade Your ownCloud Server

maintenance/manual_upgrade.pdf#test-the-upgrade
configuration/server/occ_command.pdf
configuration/server/occ_command.pdf
installation/manual_installation.pdf#set-strong-directory-permissions

Upgrading Across Skipped Releases

It is best to update your ownCloud installation with every new point release (e.g.,
8.1.10) and to never skip any major release (e.g., don’t skip 8.2.x between 8.1.x and
9.0.x). If you have skipped any major release, you should upgrade your ownCloud step
by step:

1. Add the repository of your current version (e.g., 8.1.x)
2. Upgrade your current version to the latest point release (e.g., 8.1.10) via your

package manager
3. Run the occ upgrade routine (see Upgrade Quickstart above)
4. Add the repository of the next major release (e.g., 8.2.x)
5. Upgrade your current version to the next major release (e.g., 8.2.8) via your

package manager
6. Run the occ upgrade routine (see Upgrade Quickstart above)
7. Repeat from step 4 until you reach the last available major release (e.g., 9.1.x)

You’ll find repositories of previous ownCloud major releases on the Server Packages
page.

Upgrading ownCloud with the Updater App

Introduction

The Updater app automates many of the steps of upgrading an ownCloud installation.
It is useful for installations that do not have root access, such as shared hosting, for
installations with a smaller number of users and data, and it automates manual
installations.


When upgrading from oC 9.0 to 9.1 with existing Calendars or
Adressbooks please have a look at the release notes of oC 9.0 for
important info about this migration.



• The Updater app is not enabled and not supported in ownCloud
Enterprise edition.

• The Updater app is not included in the Linux packages on our Open
Build Service, but only in the tar and zip archives.

• When you install ownCloud from packages you should keep it
updated with your package manager.

Downgrading is not supported and risks corrupting your data! If you want to revert
to an older ownCloud version, install it from scratch and then restore your data from
backup. Before doing this, file a support ticket (if you have paid support) or ask for
help in the ownCloud forums to see if your issue can be resolved without downgrading.

We strongly recommend that you make regular backups, as well as a fresh backup
before every upgrade.

 The Updater app does not backup your database or data directory.

We also recommend that you review any installed third-party apps for compatibility
with the new ownCloud release. Ensure that they are all disabled before beginning the
upgrade. After the upgrade is complete, re-enable any which are compatible with the
new release.

How to Upgrade Your ownCloud Server | 479

https://owncloud.com/older-versions/#server
https://owncloud.com/older-versions/#server
installation/manual_installation.pdf
installation/manual_installation.pdf
release_notes.pdf
https://download.owncloud.org/download/repositories/stable/owncloud/
https://download.owncloud.org/download/repositories/stable/owncloud/
https://owncloud.org/install/#instructions-server
maintenance/backup.pdf
maintenance/manual_upgrade.pdf#review-third-party-apps

 Unsupported apps may disrupt your upgrade.

The Updater app performs these operations:

• Creates an updater_backup directory under your ownCloud data directory
• Downloads and extracts updated package content into the

updater_backup/packageVersion directory
• Makes a copy of your current ownCloud instance, except for your data directory, to

updater_backup/currentVersion-randomstring
• Moves all directories except data and config from the current instance to

updater_backup/tmp
• Moves all directories from updater_backup/packageVersion to the current version
• Copies your old config.php to the new config/ directory

Using the Updater app to update your ownCloud installation is just a few steps:

1. You should see a notification at the top of any ownCloud page when there is a new
update available.

2. Even though the Updater app backs up important directories, you should always
have your own current backups (See Backing up ownCloud for details.)

3. Verify that the HTTP user on your system can write to your whole ownCloud
directory; see the Setting Permissions for Updating section below.

4. Navigate to your Admin page and click the [Update Center] button under Updater.
This takes you to the Updater control panel.

5. Click [Update], and carefully read the messages. If there are any problems it will
tell you. The most common issue is directory permissions; your HTTP user needs
write permissions to your whole ownCloud directory. (See Set Strong Directory
Permissions.) Another common issue is SELinux rules (see SELinux Configuration.)
Otherwise you will see messages about checking your installation and making
backups.

6. Click Proceed, and then it performs the remaining steps, which takes a few
minutes.

7. If your directory permissions are correct, a backup was made, and downloading the
new ownCloud archive succeeded you will see the following screen. Click the
[Start Update] button to complete your update:

480 | How to Upgrade Your ownCloud Server

maintenance/backup.pdf
installation/manual_installation.pdf#set-strong-directory-permissions
installation/manual_installation.pdf#set-strong-directory-permissions
installation/selinux_configuration.pdf


If you have a large ownCloud installation and have shell access, you
should use the occ upgrade command, running it as your HTTP user,
instead of clicking the [Start Update] button, in order to avoid PHP
timeouts.

This example is for Ubuntu Linux:

sudo -u www-data php occ upgrade

The optional parameter to skip migration tests during this step was removed in
ownCloud 10.0. See Testing a Migration for more information.

1. It runs for a few minutes, and when it is finished displays a success message, which
disappears after a short time.

Refresh your Admin page to verify your new version number. In the Updater section of
your Admin page you can see the current status and backups. These are backups of
your old and new ownCloud installations, and do not contain your data files. If your
update works and there are no problems you can delete the backups from this screen.

If the update fails, then you must update manually.

Setting Permissions for Updating

For hardened security, we highly recommend setting the permissions on your
ownCloud directory as strictly as possible, immediately after the initial installation.
However, these strict permissions will prevent the Updater app from working, as it
needs your whole ownCloud directory to be owned by the HTTP user.

So to set the appropriate permissions for updating, run the code below. Replace the
ocpath variable with the path to your ownCloud directory, and replace the htuser and
htgroup variables with your HTTP user and group.

How to Upgrade Your ownCloud Server | 481

maintenance/manual_upgrade.pdf#test-the-upgrade
maintenance/manual_upgrade.pdf

#!/bin/bash
Sets permissions of the owncloud instance for updating

ocpath='/var/www/owncloud'
htuser='www-data'
htgroup='www-data'

chown -R ${htuser}:${htgroup} ${ocpath}

You can find your HTTP user in your HTTP server configuration files. Or you can use
PHP Version and Information. Look for the User/Group line.

• The HTTP user and group in Debian/Ubuntu is www-data.
• The HTTP user and group in Fedora/CentOS is apache.
• The HTTP user and group in Arch Linux is http.
• The HTTP user in openSUSE is wwwrun, and the HTTP group is www.

After the update is completed, re-apply the strong directory permissions immediately.

Command Line Options

The Updater app includes command-line options to automate updates, to create
checkpoints and to roll back to older checkpoints. You must run it as your HTTP user.
This example on Ubuntu Linux displays command options:

sudo -u www-data php occ updater/application.php list

See usage for commands, like this example for the upgrade:checkpoint command:

sudo -u www-data php occ updater/application.php upgrade:checkpoint -h

You can display a help summary:

sudo -u www-data php occ updater/application.php --help

When you run it without options it runs a system check:

sudo -u www-data php occ owncloud/updater/application.php
ownCloud updater 1.0 - CLI based ownCloud server upgrades
Checking system health.
- file permissions are ok.
Current version is 9.0.0.12
No updates found online.
Done

Create a checkpoint:

482 | How to Upgrade Your ownCloud Server

configuration/general_topics/general_troubleshooting.pdf#php-version-and-information
installation/manual_installation.pdf#set-strong-directory-permissions

sudo -u www-data php occ updater/application.php upgrade:checkpoint --create
Created checkpoint 9.0.0.12-56d5e4e004964

List checkpoints:

sudo -u www-data php occ updater/application.php upgrade:checkpoint --list
[source,console]

Restore an earlier checkpoint:

sudo -u www-data php occ updater/application.php \
 upgrade:checkpoint --restore=9.0.0.12-56d5e4e004964

Add a line like this to your crontab to automatically create daily checkpoints:

2 15 * * * sudo -u www-data php occ /path/to/owncloud/updater/application.php
upgrade:checkpoint --create > /dev/null 2>&1

updater.secret value in config.php

When running the updater, you will be prompted to add a hashed secret into your
config.php file. On the updater web interface, you then need to enter the unhashed
secret into the web form.

In case you forgot your password/secret, you can re-create it by changing config.php.
You can run this on your shell:

php -r 'echo password_hash("Enter a random password here",
PASSWORD_DEFAULT)."\n";'

Please replace Enter a random password here with your own. Then add this into your
config.php:

'updater.secret' => 'The value you got from the above hash command',

Upgrade PHP on RedHat 7 and CentOS 7

Introduction

You should almost always upgrade to the latest version of PHP supported by
ownCloud, if and where possible. And if you’re on a version of PHP older than 7.2 you
must upgrade. This guide takes you through upgrading your installation of PHP to one
of the supported PHP versions (7.2, 7.3, and 7.4) on Red Hat or CentOS 7.

Upgrade PHP to Version 7.1

To upgrade to PHP 7.1 you first need to subscribe to the Red Hat Software Collections
channel repository to download and install the PHP 7.1 package in RHEL 7 (if you’ve
not done this already). This documentation uses the same command as you will find

How to Upgrade Your ownCloud Server | 483

https://developers.redhat.com/products/softwarecollections/overview

there.



Ensure that you have subscription-manager installed. If you don’t, yet,
have it installed, do so with the following command:

Install subscription manager
yum install --assumeyes subscription-manager

Add the required repositories for the PHP packages
subscription-manager repos --enable rhel-server-rhscl-7-rpms

Install the Required Packages

Then, proceed by installing the required PHP 7.1 packages. You can use the command
below to save you time.

yum install \
 rh-php71 \
 rh-php71-php \
 rh-php71-php-cli \
 rh-php71-php-curl \
 rh-php71-php-devel \
 rh-php71-php-gd \
 rh-php71-php-intl \
 rh-php71-php-ldap \
 rh-php71-php-mbstring \
 rh-php71-php-mysqlnd \
 rh-php71-php-opcache
 rh-php71-php-pdo \
 rh-php71-php-pear \
 rh-php71-php-xml \
 rh-php71-php-xmlrpc \
 rh-php71-php-zip

Enable PHP 7.1 and Disable PHP 5.6

Next, you need to enable PHP 7.1 and disable PHP 5.6 system-wide. To enable PHP 7.1
system-wide, run the following command:

cp /opt/rh/rh-php71/enable /etc/profile.d/rh-php71.sh source /opt/rh/rh-
php71/enable

Then, you need to disable loading of the PHP 5.6 Apache modules. You can do this
either by changing their names, as in the example below, or deleting the files.

mv /etc/httpd/conf.d/php.conf /etc/httpd/conf.d/php56.off
mv /etc/httpd/conf.modules.d/10-php.conf /etc/httpd/conf.modules.d/10-php56.off

484 | How to Upgrade Your ownCloud Server

Update the Apache Configuration Files

With that done, you next need to copy the PHP 7.1 Apache modules into place; that
being the two Apache configuration files and the shared object file.

cp /opt/rh/httpd24/root/etc/httpd/conf.d/rh-php71-php.conf /etc/httpd/conf.d/
cp /opt/rh/httpd24/root/etc/httpd/conf.modules.d/15-rh-php71-php.conf
/etc/httpd/conf.modules.d/
cp /opt/rh/httpd24/root/etc/httpd/modules/librh-php71-php7.so /etc/httpd/modules/

Upgrade PHP to Version 7.2

To upgrade to PHP 7.2 you first need to subscribe to the Red Hat Software Collections
channel repository to download and install the PHP 7.2 package in RHEL 7 (if you’ve
not done this already). This documentation uses the same command as you will find
there.



Ensure that you have subscription-manager installed. If you don’t, yet,
have it installed, do so with the following command:

Install subscription manager
yum install --assumeyes subscription-manager

Add the required repositories for the PHP packages
subscription-manager repos --enable rhel-server-rhscl-7-rpms

Install the Required Packages

Then, proceed by installing the required PHP 7.2 packages. You can use the command
below to save you time.

yum install \
 rh-php72 \
 rh-php72-php \
 rh-php72-php-cli \
 rh-php72-php-curl \
 rh-php72-php-devel \
 rh-php72-php-gd \
 rh-php72-php-intl \
 rh-php72-php-ldap \
 rh-php72-php-mbstring \
 rh-php72-php-mysqlnd \
 rh-php72-php-opcache
 rh-php72-php-pdo \
 rh-php72-php-pear \
 rh-php72-php-xml \
 rh-php72-php-xmlrpc \
 rh-php72-php-zip

How to Upgrade Your ownCloud Server | 485

https://developers.redhat.com/products/softwarecollections/overview

Enable PHP 7.2 and Disable PHP 5.6

Next, you need to enable PHP 7.2 and disable PHP 5.6 system-wide. To enable PHP 7.2
system-wide, run the following command:

cp /opt/rh/rh-php72/enable /etc/profile.d/rh-php72.sh source /opt/rh/rh-
php72/enable

Then, you need to disable loading of the PHP 5.6 Apache modules. You can do this
either by changing their names, as in the example below, or deleting the files.

mv /etc/httpd/conf.d/php.conf /etc/httpd/conf.d/php56.off
mv /etc/httpd/conf.modules.d/10-php.conf /etc/httpd/conf.modules.d/10-php56.off

Update the Apache Configuration Files

With that done, you next need to copy the PHP 7.2 Apache modules into place; that
being the two Apache configuration files and the shared object file.

cp /opt/rh/httpd24/root/etc/httpd/conf.d/rh-php72-php.conf /etc/httpd/conf.d/
cp /opt/rh/httpd24/root/etc/httpd/conf.modules.d/15-rh-php72-php.conf
/etc/httpd/conf.modules.d/
cp /opt/rh/httpd24/root/etc/httpd/modules/librh-php72-php7.so /etc/httpd/modules/

Upgrade PHP to Version 7.3

To upgrade to PHP 7.3 you first need to subscribe to the Red Hat Software Collections
channel repository to download and install the PHP 7.3 package in RHEL 7 (if you’ve
not done this already). This documentation uses the same command as you will find
there.



Ensure that you have subscription-manager installed. If you don’t, yet,
have it installed, do so with the following command:

Install subscription manager
yum install --assumeyes subscription-manager

Add the required repositories for the PHP packages
subscription-manager repos --enable rhel-server-rhscl-7-rpms

Install the Required Packages

Then, proceed by installing the required PHP 7.3 packages. You can use the command
below to save you time.

486 | How to Upgrade Your ownCloud Server

https://developers.redhat.com/products/softwarecollections/overview

yum install \
 rh-php73 \
 rh-php73-php \
 rh-php73-php-cli \
 rh-php73-php-curl \
 rh-php73-php-devel \
 rh-php73-php-gd \
 rh-php73-php-intl \
 rh-php73-php-ldap \
 rh-php73-php-mbstring \
 rh-php73-php-mysqlnd \
 rh-php73-php-opcache
 rh-php73-php-pdo \
 rh-php73-php-pear \
 rh-php73-php-xml \
 rh-php73-php-xmlrpc \
 rh-php73-php-zip

Enable PHP 7.3 and Disable PHP 5.6

Next, you need to enable PHP 7.3 and disable PHP 5.6 system-wide. To enable PHP 7.3
system-wide, run the following command:

cp /opt/rh/rh-php73/enable /etc/profile.d/rh-php73.sh source /opt/rh/rh-
php73/enable

Then, you need to disable loading of the PHP 5.6 Apache modules. You can do this
either by changing their names, as in the example below, or deleting the files.

mv /etc/httpd/conf.d/php.conf /etc/httpd/conf.d/php56.off
mv /etc/httpd/conf.modules.d/10-php.conf /etc/httpd/conf.modules.d/10-php56.off

Update the Apache Configuration Files

With that done, you next need to copy the PHP 7.3 Apache modules into place; that
being the two Apache configuration files and the shared object file.

cp /opt/rh/httpd24/root/etc/httpd/conf.d/rh-php73-php.conf /etc/httpd/conf.d/
cp /opt/rh/httpd24/root/etc/httpd/conf.modules.d/15-rh-php73-php.conf
/etc/httpd/conf.modules.d/
cp /opt/rh/httpd24/root/etc/httpd/modules/librh-php73-php7.so /etc/httpd/modules/

Restart Apache

Finally, you need to restart Apache to make the changes permanent, as in the
command below.

service httpd restart

How to Upgrade Your ownCloud Server | 487

Upgrade Marketplace Applications

Introduction

To upgrade Marketplace applications, please refer to the documentation below, as
applicable for your ownCloud setup.

Single-Server Environment

To upgrade Marketplace applications when running ownCloud in a single server
environment, you can use use the Market app, specifically by running market:upgrade.
This will install new versions of your installed apps if updates are available in the
marketplace.


The user running the update command, which will likely be your
webserver user, needs write permission for the /apps folder. If they
don’t have write permission, the command may report that the update
was successful, however it may silently fail.

Clustered / Multi-Server Environment

The Market app, both the UI and command line, are not, currently, designed to
operate on clustered installations. Given that, you will have to update the applications
on each server in the cluster individually. There are several ways to do this. But here is
a concise approach:

1. Download the latest server release (whether the tarball or the zip archive).
2. Download your installed apps from the ownCloud marketplace.
3. Combine them together into one installation source, such as a Docker or VM image,

or an Ansible script, etc.
4. Apply the combined upgrade across all the cluster nodes in your ownCloud setup.

Backing up ownCloud

When you backup your ownCloud server, there are four things that you need to copy:

1. Your config/ directory.
2. Your data/ directory.
3. Your ownCloud database.
4. Your custom theme files, if you have any. (See Theming ownCloud)

When you install your ownCloud server from our Open Build Service packages (or
from distro packages, which we do not recommend) do not backup your ownCloud
server files, which are the other files in your owncloud/ directory such as core/,
3rdparty/, apps/, lib/, and all the rest of the ownCloud files. If you restore these files
from backup they may not be in sync with the current package versions, and will fail
the code integrity check. This may also cause other errors, such as white pages.

When you install ownCloud from the source tarballs this will not be an issue, and you
can safely backup your entire ownCloud installation, with the exception of your
ownCloud database. Databases cannot be copied, but you must use the database tools
to make a correct database dump.

To restore your ownCloud installation from backup, see Restoring ownCloud.

488 | Backing up ownCloud

configuration/server/occ_command.pdf#apps-commands
configuration/server/occ_command.pdf#market
https://download.owncloud.org/community/owncloud-10.0.4.tar.bz2
https://download.owncloud.org/community/owncloud-10.0.4.zip
developer_manual:core/theming.pdf
https://download.owncloud.org/download/repositories/stable/owncloud/
maintenance/restore.pdf

Backing Up the config/ and data/ Directories

Simply copy your config/ and data/ folder to a place outside of your ownCloud
environment. This example uses rsync to copy the two directories to /oc-backupdir:

rsync -Aax config data /oc-backupdir/

There are many ways to backup normal files, and you may use whatever method you
are accustomed to.

Backup Database

You can’t just copy a database, but must use the database tools to make a correct
database dump.

MySQL/MariaDB

MySQL or MariaDB, which is a drop-in MySQL replacement, is the recommended
database engine. To backup MySQL/MariaDB:

mysqldump --single-transaction -h [server] -u [username] -p [password] [db_name]
> owncloud-dbbackup_`date +"%Y%m%d"`.bak

Example:

mysqldump --single-transaction -h localhost -u username -p password owncloud >
owncloud-dbbackup_`date +"%Y%m%d"`.bak

SQLite

sqlite3 data/owncloud.db .dump > owncloud-dbbackup_`date +"%Y%m%d"`.bak

PostgreSQL

PGPASSWORD="password" pg_dump [db_name] -h [server] -U [username] -f
owncloud-dbbackup_`date +"%Y%m%d"`.bak

Restoring Files From Backup When Encryption Is Enabled

If you need to restore files from backup, which were backed up when encryption was
enabled, here’s how to do it.


This is not officially supported. ownCloud officially supports either
restoring the full backup or restoring nothing — not restoring
individual parts of it.

• Restore the file from backup.
• Restore the file’s encryption keys from your backup.
• Run occ files:scan, which makes the scanner find it.

Backing up ownCloud | 489



In the DB it will:

• Have the "size" set to the encrypted size, which is wrong (and
bigger);

• The "encrypted" flag will be set to 0

• Retrieve the encrypted flag value
• Update the encrypted flag.


There’s no need to update the encrypted flag for files in either
files_versions or files_trashbin, because these aren’t scanned or found
by occ files:scan.

• Download the file once as the user; the file’s size will be corrected automatically.

This process might not be suitable across all environments. If it’s not suitable for
yours, you might need to run an OCC command that does the scanning.

Retrieve the Encrypted Flag Value

1. In the backup database, retrieve the numeric_id value for the storage where the file
was located from the oc_storages table and store the value for later reference. For
example, if you have the following in your oc_storages table, then numeric_id you
should use is 3, if you need to restore a file for user1.

+--------------------------------+------------+-----------+--------------+
| id | numeric_id | available | last_checked |
+--------------------------------+------------+-----------+--------------+
| home::admin | 1 | 1 | NULL |
| local::/var/www/owncloud/data/ | 2 | 1 | NULL |
| home::user1 | 3 | 1 | NULL |
+--------------------------------+------------+-----------+--------------+

2. In the live database instance, find the fileid of the file to restore by running the
query below, substituting the placeholders for the retrieved values, and store the
value for later reference.

SELECT fileid
FROM oc_filecache
WHERE path = 'path/to/the/file/to/restore'
 AND storage = <numeric_id>

3. Retrieve the backup, which includes the data folder and database.
4. Retrieve the required file from your backup and copy it to the real instance.
5. In the backup database, retrieve the file’s encrypted value, by running the query

below and store the value for later reference. The example query assumes the
storage was the same and the file was in the same location. If not, you will need to
track down where the file was before.

490 | Backing up ownCloud

https://github.com/owncloud/core/wiki/Storage-IDs

SELECT encrypted
FROM oc_filecache
WHERE path = 'path/to/the/file/to/restore'
 AND storage = <numeric_id>

6. Update the live database instance with retrieved information, by running the
following query, substituting the placeholders for the retrieved values:

UPDATE oc_filecache
 SET encrypted = <encrypted>
 WHERE fileid = <fileid>.

Maintenance Mode Configuration

You must put your ownCloud server into maintenance mode before performing
upgrades, and for performing troubleshooting and maintenance. Please see Using the
occ Command to learn how to put your server into the various maintenance modes
(maintenance:mode, maintenance:singleuser, and maintenance:repair) with the occ
command.

maintenance:mode locks the sessions of logged-in users and prevents new logins. This
is the mode to use for upgrades. You must run occ as the HTTP user, like this example
on Ubuntu Linux:

sudo -u www-data php occ maintenance:mode --on

You may also put your server into this mode by editing config/config.php.
Change "maintenance" ⇒ false to "maintenance" ⇒ true:

'maintenance' => true,

Then change it back to false when you are finished.

Data Exporter

Important Information


This app is currently in beta stage, the functionality is officially not
supported.
Please file any issues here.


The app is not available on the marketplace.
To use this app, you must git clone it from the data_exporter repository
and run make all in the apps root directory to install all dependencies.

Description

A set of occ command line tools to export and import users with their shares from one
ownCloud instance in to another. Please see what is exported for export details and

Maintenance Mode Configuration | 491

configuration/server/occ_command.pdf
configuration/server/occ_command.pdf
https://github.com/owncloud/data_exporter/issues
https://github.com/owncloud/data_exporter.git

known limitations for limitation details. Please see the Data Exporter Commands
description for details using the occ commands.


To use data exporter, you must install and enable the data exporter app
on both, the source and the target instance first.

Use Cases

• Manual zero-downtime migration of users and their shares from one instance in to
another.

• Migrate from instances with different storages (POSIX to S3).
• Service GDPR-Requests by providing all files and metadata of a user in a single

package.
• Merge users from different instances.

Usage Example

Export user1 from a source instance to a target instance while preserving all shares
with users on the source instance. For this example, both instances must be able to
reach each other via federation.

 Test if you can create remote-shares before starting this process.

Export the User on the Source Instance

This will create a folder /tmp/export/user1 which contains all the files and metadata of
the user.

sudo -u www-data php occ instance:export:user user1 /tmp/export

Copy the Export to the Target Instance

Copy the created export to the target instance, for example using scp:

scp -rp /tmp/export root@newinstance.com:/tmp/export

Import the User on the Target Instance

This imports the user in to the target instance while converting all his outgoing-shares
to federated shares pointing to the source instance:

sudo -u www-data php occ instance:import:user /tmp/export/user1

Recreate all Shares to Point to the Target Instance

user1 now lives on a target instance, therefore it is necessary to recreate all shares so
that they point to the target instance. To do so run this command on the source
instance:

sudo -u www-data php occ instance:export:migrate:share user1
https://newinstance.com

492 | Data Exporter

configuration/server/occ_command.pdf#data_exporter

Delete the User on the Source Instance

Finally delete user1 on the source instance:

 This can not be undone!


If the user is stored in the ownCloud database, you need to manually
reset his password on the target instance. See known limitations for
further information.

sudo -u www-data php occ user:delete user1

What is Exported

• Files (Local)
• Meta-data (Username, Email, Personal Settings)
• Shares (Local, Link-shares, Group-Shares)
• Versions

Known Limitations

• External storages, comments and tags are not exported
• If a user is stored in the ownCloud database (not-LDAP etc.) the password must be

manually reset by the admin as passwords can not be migrated.
• Versions import in to S3 does not preserve the version timestamp.
• Import alias (import using another username) currently does not work and breaks

share-import.
• Shares import requires federation to be correctly setup between both servers and

share-api to be enabled.
• A share’s state will be always "accepted" regardless of the state in the old server.
• Remote shares from both directions need to be manually accepted.
• Federated shares from other servers are not migrated.
• Password protected link-shares are not imported correctly, user needs to reset the

password.
• Group shares require the group to be present on the target-system or else the

share will be ignored silently.
• If link-shares require a password on the new server but do so on the old the import

process will crash.

As this is an early version some limitations might be fixed in the future while others
can not be circumvented.

How To Manually Move a Data Directory

Introduction

If you need to move your ownCloud data directory from its current location to another
location — without using a symbolic link — this section steps through how to do so.

How To Manually Move a Data Directory | 493

Assumptions

This guide assumes that:

• The current folder is: /var/www/owncloud/data
• The new folder is: /mnt/owncloud/data
• You’re using Apache as your webserver
• The ownCloud database name is owncloud

Please change the paths above to reflect your environment.

Description of Steps

The following steps are necessary to move the data directory.

1. Stop Apache
2. Enable maintenance mode for your instance
3. Use Rsync to sync the files from the current to the new directory
4. Double-check the directory permissions on the new directory
5. Change the ownCloud configuration to point to the new data directory
6. Disable maintenance mode for your instance
7. Restart Apache

Look at each section below for a detailed description.

Apache and Rsync

To save time, here are the commands which you can copy/paste for Apache and rsync:

sudo service apache2 stop

sudo service apache2 start

sudo rsync -avz /var/www/owncloud/data /mnt/owncloud


Check your commands for how to start or stop your webserver if you
are not on Ubuntu/Debian.

Enable and Disable Maintenance Mode

It is necessary to enable maintenance mode to avoid running cron jobs. To enable
maintenance mode, run the following command.

sudo -u www-data php occ maintenance:mode --on

To disable maintenance mode of your instance run the following command:

sudo -u www-data php occ maintenance:mode --off

494 | How To Manually Move a Data Directory

installation/installation_wizard.pdf#post-installation-steps

Fix Hard-coded Database Path Variables

Open a database command line client to enter database commands and activate your
ownCloud database.

use owncloud;

Update the oc_storages Table

Run the SQL below:

UPDATE oc_storages
 SET id='local::/mnt/owncloud/data/'
 WHERE id='local::/var/www/owncloud/data/';

Update the oc_accounts Table

You next need to update the home column in the oc_accounts table. This column
contains the absolute path for user folders, e.g., /mnt/owncloud/data/my_user/files.

If a user does not have the path already set, you have to identify the users id and set
the path with the following command, user by user. This example assumes the user
name is my_user and their id is 1.

Run the SQL below:

UPDATE oc_accounts SET home='/mnt/owncloud/data/my_user/files'
 WHERE id=1;

For all users who already have a path like /var/www/owncloud/data/ in your database,
you can use the REPLACE command:

UPDATE oc_accounts
 SET home = REPLACE(
 home,
 '/var/www/owncloud/data/',
 '/mnt/owncloud/data/'
);

For more information follow the complete MySQL REPLACE command syntax.


Please don’t copy and paste this example verbatim — nor any of the
others. They are examples only.

Update the oc_jobs Table

The next area to check is the oc_jobs table. The logrotate process may have hard-
coded a non-standard (or old) value for the data path. To check it, run the SQL below
and see if any results are returned:

How To Manually Move a Data Directory | 495

http://www.mysqltutorial.org/mysql-string-replace-function.aspx

SELECT * FROM oc_jobs
 WHERE class = 'OC\Log\Rotate';

If results are returned, run the SQL below to update them, changing the id value as
appropriate.

UPDATE oc_jobs
 SET argument = REPLACE(
 argument,
 '\\/var\\/www\\/owncloud\\/data\\/',
 '\\/mnt\\/owncloud/data\\/'
)
 WHERE id = <id of the incorrect record>;


The old data path will be written with \/. Therefore you must add one,
additional, backslash, like this: \\/.

Fix the Application Settings

Individual apps may reference the data directory separately from the core system
configuration. For those apps, you have to change the configured path. Run the
following command to list app configs.

sudo -u www-data php occ config:list

Here is an example of the output which you may see:

{
 "apps": {
 "fictitious": {
 "enabled": "yes",
 "installed_version": "2.3.2",
 "types": "filesystem",
 "datadir": "/var/www/owncloud/data"
 }
 }
}

In the example above, the app "fictitious" sets the data directory to
/var/www/owncloud/data. Change this value by using the following command:

sudo -u www-data php occ config:app:set --value /mnt/owncloud/data fictitious
datadir


You have to repeat this for all apps found defining the data directory as
key.

496 | How To Manually Move a Data Directory

Fix the config.php Settings

To fix the config.php settings:

1. Change the datadirectory key in your config.php to the new path. To do so, start an
editor of your choice and open /var/www/owncloud/config/config.php

2. Change the value of the key from 'datadirectory' ⇒ '/var/www/owncloud/data', to
'datadirectory' ⇒ '/mnt/owncloud/data',.

Encryption

In this section you will find all the details you need to maintain encryption in
ownCloud.

Migrating User Key Encryption to Master Key Encryption

Introduction

Why should you move away from User Key-based encryption?

While it is a bit more secure than a central encryption approach, User key-based
encryption has some disadvantages. It blocks some additional functions such as the
integration of an online editor like LibreOffice or OnlyOffice into ownCloud and can
cause problems when sharing files with groups. See Limitations of User-Key Based
Encryption for more details. Therefore Master-key-based encryption is now the
recommended setup for all new installations.


User key-based encryption is planned to be removed from ownCloud in
the near future. As an existing customer, you will be able to continue to
use this solution as long as ownCloud 10.x is supported.

Pre-Conditions

The decryption workflow described here will only work with the following pre-
conditions:

• The admin recovery key password is activated and available to the ownCloud
administrator

• Users have opted-in to enable the admin recovery key password
• The recovery key password has been supplied by the admin on the users page

Please see How To Enable Users File Recovery Keys for more details.


A notification to the users (e.g. through the announcement app) prior to
the migration process is recommended, as the instance will not be
available during this task.

Steps to Migrate from User Key-based to Master Key-based Encryption

There are several steps you need to follow to ensure a smooth and complete transition:

1. Disable User Key-based encryption
2. Remove the encryption records from the ownCloud database
3. Remove the files_encryption directory
4. Encrypt the filesystem using Master Key-based encryption

Encryption | 497

configuration/files/encryption/encryption_configuration.pdf#limitations-of-user-key-based-encryption
configuration/files/encryption/encryption_configuration.pdf#limitations-of-user-key-based-encryption
configuration/files/encryption/encryption_configuration.pdf#how-to-enable-users-file-recovery-keys
https://marketplace.owncloud.com/apps/announcementcenter

Disable User Key-based Encryption

The first part of the migration process is to decrypt all files and to disable encryption
in ownCloud, which requires three commands to be executed. These commands are:

1. occ encryption:decrypt-all,
2. occ encryption:disable and
3. occ app:disable.

You can see an example of calling the commands listed below, configured to require no
user interaction.

sudo -u www-data php occ encryption:decrypt-all --continue=yes && \
 sudo -u www-data php occ encryption:disable --no-interaction && \
 sudo -u www-data php occ app:disable --no-interaction encryption


The decryption of the files by the ownCloud administrator requires the
current passwords of all users! This only works when users have
enabled password recovery and if an admin recovery password is
available.

Remove the Encryption Records from the ownCloud Database

Once your ownCloud files are unencrypted, and encryption has been disabled, you
need to remove the encryption records from the database. There is, currently, no occ
command to handle this, so it has to be done manually. Specifically, you need to
remove all records from the oc_appconfig table where the appid column is set to
encryption.

In the examples below, you can see how to do this using MySQL. If you are not using
MySQL, please use the commands specific to your database vendor.

SELECT * FROM `oc_appconfig` WHERE `appid` LIKE 'encryption'

Remove the files_encryption Directory

With the database updated, next, the files_encryption directory needs to be removed.
Below is an example of how to do so, to save you time.

cd <your owncloud root directory>
find ./data* -name files_encryption -exec rm -rvf {} \;

Encrypt the Filesystem Using Master Key-based Encryption

Now, your ownCloud files can be encrypted using Master Key-based encryption. This
requires the following steps:

1. The encryption app needs to be enabled
2. Encryption needs to be enabled
3. The encryption type needs to be set to Master Key
4. Re-encryption of the ownCloud filesystem.

The following example shows how to do this on the command line.

498 | Encryption

configuration/server/occ_command.pdf#encryption
configuration/server/occ_command.pdf#encryption
:configuration/server/occ_command.pdf#apps-commands

sudo -u www-data php occ app:enable encryption && \
 sudo -u www-data php occ encryption:enable && \
 sudo -u www-data php occ encryption:select-encryption-type masterkey -y && \
 sudo -u www-data php occ encryption:encrypt-all --yes

Verify the Encrypted Files

With the files encrypted using Master Key-based encryption, you should now verify
that everything worked properly. To do so, run a SELECT query in your database which
returns all files from the oc_appconfig table where the appid column is set to
encryption. You should see a number of records, as in the output of the example below.

select * from `oc_appconfig` where appid='encryption';
encryption|recoveryKeyId|recoveryKey_73facda6
encryption|publicShareKeyId|pubShare_73facda6
encryption|masterKeyId|master_73facda6
encryption|installed_version|1.3.1
encryption|types|filesystem
encryption|enabled|yes
encryption|useMasterKey|1

Disable Single User Mode

With encryption migrated from User Key-based encryption to Master Key-based,
disable single user mode, if you enabled it before beginning the migration.

sudo -u www-data php occ maintenance:singleuser --off

Post Note


It is possible, that after migration, some or all users see a re-
synchronisation of their data from the server to the desktop client -
especially for shared folders.

Migrating to a Different Server

Introduction

If the need arises, ownCloud can be migrated to a different server. A typical use case
would be a hardware change or a migration from the Enterprise appliance to a
physical server. All migrations have to be performed with ownCloud in maintenance
mode. Online migration is supported by ownCloud only when implementing industry-
standard clustering and high-availability solutions before ownCloud is installed for the
first time.

To start, let’s work through a potential use case. A configured ownCloud instance runs
reliably on one machine, but for some reason the instance needs to be moved to a new
machine. Depending on the size of the ownCloud instance the migration might take
several hours.

For the purpose of this use case, it is assumed that:

Migrating to a Different Server | 499

configuration/server/occ_command.pdf#maintenance-commands
appliance/index.pdf

1. The end users reach the ownCloud instance via a virtual hostname (such as a DNS
CNAME record) which can be pointed at the new location.

2. The authentication method (e.g., LDAP) remains the same after the migration.



During the migration, do not make any changes to the original system,
except for putting it into maintenance mode. This ensures, should
anything unforeseen happen, that you can go back to your existing
installation and resume availability of your installation while debugging
the problem.

How to Migrate

Firstly, set up the new machine with your desired Linux distribution. At this point you
can either install ownCloud manually via the compressed archive, or with your Linux
package manager.

Then, on the original machine turn on maintenance mode and then stop ownCloud.
After waiting 6 - 7 minutes for all sync clients to register that the server is in
maintenance mode, stop the web server that is serving ownCloud.

After that, create a database dump from the database, copy it to the new machine, and
import it into the new database. Then, copy only your data, configuration, and
database files from your original ownCloud instance to the new machine.


You must keep the data/ directory’s original file path during the
migration. However, you can change it before you begin the migration,
or after the migration’s completed.

The data files should keep their original timestamp otherwise the clients will re-
download all the files after the migration. This step might take several hours,
depending on your installation. This can be done on a number of sync clients, such as
by using rsync with -t option

With ownCloud still in maintenance mode and before changing the DNS CNAME
record, start up the database and web server on the new machine. Then point your
web browser to the migrated ownCloud instance and confirm that:

1. You see the maintenance mode notice
2. That a log file entry is written by both the web server and ownCloud
3. That no error messages occur.

If all of these things occur, then take ownCloud out of maintenance mode and repeat.
After doing this, log in as an admin and confirm that ownCloud functions as normal.

At this point, change the DNS CNAME entry to point your users to the new location.
And with the CNAME entry updated, you now need to update the trusted domains.

Managing Trusted Domains

All URLs used to access your ownCloud server must be white-listed in your config.php
file, under the trusted_domains setting. Users are allowed to log into ownCloud only
when they point their browsers to a URL that is listed in the trusted_domains setting.


This setting is important when changing or moving to a new domain
name. You may use IP addresses and domain names.

A typical configuration looks like this:

500 | Migrating to a Different Server

installation/manual_installation.pdf
installation/linux_installation.pdf
installation/linux_installation.pdf
maintenance/backup.pdf
maintenance/restore.pdf
maintenance/manually-moving-data-folders.pdf

'trusted_domains' => [
 0 => 'localhost',
 1 => 'server1.example.com',
 2 => '192.168.1.50',
],

The loopback address, 127.0.0.1, is automatically white-listed, so as long as you have
access to the physical server you can always log in. In the event that a load-balancer is
in place, there will be no issues as long as it sends the correct X-Forwarded-Host
header.

Example Migration

The following is an example migration with assumptions to make this migration work:

• Ubuntu 16.04+
• SSH with PermitRootLogin set to yes
• Database used is MySQL / MariaDB

Preparation

If not already available on the new server, make sure SSH is installed:

sudo apt install ssh -y

Next, edit ssh-config and enable root ssh login.

nano /etc/ssh/sshd_config
PermitRootLogin yes

And then restart SSH.

sudo service ssh restart

Lastly, install ownCloud on the new server.

Migration

Enable Maintenance Mode

The first step is to enable maintenance mode. To do that, use the following commands:

cd /var/www/owncloud/
sudo -u www-data php occ maintenance:mode --on

After that’s done, then wait a few minutes and stop your web server, in this case
Apache:

Migrating to a Different Server | 501

sudo service apache2 stop

Transfer the Database

Now, you have to transfer the database from the old server to the new one. To do that,
first backup the database.

cd /var/www/owncloud/
mysqldump --single-transaction -h localhost \
 -u admin -ppassword owncloud > owncloud-dbbackup.bak

Then, export the database to the new server.

rsync -v owncloud-dbbackup.bak root@new_server_address:/var/www/owncloud

With that completed, import the database on new server.

mysql -h localhost -u admin -ppassword owncloud < owncloud-dbbackup.bak


You can find the values for the mysqldump command in your
config.php, in your owncloud root directory. [server]= dbhost,
[username]= dbuser, [password]= dbpassword, and [db_name]=
dbname.



For InnoDB tables only
The –single-transaction flag will start a transaction before running.
Rather than lock the entire database, this will let mysqldump read the
database in the current state at the time of the transaction, making for
a consistent data dump.



For Mixed MyISAM / InnoDB tables
Either dumping your MyISAM tables separately from InnoDB tables or
use –lock-tables instead of –single-transaction to guarantee the
database is in a consistent state when using mysqldump.

Transfer Data and Configure the New Server

The following ownCloud directories will be synced to the target instance: apps, config
and data.

rsync -avt apps config data root@new_server_address:/var/www/owncloud


If you have an additional apps directory like apps-external, this
directory needs to be added to the sync list above.


If you want to move your data directory to another location on the
target server, it is advised to do this as a second step. Please see the
data directory migration document for more details.

502 | Migrating to a Different Server

maintenance/manually-moving-data-folders.pdf
maintenance/manually-moving-data-folders.pdf

Finish the Migration

Now it’s time to finish the migration. To do that, on the new server, first verify that
ownCloud is in maintenance mode.

sudo -u www-data php occ maintenance:mode

Next, start up the database and web server on the new machine.

sudo service mysql start
sudo service apache2 start

With that done, point your web browser to the migrated ownCloud instance, and
confirm that you see the maintenance mode notice, and that no error messages occur.
If both of these occur, take ownCloud out of maintenance mode.

sudo -u www-data php occ maintenance:mode --off

And finally, log in as admin and confirm normal function of ownCloud. If you have a
domain name, and you want an SSL certificate, we recommend certbot.

Reverse the Changes to ssh-config

Now you need to reverse the change to ssh-config. Specifically, set PermitRootLogin to
no and restart ssh. To do that, run the following command:

 This is a security measure and improves SSH security.

sudo service ssh restart

Update DNS and Trusted Domains

Finally, update the DNS’ CNAME entry to point to your new server. If you have not only
migrated physically from server to server but have also changed your ownCloud
server’s domain name, you also need to update the domain in the Trusted Domain
setting in config.php, on the target server.

Restoring ownCloud

Introduction

When you install ownCloud from packages, follow these steps to restore your
ownCloud installation. Start with a fresh ownCloud package installation in a new,
empty directory. Then restore these items from your backup (see backup):

1. Your config/ directory.
2. Your data/ directory.
3. Your ownCloud database.
4. Your custom theme files, if you have any. (See Theming ownCloud)

When you install ownCloud from the source tarballs you may safely restore your entire
ownCloud installation from backup, with the exception of your ownCloud database.

Restoring ownCloud | 503

https://certbot.eff.org/
developer_manual:core/theming.pdf

Databases cannot be copied, but you must use the database tools to make a correct
restoration.

When you have completed your restoration, see Set Strong Directory Permissions.

Restore Directories

Simply copy your configuration and data folder to your ownCloud environment. You
could use this command, which restores the backup example in backup:

sudo rsync -Aax config data /var/www/owncloud/

There are many ways to restore normal files from backups, and you may use whatever
method you are accustomed to.

Restore Database


This guide assumes that your previous backup is called owncloud-
dbbackup.bak.

MySQL

MySQL is the recommended database engine. To restore MySQL:

sudo -u www-data php occ maintenance:mode --on
sudo mysql -h [server] -u [username] -p[password] [db_name] < owncloud-
dbbackup.bak
sudo -u www-data php occ maintenance:data-fingerprint
sudo -u www-data php occ maintenance:mode --off

SQLite

sudo rm data/owncloud.db
sudo sqlite3 data/owncloud.db < owncloud-dbbackup.bak

PostgreSQL

PGPASSWORD="password" pg_restore -c -d owncloud -h [server] -U [username]
owncloud-dbbackup.bak

504 | Restoring ownCloud

installation/manual_installation.pdf#set-strong-directory-permissions

What is the Appliance?
If you don’t know a lot about Linux, only have a small IT staff, or are your IT staff
— even if that’s only in your spare time — the ownCloud X Appliance will let you get
started using ownCloud quickly and easily.

The Appliance:

• Provides a pre-packaged, easy to deploy ownCloud, ready for you in most popular
virtual machine formats, including ESX, VirtualBox, KVM and VMware.

• Contains the ownCloud 10 virtual image, and all the additional software you need
to get up and running on ownCloud in minutes; this includes: ownCloud X Server
and Enterprise Apps, Apache 2, PHP, and MySQL.

• Scales up to 500 users. Depending on the intensity and pattern of use, this can vary
from 400 up to 600 users.

Some configurations, such as SAML IDPs, or LDAP or AD instances, may need
additional configuration to connect.

How to Install the Appliance

Introduction

The installation process is a little involved, but not too much. To keep it succinct, you
need to:

• Download and Launch the appliance
• Step through the configuration wizard
• Activate the configured appliance
• After that, you can access the running instance of ownCloud and further configure

it to suit your needs.


It’s recommended to setup the appliance with a working DHCP Server
and access to the internet.

The appliance has to be activated with a license that you will receive from Univention
via email. This license has to be imported into the appliance via the web interface.

Download the Appliance

First off, you need to download the ownCloud X Appliance from the ownCloud
download page and click [DOWNLOAD NOW]. This will display a form, which you can see
a sample of below, which you’ll need to fill out. It will ask you for the following details:

• Email address
• Download version (ESXi, VirtualBox, VMware, KVM)
• Your first, last, and company names, and your country of origin

How to Install the Appliance | 505

https://owncloud.com/download
https://owncloud.com/download

After you’ve filled out the form, click [DOWNLOAD OWNCLOUD] to begin the download of
the virtual appliance.

The virtual appliance files are around 1.4GB in size, so may take some time, depending
on your network bandwidth.

You can also download it from the owncloud.org page.

Launch the Appliance

Once you’ve downloaded the virtual appliance file, import it into your virtualization
software, accept the T’s & C’s of the license agreement, and launch it. The example
below shows this being done using VirtualBox.

If you try to install an ownCloud appliance in your domain after removing an existing
one, please remember to remove the original one from you DNS configuration.

Don’t Forget the IP Address and the Administrator Password. You will need them to

506 | How to Install the Appliance

https://owncloud.org/download/#owncloud-server-appliance

use the Appliance.

Configuration wizard

Once imported, start the appliance. Doing so launches the installer wizard which helps
you specify the core configuration.

Follow this screenshot guide to securely and easily configure your appliance.

Here, you can choose your language. Currently there are 2 options: English and
German. You can set your city, which will then automatically set the localization
settings in the next screen.

How to Install the Appliance | 507

Here, you can set your default language, time zone and keyboard layout. This will
be set automatically if you enter your City in the previous screen.

508 | How to Install the Appliance

Here, you will see the automatically obtained network configuration if you have a
DHCP server in your network. If not - you will have to set this yourself. You can also
enter a alternate DNS server if you need one.

This is an important setting. Choose the default option if you don’t have deep
knowledge about Microsoft Active directory and the univention system.

How to Install the Appliance | 509

The second important setting during this setup: the Administrator password. You
will need this to log in to your appliance and administer it. Please write this
password down. Setting your email address here is optional, since you can set it later
on.

510 | How to Install the Appliance

Here, you can set or change the FQDN to your custom address.

Here, you get a finalized confirmation screen of what you have entered / set and you

How to Install the Appliance | 511

can finish the process. Note that if you let the check box to update your system in - the
installation will take considerably longer. Keep his in mind. You can apply the
updates later on if you choose to skip it during the installation.

Wait until the setup is finished.

512 | How to Install the Appliance

When the installation is complete, you will see this screen informing you that the
installation was successful.

How to Install the Appliance | 513

The VM will show you this screen, showing the ip address you have to navigate to in
order to activate your appliance

Enter your email-address to receive a license to activate your Appliance. Without
activation you can not login in to the appliance.

You will receive the email shortly. Download the license and import it in to the
appliance.

514 | How to Install the Appliance

Once activated, you will see this screen, informing you that the appliance was
successfully activated.

Administer the Appliance

Once activated, you should be redirected to the portal, which you can see below.

If you want to create new users and groups, or download apps from the Univention
appcenter click on the [System and domain settings]. Login as the "
Administrator" using the password that you supplied during the configuration wizard
earlier.

How to Install the Appliance | 515

If you are not redirected to the appliance login page, you can open it using the
following url: https://<ip address of the virtual machine>/univention-management-
console.

After you’ve done so, you will now be at the Univention management console, which
you can see below.

The management console allows you to manage the virtual appliance (1), covering
such areas as: users, devices, domains, and software. You will also be able to access
the ownCloud web interface (2).

The default username for the ownCloud is: owncloud and so is the password. The

516 | How to Install the Appliance

password is not the password you supplied during the configuration wizard.

For security reasons rpcbind should be disabled in the appliance. An open, from the
internet accessable portmapper service like rpcbind can be used by an attacker to
perform DDoS-Reflection-Attacks. Furthermore, the attacker can obtain information
about your system, for example running rpc-services, or existing network shares. The
German IT security agency "BSI" reported, that systems with an open rpcbind service
were used to perform DDoS-Reflection-Attacks against other systems.


If you want to create NFS shares on the appliance and give someone
permission to access them, then you can enable rpcbind again.

Active Directory Integration

In case you have tested the appliance with your Active Directory environment,
removed the appliance and now want to include it again - you might run into some
issues.

The solution is to clean up the previous DNS entries in your Domain Controller. After
that, you should be able to include the appliance again in your Active Directory
environment.

Appliance Configuration

In this section you will find all the details you need to configure the ownCloud
appliance..

Login Information and Custom Paths

Welcome to the ownCloud Appliance. Here are the login credentials.

username: owncloud
password: owncloud

Login to the Appliance via command line or SSH with the root account.

username: root
password: <Administrator password>

Login into the ownCloud docker container with this Univention command:

univention-app shell owncloud

Set ownCloud as the default page instead of the Univention Portal

ucr set apache2/startsite=/owncloud
service apache2 restart

ownCloud’s data directory is under the following path:

Appliance Configuration | 517

/var/lib/univention-appcenter/apps/owncloud/data

ownCloud’s config directory, containing config.php:

/var/lib/univention-appcenter/apps/owncloud/conf

File extension blacklist for the Ransomware app:

/var/lib/univention-
appcenter/apps/owncloud/data/custom/ransomware_protection/blacklist.txt.dist

App Settings

Configurable Options

You can configure certain the ownCloud app in the Univention Portal:

• Enterprise License Key
• Marketplace API Key
• Language
• ownCloud Domain
• ownCloud SubURL
• Log Level
• Password Reset

Access the settings:

Here is how you can access these settings:

1. Go to the Portal Page of your Appliance and select System Settings.

518 | Appliance Configuration

2. Login as the Appliance Administrator.

3. Go to Installed Applications and select ownCloud.

Appliance Configuration | 519

4. Go in to App Settings.

5. After changing these Settings, don’t forget to save them.

520 | Appliance Configuration

How to add certificates

If you want to use your own SSL certificates for the appliance, you have to follow these
three steps:

1. Create the certificates and deposit them on your appliance.
2. Connect to your appliance either directly on the command line of your virtual

machine or via ssh connection to your appliance.
3. Execute the following commands:

ucr set apache2/ssl/certificate="/etc/myssl/cert.pem"
ucr set apache2/ssl/key="/etc/myssl/private.key"

Remember to adjust the path and filename to match your certificate.

Once you’ve completed these steps, restart Apache using the following command:

sudo service apache2 restart

Now your certificates will be used to access your appliance. If you want to limit the
access to your server exclusively to HTTPS, use this command:

sudo ucr set apache2/force_https=yes

For further information please visit our partner site at Univention.

Firewall Protected Environment

If you are considering setting up the appliance in an environment with a firewall,
please create rules that permit access to the following hosts. If your DNS is not

Appliance Configuration | 521

https://help.univention.com/t/using-your-own-ssl-certificates/38

working, you can use the IP addresses instead. If you are using Google as your DNS
server (IP=8.8.8.8), you have to permit access to it too.

Firewall Rules:

• 176.9.114.147
• 5.9.68.237
• 8.8.8.8
• docker.software-univention.de
• marketplace.owncloud.com
• owncloud.com
• owncloud.org
• software-univention.de

Adding Users and Groups in UCS for ownCloud

Introduction

If you want to add users and groups to your ownCloud installation via the UCS
(Univention Corporate Server) UI, here’s a concise guide showing how.

Login to the Univention Management Console

After logging in to the Univention server, under "Administration", click the first
option, labeled [System and domain settings].

This takes you to the Univention Management Console.

522 | Appliance Configuration

Create the User

Once there, click [Users].

In the screen that appears, add a new user by clicking [ADD] in the top left-hand
corner of the users table.

This opens up a new user dialog, where you can supply the relevant details for the new
user. Enter a username and optionally a first name, last name, and a title. Then click
[NEXT].

Appliance Configuration | 523

In the next dialog that appears, enter and confirm the password. You can, optionally,
choose some further options, if desired. Then click [CREATE USER].

The new user will have been created, so click the [CLOSE] button, in the top right-
hand corner, to go back to "Favorites".

524 | Appliance Configuration

Create the Group

Now it’s time to create a new group. Click [Groups], which is located between
"Computers" and "Software Update".

From there, click [ADD], located on the left-hand side of the groups table.

In the next dialog that appears, first enter the name of the group and optionally a
description. Then, under "Members of this group", click [ADD].

Appliance Configuration | 525

This opens up an "Add objects" (or "Add new group") dialog. Find the user, in the
list at the bottom, that you want to add to the group, check the checkbox next to their
name, and click [ADD].

After that, click on [ownCloud] in the left-hand side navigation, and check the option
[ownCloud enabled]. And lastly, click [CREATE GROUP].

526 | Appliance Configuration

With that done, the new user and group are now available in your ownCloud
installation.

Depending on your installation, you will either see these changes immediately or you
will have to wait for the user sync to be done. This happens ever 10 minutes by
default.

The ownCloud X Appliance Enterprise Trial

The appliance contains the community edition of ownCloud but can be easily upgraded
to the enterprise edition. This upgrade gives you access to a free, 30-day trial of the
enterprise edition and all it’s features. All you need is an email address to get started.
Here are the necessary steps:

• Visit https://marketplace.owncloud.com/enterprise-trial
• Enter your email address and chose a password
• Click on "Complete Process"
• Check your email and activate your account
• Log in with your credentials at https://marketplace.owncloud.com
• Copy the API key

Now you have to go to your ownCloud installation and enable the Market app

• To enable enterprise features Select "Add API Key" and paste your key
• Start the Enterprise trial


If you don’t see the button to install the "Enterprise App Bundle" select
"Clear cache" and refresh the page.

Now you have access to the full ownCloud enterprise experience.

Working on Documents in the ownCloud Appliance

Introduction

Creating and editing documents in ownCloud can be achieved with either Collabora or
OnlyOffice. It’s your choice which one you prefer to use.

This guide covers the setup and update of the two office apps.


It is required to open the site with https and the fully qualified domain
name. Add the IP address and the domain name of your appliance to
your /etc/hosts file, or have it added to your existing DNS server, if you
don’t want to use the Appliance as your DNS server.

Appliance Configuration | 527

https://marketplace.owncloud.com/enterprise-trial
https://marketplace.owncloud.com

Appcenter

First you have to get to the Appcenter. Here are the steps to do that:

1. Connect to your appliance using the IP address or domain name.

https://172.16.40.100
or
https://ucs-2341.CompanyName.com

• Login into the management console
◦ Click on the [Domain and System] settings

• Type in the Administrator as username and the password you set.

528 | Appliance Configuration

• Now you can access the Appcenter".

From here on it’s your choice to install Collabora or OnlyOffice.

Appliance Configuration | 529

How to Install Collabora

• Install Collabora in UCS.

530 | Appliance Configuration

Appliance Configuration | 531

• Enable Collabora in ownCloud.

532 | Appliance Configuration

Appliance Configuration | 533

Username and Password are owncloud

534 | Appliance Configuration

Appliance Configuration | 535

536 | Appliance Configuration

Now you can use Collabora within ownCloud. Start by creating a new Document.

Appliance Configuration | 537

How to Install OnlyOffice

• Search for "OnlyOffice" or select it from the application list in the Appcenter.

• Install OnlyOffice.

538 | Appliance Configuration

Appliance Configuration | 539

After the installation is complete, return to the Appcenter overview

• Install the ownCloud OnlyOffice connector App
◦ Go to ownCloud

540 | Appliance Configuration

Appliance Configuration | 541

Username and Password are owncloud

• Market

542 | Appliance Configuration

• Tools

• Install OnlyOffice

Appliance Configuration | 543

• Go to the OnlyOffice settings inside ownCloud.

544 | Appliance Configuration

Appliance Configuration | 545

• Enter the OnlyOffice server address in the following format and save it:

https://<your-domain-name>/onlyoffice-documentserver/

546 | Appliance Configuration

• Now you can create a new document by clicking on the [Plus] button.

Appliance Configuration | 547

PDF documents can also be viewed in OnlyOffice

548 | Appliance Configuration

Updating

When a new App release is available you should update the Office App. Here are the
required steps:

• Select Software update
• Check if an Update is available
• Select on the App name
• Upgrade the App

ONLYOFFICE Enterprise Edition

If you purchased the ONLYOFFICE Enterprise Edition and received the license.lic file,
you need to import it:

/var/lib/univention-appcenter/apps/onlyoffice-ie/Data/license.lic

Now your ONLYOFFICE instance is registered and you have access to the enterprise
features.

Additional information can be found in the ONLYOFFICE Documentation

Troubleshooting

If you are not able to open documents: Check the defined Collabora Online Server in
your ownCloud settings by navigating to (Settings > Admin > Additional > Collabora-
Online) and make sure that the server address is configured correctly. It should be
configured with the domain name of your appliance. If you find localhost:port being
configured, remove it and replace it with the domain name of your appliance without
any port.

WND in the Appliance

Introduction

Here are the steps to configure WND in the Appliance.


Windows Network Drive is avaialbe only in the Enterprise Editon of
ownCloud.

 You will need both of the following described steps for each share.


The steps need to be done in / on the docker host (appliance virtual
machine) and not inside the docker container

WND Listener

Create a service following the instructions below that checks the share for changes:

• For each WND mount point distinguished by a SERVER - SHARE pair,
◦ place one copy of a file with following content under

/etc/systemd/system/owncloud-wnd-listen-SERVER-SHARE.service
◦ replacing the all upper case words SERVER, SHARE, USER and PASSWORD
◦ in both, the filename and in the contents below with their respective values.

Take care to also adjust the paths in WorkingDirectory and ExecStart according

Appliance Configuration | 549

https://helpcenter.onlyoffice.com/installation/docs-enterprise-activation.aspx

to your installation.

[Unit]
Description=ownCloud WND Listener for SERVER SHARE
After=docker.service
Requires=docker.service
[Service]
User=root
Group=root
WorkingDirectory=/root
ExecStart=/usr/bin/univention-app shell owncloud occ wnd:listen -vvv SERVER
SHARE USER PASSWORD
Type=simple
StandardOutput=journal
StandardError=journal
SyslogIdentifier=%n
KillMode=process
RestartSec=1
Restart=always
[Install]
WantedBy=multi-user.target

• Run once for each created file the following commands:

sudo systemctl enable owncloud-wnd-listen-SERVER-SHARE.service
sudo systemctl start owncloud-wnd-listen-SERVER-SHARE.service

WND Process Queue

Create or add a crontab file in /etc/cron.d/oc-wnd-process-queue.

• Make a crontab entry to run a script iterating over all SERVER SHARE pairs with an
appropriate occ wnd:process-queue command. The commands must be strictly
sequential. This can be done by using flock -n and tuning the -c parameter of occ
wnd:process-queue

0 */15 * * * root /usr/bin/univention-app shell owncloud occ wnd:process-queue
-vvv SERVER SHARE

Further Reading

Please see also:

• The ownCloud forum and the
• Windows Network Drive Configuration documentation.

Install Antivirus Software in the ownCloud Appliance

550 | Appliance Configuration

https://central.owncloud.org/t/wnd-listener-configuration/3114
enterprise/external_storage/windows-network-drive_configuration.pdf#wnd-listen

Introduction

This guide details how to enable a virus scanner in the ownCloud Appliance.

Install ClamAV and Related Components

First, start the appliance and go to "System and domain settings".

When there, log in with the administrator account. After you have done that, click
[Software] and open "Package Management", as in the screenshot below.

Appliance Configuration | 551

From there, you first need to install ClamAV. To do this, in the third field, next to the
one containing the text "Package name", type in the phrase: "clamav" (1). Doing so
filters the list of packages to only those matching that phrase. In the filtered list of
packages, check the checkboxes next to "clamav" (2), "clamav-freshclam", and
"clamav-daemon".

After doing that, click [INSTALL] (3) above the listed packages, next to "SHOW
DETAILS'".

After you do so, a confirmation dialog appears, as in the screenshot below, asking for
confirmation to install the packages. Confirm the choice by again clicking [INSTALL].

The installation should only take a few minutes.

552 | Appliance Configuration

Configure ownCloud to Use ClamAV

Start the ClamAV service:

systemctl enable clamav-daemon.service
systemctl start clamav-daemon.service

Next you need to configure ClamAV in your ownCloud instance. Please refer to the
ClamAV documentation for instructions on how to do that.

Troubleshooting

"" If you try to update the ClamAV virus database manually, by entering freshclam, and
see the error below, it means that freshclam is already updating the database. ""

ERROR: /var/log/clamav/freshclam.log is locked by another process
ERROR: Problem with internal logger (UpdateLogFile =
/var/log/clamav/freshclam.log).

Updates are run based on the configured time interval in the applicable Cron job. In
the example below, the update would run every 47 minutes:

m h dom mon dow command
47 * * * * /usr/bin/freshclam --quiet

If there are errors running the freshclam process, check if a process is blocking the
log file, by running the following command:

lsof /var/log/clamav/freshclam.log

If you want to refresh the ClamAV database manually, follow these steps:

Gently end the freshclam process with this command:
sudo pkill -15 -x freshclam

Start the refresh process again with this command:
sudo freshclam


When the app is enabled — but is not configured or has an incorrect
configuration — it will reject all uploads for the entire instance. To
avoid this situation, make sure the ClamAV service is running and you
have the execution mode correctly configured in ownCloud.

Configure index.php-less URLs

Introduction

If you want URLs without the trailing "index.php", e.g., https://example.com/apps/files/
instead of https://example.com/index.php/apps/files/, you can enable it by following
these steps:

Appliance Configuration | 553

configuration/server/virus-scanner-support.pdf#configuring-the-clamav-antivirus-scanner
configuration/server/virus-scanner-support.pdf#configuring-the-clamav-antivirus-scanner
https://linux.die.net/man/1/freshclam

Prerequisites:

Log in to the Docker container running ownCloud, and execute the following command
on the host system of the appliance:

univention-app shell owncloud

Your web server needs to have the following modules enabled: mod_rewrite and
mod_env. If you have not yet enabled these modules, or are not sure if you have,
execute these commands:

a2enmod env rewrite

You need an owncloud.conf in your /etc/apache2/sites-available/ directory.

Open /etc/apache2/sites-available/owncloud.conf in nano, Vim, or your editor of choice,
and paste the following:

Alias /owncloud "/var/www/owncloud/"

<Directory /var/www/owncloud/>
 Options +FollowSymlinks
 AllowOverride All

 <IfModule mod_dav.c>
 Dav off
 </IfModule>

 SetEnv HOME /var/www/owncloud
 SetEnv HTTP_HOME /var/www/owncloud

</Directory>

Then create a symlink to /etc/apache2/sites-enabled, as follows:

ln -s /etc/apache2/sites-available/owncloud.conf /etc/apache2/sites-
enabled/owncloud.conf

Enable index.php-less URLs

Adjust your config.php to look like the following:

'overwrite.cli.url' => 'https://example.com/owncloud',
'htaccess.RewriteBase' => '/owncloud',

Execute the command command:

occ maintenance:update:htaccess

554 | Appliance Configuration

Restart or reload your Apache server, by running the following command:

service apache2 reload

Now you should have index.php-less URLs.

Appliance Maintenance

In this section you will find all the details you need to maintain the ownCloud
appliance..

Backup

If you remove the ownCloud app or update it - a backup is created automatically.

The backup remains on the host system and can be restored.

It is stored in :

/var/lib/univention-appcenter/backups/

The file name is :

appcenter-backup-owncloud:date

In it, you find your data and conf folders.

Your database backup is in :

/var/lib/univention-appcenter/backups/data/backups

How to Update ownCloud

Introduction

This page shows how to update an ownCloud installation hosted on an ownCloud X
Appliance:

 Do not use ownCloud’s built in Web Updater!

Use the Univention Management Console

Using the Univention Management Console, there are two paths to upgrade an
existing ownCloud installation:

• In-place Upgrade (for 10.0 users)
• Uninstall the Existing Version and Install the New Version (for 9.1 users)

In-place Upgrade (for 10.0 users)

To perform an in-place upgrade, after logging in to the Univention server, under
"Administration", click the first option labeled [System and domain settings]. This

Appliance Maintenance | 555

in-place-upgrade-for-10.0-users
uninstall-the-existing-version-and-install-the-new-version-for-9.1-users

takes you to the Univention Management Console. From there, click the [Software]
shortcut (1), and then click [Software update] (2).

This will load the Software update management panel, after a short time scanning for
available updates. If an update is available, under "App Center updates" you will see
"There are App Center updates available". If one is, as in the image below, click
[ownCloud] which takes you to the ownCloud application.

When there, part-way down the page you’ll see the "Manage local installation"
section. Under there, click [UPGRADE].

Before the upgrade starts, a prompt appears titled "App Installation notes". This is
nothing to be concerned about. So check the checkbox [Do not show this message

556 | Appliance Maintenance

again]. Then click [CONTINUE].

Next an upgrade confirmation page appears. To accept the confirmation, click
[UPGRADE] on the far right-hand side of the confirmation page.

This launches the upgrade process, which requires no manual intervention. When the
upgrade completes, the ownCloud app page will be visible again, but without the
[UPGRADE] button. Now, login to ownCloud by clicking the [OPEN] button, on the far
right-hand side of the page.

Uninstall the Existing Version and Install the New Version (for 9.1 users)

Open your ownCloud X Appliance and go to the "System and Domain Settings"
dashboard. Then, after logging in, click [Installed Applications], and then click
[ownCloud].

Appliance Maintenance | 557

This takes you to the ownCloud app settings page. From there, begin uninstalling
ownCloud by clicking [UNINSTALL] under "Manage local installations"

This takes you to an uninstall confirmation page. On that page, click [UNINSTALL] on
the lower left-hand side of the page.

Follow the process until it’s finished. Then, click on [Close] in the upper right corner.

Your data and users will remain.

558 | Appliance Maintenance

Following that, go to "Software - Appcenter", and search for ownCloud. At the
moment, two matching results will be returned. Pick the one that does not contain a
version number.

To confirm the version number, scroll to the bottom of the page, and in the More
information section, look for the version string, next to Installed version, as in the
screenshot below.

If it is the right version, click [INSTALL]. Then the License Agreement is displayed. If
you agree to it, click [ACCEPT LICENSE]. This will display an installation confirmation
screen. To confirm the installation, click [INSTALL].

Appliance Maintenance | 559

The installation will then be carried out. When it is finished, you will have the latest
version of ownCloud installed.

Your data and users will persist.

Use the Command Line

As with the Univention Management Console, there are two paths to upgrade an
existing ownCloud installation from the command line:

• Upgrading From Version 10.0.1 to 10.0.3
• Upgrading From Versions Prior to 10.0

Upgrading From Version 10.0.1 to 10.0.3

Upgrading from the command line is also available. To do so, login to your ownCloud X
Appliance, either via ssh or directly on the server. Once logged in, check if there is an
upgrade available.

You can use the command univention-app info. This command lists information about
the current state of every installed App.

root@ucs-9446:~# univention-app info
UCS: 4.2-1 errata165
App Center compatibility: 4
Installed: 4.1/owncloud=10.0.1-20170523
Upgradable: owncloud

If an upgrade is available, you then need to run the univention-app upgrade, as in the
example below.

univention-app upgrade owncloud

You will have to enter your Administrator password to start the upgrade. This
command takes some time to complete, primarily based on the appliance’s network
connection speed. However, it should not take more than a few minutes.

After the upgrade has completed (if it was successful) as a sanity check, run
univention-app info, to confirm the currently installed version of ownCloud. As in the
example below, you should see that the installed version is now higher than before,
and that ownCloud is no longer upgradable.

560 | Appliance Maintenance

upgrading-from-version-10.0.1-to-10.0.3
upgrading-from-versions-prior-to-10.0

root@ucs-9446:~# univention-app info
UCS: 4.2-1 errata165
App Center compatibility: 4
Installed: 4.1/owncloud=10.0.3-20170918
Upgradable:

Upgrading From Versions Prior to 10.0

If you’re running a version of ownCloud prior to 10.0, the above in-place upgrade
doesn’t work. This is because the earlier versions of ownCloud are installed with a
different application to the 10.x version. More specifically, the versions of the
ownCloud app, prior to 10, have a version suffix in the name. For example the
ownCloud 8.2 app is named owncloud82.

For ownCloud 8.2 users: during the ownCloud App upgrade, user files will be moved to
the new Docker data directory, /var/lib/univention-appcenter/apps/owncloud/data/files.
Essentially, the following the command will be executed:

mv /var/lib/owncloud/* /var/lib/univention-appcenter/apps/owncloud/data/files

Please check your filesystems and mountpoints and make sure enough space is
available for the operation.

Given that, you first have to uninstall the existing version and then install the 10.x
version. To do so, run the following commands:

Assumes that owncloud82 is the currently installed version
univention-app remove owncloud82
univention-app update
univention-app install owncloud

And after the upgrade and updates are completed, you can then login to ownCloud and
verify the upgrade. Username and Password remain the same as before the upgrade:

• owncloudadmin
• password

Troubleshooting

If you have encountered an issue, here is what support needs in order to get a quick
resolution of your issue:

1. Log file located at /var/lib/univention-
appcenter/apps/owncloud/data/files/owncloud.log

2. Config Report generated with occ configreport:generate > config_report.json (you
have to login to the container with univention-app shell owncloud)

3. The status of your docker containers docker ps > docker.txt
4. The status of your appliance univention-app info > univention.txt
5. Docker Logs: find out your docker ID of the ownCloud container and then execute

docker logs <containerID or container name>. Here is an example: docker logs
owncloud_owncloud_1

Troubleshooting | 561

Restore a snapshot to get your appliance to a functional state again.

562 | Troubleshooting

Enterprise Edition
In this section, you will find all the information you need for managing ownCloud
Enterprise Edition.

Enterprise Clients

In this section you will find all the details you need to configure ownCloud enterprise
clients.

Creating Branded Client Apps

Overview

ownBrander is an ownCloud build service that is exclusive to Enterprise customers for
creating branded Android and iOS ownCloud sync apps, and branded ownCloud
desktop sync clients. You build your apps with the ownBrander app on your
Customer.owncloud.com account, and within 24-48 hours the completed, customized
apps are loaded into your account. You must supply your own artwork, and you’ll find
all the specifications and required elements in ownBrander.

Building a Branded Desktop Sync Client

See Building Branded ownCloud Clients for instructions on building your own branded
desktop sync client, and for setting up an automatic update service.

Your users may run both a branded and un-branded desktop sync client side-by-side.
Both clients run independently of each other, and do not share account information or
files.

Building a Branded iOS App

Building and distributing your branded iOS ownCloud app involves a large number of
interdependent steps. The process is detailed in the Building Branded ownCloud
Clients manual. Follow these instructions exactly and in order, and you will have a nice
branded iOS app that you can distribute to your users.

Building a Branded Android App

Building and distributing your branded Android ownCloud app is fairly simple, and the
process is detailed in Building Branded ownCloud Clients.

Custom Client Download Repositories

See Custom Client Download Repositories to learn how to test and configure custom
download repository URLs for your branded clients.

Enterprise Collaboration

In this section you will find all the details you need to configure enterprise
collaboration in ownCloud.

Secure View

Enterprise Clients | 563

https://customer.owncloud.com/owncloud/
https://doc.owncloud.com/branded_clients/
https://doc.owncloud.com/branded_clients/
https://doc.owncloud.com/branded_clients/
https://doc.owncloud.com/branded_clients/
configuration/server/custom_client_repos.pdf

Introduction

When Collabora Online is properly setup and integrated into ownCloud Server, Secure
View functionality is available. Secure View is a mode where users can place
limitations on files and folders that are shared.

These limitations include:

• No copying
• No downloading
• No editing
• Watermarking
• Optional printing and exporting to PDF with watermarks included, which can be

adjusted



Documents never leave the server when shared with Secure View.

Collabora Online Server opens them and streams the files to the user’s
browser with watermark applied (much like a video stream).
Consequently, there’s no way to extract the original document from the
browser.



Secure View is enforced on a received share if at least 1 share has
Secure View enabled

If a file or folder has been shared multiple times to different groups
with different permissions, Secure View will be enforced if at least 1
received share has Secure View enabled as a result of membership in
the group. This restriction propagates to any reshares.

Prerequisites

• ownCloud 10.3 or above
• Enterprise Edition
• ownCloud Collabora Online app Version 2.2.0 or above
• Collabora Online Server 4.0.10 or above, set up and integrated

 This functionality does not work with Public Links.

How to Enable Secure View

To enable Secure View, navigate to Settings › Admin › Additional (Admin) ›
Collabora Online. At the bottom of the Collabora Online section, enable [Enable
Secure View].

Once enabled, default share permissions for all users can, optionally, be enabled.
Currently, these default share permissions are:

• Secure View (with watermarks). When enabled, files are shared in Secure View
mode. In this mode, all the Secure View limitations are in-effect. When this mode
and "can edit" are disabled, the share is a regular, "read-only", share.

• Can print / export PDF.


This option is only visible if [Secure View (with watermarks)] is
enabled.

564 | Enterprise Collaboration

https://marketplace.owncloud.com/apps/richdocuments

When enabled, this mode allows documents to be can be printed or exported to
PDF format — with a watermark — through Collabora Online.


Admins can specify that all shares are "Secure View" by default and
that the user has to intentionally change this setting, and vice versa.

When "Secure View (with watermarks)" is enabled, any attempts to download the file
will be blocked, as exemplified in the screenshot below. Additionally, select, copy, and
paste are disabled.

Supported File Formats

Secure View only supports a limited number of file formats; these are:

• Microsoft Word (.docx)
• Microsoft Excel (.xlsx)
• Microsoft PowerPoint (.pptx)
• OpenDocument Text Document (.odt)
• OpenDocument Presentation Document (.odp)
• OpenDocument Spreadsheet Document (.ods)
• PDF

If a folder shared with Secure View contains unsupported file types (e.g., JPG), they
will not be accessible.

Microsoft Office Online / WOPI Integration

About

The WOPI (Web Application Open Platform Interface) app, which is bundled with
ownCloud Enterprise Edition, is the connector between ownCloud server and
Microsoft Office Online Server.

It allows Microsoft Office Online users to collaboratively work with Office documents
in ownCloud in the browser, by connecting ownCloud with your Microsoft Office
Online Server via the WOPI protocol. To use it, you need to have a running Microsoft
Office Online Server in your data center.



Please bear in mind:

• WOPI is only available for ownCloud enterprise. It is not available in
the community version.

• Out-of-the box only the on-premise version of Microsoft Office Online
Server is supported.

• This app requires at minimum ownCloud Version 10.1 and php 7.1.


If you want to integrate the Office 365 (cloud) version of Microsoft
Office Online, you need to get in touch with us.

Preparing the Environment

You need an Office Online Server installed.

Enterprise Collaboration | 565

https://www.microsoft.com/en-us/microsoft-365/blog/2016/05/04/office-online-server-now-available/
https://wopi.readthedocs.io/en/latest/
https://products.office.com/en-us/business/office
https://owncloud.com/contact/
https://docs.microsoft.com/de-de/officeonlineserver/deploy-office-online-server

All involved servers (OfficeOnline Server and the ownCloud server) need to be
accessible by HTTPS with valid certificates.

Configuring the WOPI App in ownCloud

To configure the WOPI app in your ownCloud installation, add the following
configuration to config/config.php, and adjust it based on the details of your setup:

'wopi.token.key' => 'replace-with-your-own-random-string',
'wopi.office-online.server' => 'https://your.office.online.server.tld',

Restrict Usage to Users in a Specific Group

Microsoft Office Online access can be restricted to users in a specific group, by use of
the wopi_group configuration key (in config/config.php), as in the following example.

'wopi_group' => 'admin'

In the example above, only users in the admin group would be able to access Microsoft
Office Online.


If the key is not defined, then all users have access to this Microsoft
Office Online service connected via WOPI.

Locking the Document

If you open a document with Microsoft Office Online in ownCloud, it makes use of the
WebDAV file locking functionality available in ownCloud server. The idea is to lock the
file so other users with access can’t make changes to the document while you’re
editing it.

In other words, the feature ensures that you are the "master editor". Your changes will
always be the "master state". Other users can make changes, e.g., with the desktop
client, but those will create conflict files for them, which can be resolved afterward.
When you close the document, Microsoft Office Online unlocks the file so others can
edit it.

You can always click on the lock icon next to your file name and unlock it manually
using the button in the sidebar.

Lock Timeout

If a user is editing a file and loses their internet connection, the lock will timeout,
freeing the lock after 30 minutes. Refer to the WOPI documentation for further
information.

Known Issues

Document Locks Are Not Released When Using Google Chrome

When editing a document with Google Chrome (and Chromium) via ownCloud in
Microsoft Office Online, the document lock is not released when the document is
closed. The document lock is only released after the 30-minute timeout or a manual
lock release. To mitigate the issue, try to remember to manually unlock the document
before closing it.

More information about this issue is available in the following links:

566 | Enterprise Collaboration

https://wopi.readthedocs.io/projects/wopirest/en/latest/concepts.html#term-lock

• The file is locked for shared use
• The file is locked when using Office Online within SharePoint Online

Troubleshooting

Checklist if something is not working:

1. Client can reach the ownCloud Server (browse to web page and log in)
2. Client can reach the Office Online Server (via hosting/discovery url with https)
3. ownCloud Server can reach the Office Online Server (via hosting/discovery url

with https)
4. Office Online Server can reach ownCloud Server (browse to web page and log

in)

Make sure TLS 1.2 is being used:

• Enable TLS 1.2 Support in Chrome
• Enable TLS 1.2 Support in Microsoft Office Online Server

External Storage

In this section you will find all the details you need to configure enterprise external
storage in ownCloud.

Enterprise-Only Authentication Options

In ownCloud 9.0+, there are five authentication backends for external storage mounts:

• Username and password
• Log-in credentials, save in session
• Log-in credentials, save in database
• User entered, store in database
• Global credentials

The first two are common to all editions of ownCloud, and the last three are only in the
Enterprise edition. These are available to:

• FTP
• ownCloud
• SFTP
• SMB/CIFS
• WebDAV
• Windows Network Drive

Username and password
This is the default; a login entered by the admin when the external mount is
created. The login is stored in the database, which allows sharing, and
background jobs, such as file scanning, to operate.

Log-in credentials, save in session
Credentials are only stored in the session and not captured in the database. Files
cannot be shared, as credentials are not stored.

External Storage | 567

https://answers.microsoft.com/en-us/msoffice/forum/msoffice_sharepoint-mso_win10-mso_o365b/errorthe-file-is-locked-for-shared-use/8b852d6a-c1d5-4765-8734-9b4a4ebdd3aa
https://techcommunity.microsoft.com/t5/sharepoint/quot-error-the-file-is-locked-quot-when-using-office-online/m-p/227866
https://help.hotschedules.com/hc/en-us/articles/360020184072-Enabling-TLS-1-2-on-web-browsers#Chrome
https://docs.microsoft.com/de-de/officeonlineserver/enable-tls-1-1-and-tls-1-2-support-in-office-online-server

Log-in credentials, save in database
Credentials are stored in the database, and files can be shared.

User entered, store in database
Users provide their own login credentials, rather than using admin-supplied
credentials. User credentials are stored in the database, and files can be shared.

Global credentials
Re-usable credentials entered by the admin, files can be shared.

Global credentials are entered in a separate form.

Use the dropdown selector to choose the authentication backend when you create a
new external mount.

LDAP Home Connector

Introduction

The LDAP Home Connector App enables you to configure your ownCloud server to
display your users’ Windows home directories on their Files pages, just like any other
folder. Typically, Windows home directories are stored on a network server in a root
folder, such as Users, which then contains individual folders for each user.

You must already have the LDAP app enabled and a working LDAP/Active Directory
configuration in ownCloud.

Next, configure the root Windows home directory to be mounted on your ownCloud
server. Then use the LDAP Home Connector and LDAP app to connect it to ownCloud.

Mount Home Directory

Create an entry in /etc/fstab for the remote Windows root home directory mount. Store
the credentials to access the home directory in a separate file, for example
/etc/credentials, with the username and password on separate lines, like this:

568 | External Storage

username=winhomeuser
password=winhomepassword

Then add a line like this to /etc/fstab, substituting your own server address and
filenames:

//192.168.1.58/share /mnt/share cifs credentials=/etc/credentials,uid=33,gid=33

Configure the LDAP Home Connector

Enable the LDAP Home Connector app. Then go to the LDAP Home Connector form on
your ownCloud admin page. In the Display folder as: field enter the name as you
want it to appear on your users’ File pages.

Then in the Attribute name: field enter the LDAP attribute name that will contain the
home directory. Use any LDAP attribute that is not already in use, then save your
changes.

Configure the LDAP Server

In Active Directory, open the user profile. Scroll to the Extensions section and open
the Attribute Editor tab

External Storage | 569

Scroll to the attribute being used (UserSharedFolder in this instance), and click Edit.
Enter the users home directory.

Save your changes, and you are finished.

570 | External Storage

How to Create and Configure Microsoft OneDrive

Introduction

Follow this guide to use Microsoft OneDrive as an external storage option in
ownCloud.

Create an Application Configuration

To create a new application:

• Open https://apps.dev.microsoft.com/ in your browser of choice and click "Create
App".

• Under "Properties", set the application’s name.
• Click "Create".

With the application created, you can then add a range of further settings. However,
only a few of them are required for use with ownCloud.

Application Password

Under "Application Secrets", click "Generate New Password", which generates a
password and displays it in a popup window. It is required later during when
configuring a mount point.

Copy the password to your preferred password manager, as it is only displayed once.

External Storage | 571

https://apps.dev.microsoft.com/

Redirect URLs

Under "Platforms", click "Add Platform" and choose "Web" in the popup window which
appears. Only one redirect URL field is visible at first, so click "Add URL" to add
another one.

With two fields available, add two redirect URLs; one for settings/admin and one for
settings/personal, as you can see in the image below.

Application Permissions

Under "Microsoft Graph Permissions", click "Add" next to "Application Permissions".
This opens a popup window where you can choose the required permissions. Add a
least the following four:

• Files.Read.All
• Files.ReadWrite.All
• IdentityRiskEvent.Read.All
• User.Read.All

With those settings added, click "Save", located right at the bottom of the page.

Configure a Mount Point in ownCloud

You can add as many OneDrive mount points as you want. To do so:

572 | External Storage

1. Add a new storage, selecting "One Drive" for external storage.
2. Set the credentials of your OneDrive application, and then accept the permissions.
3. If everything is accepted, the mount points should appear, with a green status icon

on the far left-hand side.

To be able to use the occ command files_onedrive:subscribe, you need to have the
variable overwrite.cli.url set in config/config.php, as in this example:

'overwrite.cli.url' => 'https://example.org:63984/index.php',

The HTTPS prefix, port, and /index.php suffix are mandatory.

Configuring SharePoint Integration

Introduction

Native SharePoint support has been added to the ownCloud Enterprise edition as a
secondary storage location for SharePoint 2007, 2010 and 2013. When this is enabled,
users can access and sync all of their SharePoint content via ownCloud, whether in the
desktop sync, mobile or Web interfaces. Updated files are bi-directionally synced
automatically. SharePoint shares are created by the ownCloud admin, and optionally
by any users who have SharePoint credentials.

The ownCloud SharePoint plugin uses SharePoint document lists as remote storage
folders. ownCloud respects SharePoint access control lists (ACLs), so ownCloud
sharing is intentionally disabled for SharePoint mountpoints. This is to preserve
SharePoint ACLs and ensure content is properly accessed as per SharePoint rules.

The plugin uses the Simple Object Access Protocol (SOAP) and WebDAV for the
uploads and downloads to talk to SharePoint servers. Your ownCloud server must have
php-soap or php5-soap installed. Linux packages and ownCloud appliances will install
php5-soap as a required dependency.

The supported authentication methods are:

• Basic Auth
• NTLM (Recommended)

Creating a SharePoint Mount

Enable the SharePoint app, and then enter the Admin panel to set up SharePoint
connections in the SharePoint Drive Configuration section.

Enter your SharePoint Listing credentials. These credentials are not stored in the
database, but are used only during plugin setup to list the Document Libraries

External Storage | 573

available per SharePoint site.

Global credentials is optional. If you fill in these fields, these credentials will be used
on on all SharePoint mounts where you select: Use global credentials as the
authentication credentials.

Enter your ownCloud mountpoint in the Local Folder Name column. This is the name of
the folder that each user will see on the ownCloud filesystem. You may use an existing
folder, or enter a name to create a new mount point

Select who will have access to this mountpoint, by default All users, or a user or a
group.

Enter your SharePoint server URL, then click the little refresh icon to the left of the
Document Library field. If your credentials and URL are correct you’ll get a dropdown
list of available SharePoint libraries. Select the document library you want to mount.

Select which kind of Authentication credentials you want to use for this mountpoint. If
you select Custom credentials you will have to enter the the credentials on this line.
Otherwise, the global credentials or the user’s own credentials will be used. Click
Save, and you’re done

Enabling Users

You may allow your users to create their own SharePoint mounts on their Personal
pages, and allow sharing on these mounts.

574 | External Storage

Note

Speed up load times by disabling file previews in config.php, because the previews are
generated by downloading the remote files to a temp file. This means ownCloud will
spend a lot of time creating previews for all of your SharePoint content. To disable file
previews, add the following line to the ownCloud config file found in
/owncloud/config/config.php:

'enable_previews' => false,

Troubleshooting

Unsharing

SharePoint unsharing is handled in the background via Cron. If you remove the
sharing option from a SharePoint mount, it will take a little time for the share to be
removed, until the Cron job runs.

Logging

Turn on SharePoint app logging by modifying config/config.php, setting
sharepoint.logging.enable to true, as in the example below.

'sharepoint.logging.enable' => true,

Mount Points

Global mount points can’t be accessed: You have to fill out your SharePoint credentials
as User on the personal settings page, or in the popup menu. These credentials are
used to mount all global mount points.

Personal mount points can’t be accessed: You have to fill your SharePoint credentials
as User on the personal settings page in case your personal mount point doesn’t have
its own credentials.

A user can’t update the credentials: Verify that the correct credentials are configured,
and the correct type, either global or custom.

Windows Network Drive (WND)

Introduction

The External Storage: Windows Network Drives app creates a control panel in your
Admin page for seamlessly integrating Windows and Samba/CIFS shared network
drives as external storages.

Any Windows file share and Samba servers on Linux and other Unix-type operating
systems use the SMB/CIFS file-sharing protocol. The files and directories on the
SMB/CIFS server will be visible on your Files page just like your other ownCloud files
and folders.

They are labeled with a little four-pane Windows-style icon, and the left pane of your
Files page includes a Windows Network Drive filter. Figure 1 shows a new Windows
Network Drive share marked with red warnings.

These indicate that ownCloud cannot connect to the share because it requires the user
to login, it is not available, or there is an error in the configuration.

External Storage | 575

https://marketplace.owncloud.com/apps/windows_network_drive


For more information on SMB/CIFS in ownCloud, refer to the Samba
file server configuration documentation.


If you encounter errors with NT_STATUS_REVISION_MISMATCH, please
get in touch with support@owncloud.com.

Files are synchronized bi-directionally, and you can create, upload, and delete files and
folders. ownCloud server admins can create Windows Network Drive mounts and
optionally allow users to set up their own personal Windows Network Drive mounts.

Depending on the authentication method, passwords for each mount are encrypted
and stored in the ownCloud database, using a long random secret key stored in
config.php, which allows ownCloud to access the shares when the users who own the
mounts are not logged in. Or, passwords are not stored and available only for the
current session, which adds security.

Installation

Install the External Storage: Windows Network Drives app from the ownCloud Market
App or ownCloud Marketplace. To make it work, a few dependencies have to be
installed.

• A Samba client. This is included in all Linux distributions. On Debian, Ubuntu, and
other Debian derivatives it is called smbclient. On SUSE, Red Hat, CentOS, and
other Red Hat derivatives it is samba-client.

• php-smbclient (version 0.8.0+). It should be included in most Linux distributions.
You can use eduardok/libsmbclient-php, if your distribution does not provide it.

• which and stdbuf. These should be included in most Linux distributions.

Example

Assuming that your ownCloud installation is on Ubuntu, then the following commands
will install the required dependencies:

576 | External Storage

configuration/files/external_storage/smb.pdf
configuration/files/external_storage/smb.pdf
mailto:support@owncloud.com
https://marketplace.owncloud.com/apps/windows_network_drive
https://github.com/eduardok/libsmbclient-php

Install core packages
sudo apt-get update -y
sudo apt-get install -y smbclient php-smbclient coreutils

Other method using PECL is:

Install php-smbclient using PECL
sudo pecl install smbclient

Install it from source
git clone git://github.com/eduardok/libsmbclient-php.git
cd libsmbclient-php ; phpize
./configure
make
sudo make install



Regardless of the method you use, remember to check if an
smbclient.ini file exists in /etc/php/<your php version>/mods-available
and contains the following line:

extension="smbclient.so"

If so, then make it available via by running the following command:

sudo phpenmod -v ALL smbclient

Configuration

Enabling External Storage

To enable external storage go to Settings › Storage (in the admin section), as the
ownCloud administrator. Tick the checkbox to enable external storage.

Creating a New Share

When you create a new WND share you need three things:

• The login credentials for the share
• The server address, the share name; and
• The folder you want to connect to


Treat all the parameters as being case-sensitive.
Although some parts of the app might work properly, regardless of
case, other parts might have problems if case isn’t respected.

1. Enter the ownCloud mount point for your new WND share. This must not be an
existing folder.

2. Then select your authentication method; See enterprise_only_auth for complete
information on the five available authentication methods.

External Storage | 577

1. Enter the address of the server that contains the WND share.
2. The Windows share name.
3. The root folder of the share. This is the folder name, or the $user variable for user’s

home directories. Note that the LDAP Internal Username Attribute must be set to
the samaccountname for either the share or the root to work, and the user’s home
directory needs to match the samaccountname. (See User Authentication with
LDAP.)

4. Login credentials.
5. Select users or groups with access to the share. The default is all users.
6. Click the gear icon for additional mount options. Note that previews are enabled by

default, while sharing is not (see figure 2). Sharing is not available for all
authorization methods; see enterprise_only_auth. For large storages with many
files, you may want to disable previews, because this can significantly increase
performance.

Your changes are saved automatically.


When you create a new mountpoint using Login credentials, you must
log out of ownCloud and then log back in so you can access the share.
You only have to do this the first time.

Permission Manager

From version 1.0.1 the Windows Network Drives App supports Access Control Lists
(ACLs). To obtain ACL information, it supports two ACL providers:

• The Null Permission Manager
• The ownCloud LDAP Permission Manager

578 | External Storage

configuration/user/user_auth_ldap.pdf
configuration/user/user_auth_ldap.pdf
https://en.wikipedia.org/wiki/Access-control_list
https://en.wikipedia.org/wiki/Access-control_list

On standard deployments, you don’t need to change anything. Just leave the field
empty and the default permission manager will be used.

Regardless of which provider you choose, an ownCloud administrator should run a
files:scan, manually, after changing the configuration, to update the permissions
correctly. Otherwise, the permissions shown by ownCloud might be incorrect.


Permissions are only auto-updated if there has been a change in the
files.

The Null Permission Manager

The Null Permission Manager is the default permission manager for ACLs and is used, if
no other ACL manager is specified. This is also the case, when no permission is
explicitly set. If you want to retain ownCloud’s current behaviour, then use this
permission manager. When in effect, the Windows Network Drive app uses a file’s
attributes (e.g., read-only, and hidden), to determine how the user can interact with
the file. There are no usage restrictions.

The value to use for this provider is: nullPermissionManager.

The ownCloud LDAP Permission Manager

The ownCloud LDAP Permission Manager evaluates ACLs in files along with file
attributes to determine the permissions. In order to evaluate the ACLs, it needs access
to the user and group membership information of the target Windows or Samba
server, so it uses the ownCloud’s user_ldap app for this.


Both the Windows (or Samba) server and ownCloud’s user_ldap app
must connect to the same Active Directory server so that ownCloud can
retrieve the same user and group information.

To use this provider requires two key things:

• An Active Directory server which contains the standard user and group information
that can be used by ownCloud’s LDAP app.

• ownCloud’s LDAP app to be correctly configured to retrieve user and group
information from the same Active Directory server as the one that the Windows (or
Samba) server uses.


The ownCloud LDAP apps must configure the sAMAccountName to be
the ownCloud server’s username.

External Storage | 579

configuration/server/occ_command.pdf#file-operations
https://marketplace.owncloud.com/apps/user_ldap
https://marketplace.owncloud.com/apps/user_ldap


Some groups, such as "everyone" might not be handled properly. This is
because such groups don’t exist in the LDAP server, or might not be
found if the domain is different, such as nt authority\system or
builtin\domain-users.

The value to use for this provider is: ocLdapPermissionManager.

Windows Network Drive Listener



ownCloud requires at least Samba version 4.7.8 or Samba 4.8.1 on the
ownCloud server, when:

1. The Windows Network Drive Listener is used; and
2. The remote Windows/Samba file server requires at least version 2.0

of the SMB protocol.

The Windows Network Drive Listener only supports version 1 of the
SMB protocol with earlier Samba versions.

Here’s Why

A Samba server, often a Microsoft Windows Server, can enforce the
minimum and maximum protocol versions used by connecting clients.
However, in light of the WannaCry ransomware attack, Microsoft
patched Windows Server to only allow SMB2 protocol by default (as
SMB1 is insecure).

The ownCloud windows network drive listener utilizes the SMB
notification feature which works well with SMB1 in conjunction with
most Samba versions. However, when the minimum protocol a server
accepts is SMB2, ownCloud require Samba 4.7.8+ (4.8+ etc.) to be able
to properly work, as prior versions of Samba had a bug that break this
feature.

The SMB protocol supports registering for notifications of file changes on remote
Windows SMB storage servers. Notifications are more efficient than polling for
changes, as polling requires scanning the whole SMB storage. ownCloud supports
SMB notifications with an occ command,

occ wnd:listen.



The capability of the listener depends on the ability of the used
SMB/CIFS storage backend to provide notifications. While Windows file
servers have no limitations, some vendors may have restrictions. Please
check these with your storage provider. It may be possible, that
notifications for Samba only work for the target folder you’re listening
to, but not for any sub structures. If you’re listening on the "/top" folder,
you may not receive notifications for "/top/middle/bottom" folder. In this
case, you have to setup listeners for every existing folder and also for
any new folders that will be created. With Windows file servers, you will
receive notifications for every file or subfolder inside the folder you’re
listening to.

Your smbclient version needs to be 4.x, as older versions do not support notifications.
The ownCloud server needs to know about changes to files on integrated storage so
that the changed files will be synced to the ownCloud server, and to desktop sync
clients.

580 | External Storage

https://www.samba.org/samba/history/samba-4.7.8.html
https://www.samba.org/samba/history/samba-4.8.1.html
https://en.wikipedia.org/wiki/Server_Message_Block#SMB_2.0
https://en.wikipedia.org/wiki/Server_Message_Block#SMB_2.0
enterprise/external_storage/windows-network-drive_configuration.pdf
https://www.samba.org/
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2017/ms17-010
https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2017/ms17-010

Files changed through the ownCloud Web Interface, or sync clients are automatically
updated in the ownCloud file cache, but this is not possible when files are changed
directly on remote SMB storage mounts.

To create a new SMB notification, start a listener on your ownCloud server with occ
wnd:listen. The listener marks changed files, and a background job updates the file
metadata.

Setting Up the WND Listener

The WND listener for ownCloud 10 includes two different commands that need to be
executed:

• wnd:listen
• wnd:process-queue

wnd:listen

This command listens and stores notifications in the database coming from one
specific host and share. It is intended to be run as a service. The command requires
the host and share, which the listener will listen to, and the Windows/Samba account
that will listen. The command does not produce any output by default, unless errors
happen.


You can increase the command’s verbosity by using -vvv. Doing so
displays what the listener is doing, including a timestamp and the
notifications received. Although the exact permissions required for the
Windows account are unknown, read-only should be enough.

The simplest way to start the wnd:listen process manually, perhaps for initial testing, is
as follows

sudo -u www-data php occ wnd:listen <host> <share> <username>

The password is an optional parameter and you’ll be asked for it if you didn’t provide
it, as in the example above. In order to start wnd:listen without any user interaction,
provide the password from a password file.

sudo -u www-data php occ wnd:listen <host> <share> <username> \
 --password-file=/my/secret/password/file --password-trim

For additional options to provide the password, check Password Options

Note, that the password must be in plain text inside the file, and neither spaces nor
newline characters will be removed from the file by default, unless the --pasword-trim
option is added. The password file must be readable by the apache user (or www-
data). Also make sure that the password file is outside of any directory handled by
apache (web-readable).

You should be able to run any of those commands, and/or wrap them into a systemd
service or any other startup service, so that the wnd:listen command is automatically
started during boot, if you need it.

wnd:process-queue

This command processes the stored notifications for a given host and share. This

External Storage | 581

process is intended to be run periodically as a Cron job, or via a similar mechanism.
The command will process the notifications stored by the wnd:listen process, showing
only errors by default. If you need more information, increase the verbosity by calling
wnd:process-queue -vvv.

As a simple example, you can check the following:

sudo -u www-data php occ wnd:process-queue <host> <share>

You can run that command, even if there are no notifications to be processed.

As said, you can wrap that command in a Cron job so it’s run every 5 minutes for
example.

WND Listener Configuration

Create a service for systemd following the instructions below that checks the share for
changes:

• For each WND mount point distinguished by a SERVER - SHARE pair:
◦ Place one copy of a file with following content under

/etc/systemd/system/owncloud-wnd-listen-SERVER-SHARE.service
◦ Replace the all upper case words SERVER, SHARE, USER and PASSWORD in both,

the filename and in the contents below with their respective values.
◦ Take care to also adjust the paths in WorkingDirectory and ExecStart according

to your installation.
◦ Password: Create a file readable only by the www-data and outside the

directories handled by apache (let’s suppose in /tmp/mypass). The file must
contain only the password for the share. In this example our file is:
"/tmp/mypass". The listener will read the contents of the file and use them as the
password for the account. This way, only root and the apache user should have
access to the password.

◦ "--password-trim" removes blank characters from the password file added by
3rdparty software or other services.

582 | External Storage

[Unit]
Description=ownCloud WND Listener for SERVER SHARE
After=syslog.target
After=network.target
Requires=apache2.service
[Service]
User=www-data
Group=www-data
WorkingDirectory=/var/www/owncloud
ExecStart=/usr/bin/php ./occ wnd:listen -vvv SERVER SHARE USER --password
-file=/tmp/mypass --password-trim
Type=simple
StandardOutput=journal
StandardError=journal
SyslogIdentifier=%n
KillMode=process
RestartSec=3
Restart=always
[Install]
WantedBy=multi-user.target

• Run the following command, once for each created file:

sudo systemctl enable owncloud-wnd-listen-SERVER-SHARE.service
sudo systemctl start owncloud-wnd-listen-SERVER-SHARE.service

WND Process Queue Configuration

Create or add a crontab file in /etc/cron.d/oc-wnd-process-queue.

• Make a crontab entry to run a script iterating over all SERVER SHARE pairs with an
appropriate occ wnd:process-queue command. The commands must be strictly
sequential. This can be done by using flock -n and tuning the -c parameter of occ
wnd:process-queue

* * * * * sudo -u www-data /usr/bin/php /var/www/owncloud/occ wnd:process-queue
<HOST> <SHARE>

Execution Serialization

Parallel runs of wnd:process-queue might lead to a user lockout. The reason for this is
that several wnd:process-queue might use the same wrong password because it hasn’t
been updated by the time they fetch it.

It’s recommended to force the execution serialization of the wnd:process-queue
command. You might want to use Anacron, which seems to have an option for this
scenario, or wrap the command with flock.

If you need to serialize the execution of the wnd:process-queue, check the following
example with flock

External Storage | 583

http://www.thegeekstuff.com/2011/05/anacron-examples
https://linuxaria.com/howto/linux-shell-introduction-to-flock
https://linuxaria.com/howto/linux-shell-introduction-to-flock

flock -n /my/lock/file sudo -u www-data php occ wnd:process-queue <host>
<share>

In that case, flock will try get the lock of that file and won’t run the command if it isn’t
possible. For our case, and considering that file isn’t being used by any other process,
it will run only one wnd:process-queue at a time. If someone tries to run the same
command a second time while the previous one is running, the second will fail and
won’t be executed. Check flock’s documentation for details and other options.

Troubleshooting

If you encounter issues using Windows network drive, then try the following
troubleshooting steps:

First check the connection to the share by using smbclient on the command line of the
ownCloud server. Here is an example:

smbclient -U Username -L //Servername

Take the example of attempting to connect to the share named MyData using occ
wnd:listen. Running the following command would work:

sudo -u www-data php occ wnd:listen MyHost MyData svc_owncloud password


The command is case sensitive, and that it must match the information
from the mount point configuration.

libsmbclient Issues

If your Linux distribution ships with libsmbclient 3.x, which is included in the Samba
client, you may need to set up the HOME variable in Apache to prevent a segmentation
fault. If you have libsmbclient 4.1.6 and higher it doesn’t seem to be an issue, so you
won’t have to change your HOME variable. To set up the HOME variable on Ubuntu,
modify the /etc/apache2/envvars file:

unset HOME
export HOME=/var/www

In Red Hat/CentOS, modify the /etc/sysconfig/httpd file and add the following line to
set the HOME variable in Apache:

export HOME=/usr/share/httpd

By default, CentOS has activated SELinux, and the httpd process can not make
outgoing network connections. This will cause problems with the curl, ldap and samba
libraries. You’ll need to get around this to make this work. First, check the status:

getsebool -a | grep httpd
httpd_can_network_connect --> off

584 | External Storage

https://linux.die.net/man/2/flock
https://www.samba.org/samba/docs/man/manpages-3/smbclient.1.html

Then enable support for network connections:

setsebool -P httpd_can_network_connect 1

In openSUSE, modify the /usr/sbin/start_apache2 file:

export HOME=/var/lib/apache2

Restart Apache, open your ownCloud Admin page and start creating SMB/CIFS
mounts.

Basic Setup for One ownCloud Server

First, go to the admin settings and set up the required WND mounts. Be aware though,
that there are some limitations. These are:

• We need access to the Windows account password for the mounts to update the file
cache properly. This means that "login credentials, saved in session" won’t work
with the listener. "login credentials, saved in DB" should work and could be the best
replacement.

• The $user placeholder in the share, such as //host/$user/path/to/root, for providing
a share which is accessible per/user won’t work with the listener. This is because
the listener won’t scale, as you’ll need to setup one listener per/share. As a result,
you’ll end up with too many listeners. An alternative is to provide a common share
for the users and use the $user placeholder in the root, such as
//host/share/$user/folder.

Second, start the wnd:listen process if it’s not already started, ideally running it as a
service. If it isn’t running, no notification are stored. The listener stores the
notifications. Any change in the mount point configuration, such as adding or
removing new mounts, and logins by new users, won’t affect the behavior, so there is
no need to restart the listener in those cases.

In case you have several mount point configurations, note that each listener attaches
to one host and share. If there are several mount configurations targeting different
shares, you’ll need to spawn one listener for each. For example, if you have one
configuration with 10.0.0.2/share1 and another with 10.0.0.2/share2, you’ll need to
spawn 2 listeners, one for the first configuration and another for the second.

Third, run the wnd:process-queue periodically, usually via a Cron job. The command
processes all the stored notifications for a specific host and share. If you have several,
you could set up several Cron jobs, one for each host and share with different
intervals, depending on the load or update urgency. As a simple example, you could
run the command every 2 minutes for one server and every 5 minutes for another.

As said, the command processes all the stored notifications, squeeze them and scan
the resulting folders. The process might crash if there are too many notifications, or if
it has too many storages to update. The --chunk-size option will help by making the
command process all the notifications in buckets of that size.

On the one hand the memory usage is reduced, on the other hand there is more
network activity. We recommend using the option with a value high enough to process
a large number of notifications, but not so large to crash the process. Between 200
and 500 should be fine, and we’ll likely process all the notifications in one go.

External Storage | 585

configuration/server/background_jobs_configuration.pdf#cron-jobs

Password Options

There are several ways to supply a password:

1. Interactively in response to a password prompt.

sudo -u www-data php occ wnd:listen <host> <share> <username>

2. Sent as a parameter to the command.

sudo -u www-data php occ wnd:listen <host> <share> <username>
<password>

3. Read from a file, using the --password-file switch to specify the file to read from.
Note, that the password must be in plain text inside the file, and neither spaces nor
newline characters will be removed from the file by default, unless the --pasword
-trim option is added. The password file must be readable by the apache user (or
www-data)

sudo -u www-data php occ wnd:listen <host> <share> <username> \
 --password-file=/my/secret/password/file

sudo -u www-data php occ wnd:listen <host> <share> <username> \
 --password-file=/my/secret/password/file --password-trim


If you use the --password-file switch, the entire contents of the file will
be used for the password, so please be careful with newlines.


If using --password-file make sure that the file is only readable by the
apache / www-data user and inaccessible from the web. This prevents
tampering or leaking of the information. The password won’t be leaked
to any other user using ps.

1. Using 3rd party software to store and fetch the password. When using this option,
the 3rd party app needs to show the password as plaintext on standard output.

Reduce WND Notifier Memory Usage

The WND in-memory notifier for password changes provides the ability to notify all
affected WND storages to reset their passwords. This feature is intended to prevent a
password lockout for the user in the backend. However, this functionality can consume
a significant amount of memory. To disable it, in one of the config/config.php. files, add
the following configuration:

'wnd.in_memory_notifier.enable' => false,


The password will be reset on the next request, regardless of the flag
setting.

586 | External Storage

3rd Party Software Examples

cat /tmp/plainpass | sudo -u www-data php occ wnd:listen <host> <share>
<username> --password-file=-

This provides a bit more security because the /tmp/plainpass password should be
owned by root and only root should be able to read the file (0400 permissions);
Apache, particularly, shouldn’t be able to read it. It’s expected that root will be the one
to run this command.

base64 -d /tmp/encodedpass | \
 sudo -u www-data php occ wnd:listen <host> <share> <username> --password
-file=-

Similar to the previous example, but this time the contents are encoded in Base64
format (there’s not much security, but it has additional obfuscation).

Third party password managers can also be integrated. The only requirement is that
they have to provide the password in plain text somehow. If not, additional operations
might be required to get the password as plain text and inject it in the listener.

As an example:

• You can use "pass" as a password manager.
• You can go through http://xmodulo.com/manage-passwords-command-line-

linux.html to setup the keyring for whoever will fetch the password (probably root)
and then use something like the following

pass the-password-name | sudo -u www-data php occ wnd:listen <host> <share>
<username> --password-file=-

Password Option Precedence

If both the argument and the option are passed, e.g., occ wnd:listen <host> <share>
<username> <password> --password-file=/tmp/pass, then the --password-file option
will take precedence.

Optimizing wnd:process-queue


Do not use this option if the process-queue is fast enough. The option
has some drawbacks, specifically regarding password changes in the
backend.

wnd:process-queue creates all the storages that need to be updated from scratch. To
do so, we need to fetch all the users from all the backends (currently only the ones
that have logged in at least once because the others won’t have the storages that we’ll
need updates).

To optimize this, wnd:process-queue make use of two switches: –serializer-type and
–serializer-params. These serialize storages for later use, so that future executions
don’t need to fetch the users, saving precious time — especially for large
organizations.

External Storage | 587

https://www.base64decode.org/
https://www.base64decode.org/
http://xmodulo.com/manage-passwords-command-line-linux.html
http://xmodulo.com/manage-passwords-command-line-linux.html

Switch Allowed Values

--serializer-type file. Other valid values may be added in the future, as more
implementations are requested.

--serializer-params Depends on --serializer-type, because those will be the
parameters that the chosen serializer will use. For the file
serializer, you need to provide a file location in the host FS where
the storages will be serialized. You can use --serializer-params
file=/tmp/file as an example.

While the specific behavior will depend on the serializer implementation, the overall
behavior can be simplified as follows:

If the serializer’s data source (such as a file, a database table, or some Redis keys) has
storage data, it uses that data to create the storages; otherwise, it creates the storages
from scratch.

After the storages are created, notifications are processed for the storages. If the
storages have been created from scratch, those storages are written in the data source
so that they can be read on the next run.



It’s imperative to periodically clean up the data source to fetch fresh
data, such as for new storages and updated passwords. There isn’t a
generic command to do this from ownCloud, because it depends on the
specific serializer type. Though this option could be provided at some
point if requested.

The File Serializer

The file serializer is a serializer implementation that can be used with the
wnd:process-queue command. It requires an additional parameter where you can
specify the location of the file containing the serialized storages.

There are several things you should know about this serializer:

• The generated file contains the encrypted passwords for accessing the backend.
This is necessary in order to avoid re-fetching the user information, when next
accessing the storages.

• The generated file is intended to be readable and writable only for the web server
user. Other users shouldn’t have access to this file. Do not manually edit the file.
You can remove the file if it contains obsolete information.

Usage Recommendations

Number of Serializers

Only one file serializer should be used per server and share, as the serialized file has
to be per server and share. Consider the following usage scenario:

• If you have three shares: 10.0.2.2/share1, 10.0.2.2/share2, and 10.0.10.20/share2,
then you should use three different calls to wnd:process-queue, changing the target
file for the serializer for each one.

Since the serialized file has to be per server and share, the serialized file has some
checks to prevent misuse. Specifically, if we detect you’re trying to read the storages
for another server and share from the file, the contents of the file won’t be read and
will fallback to creating the storage from scratch. At this point, we’ll then update the
contents of that file with the new storage.

588 | External Storage

Doing so, though, creates unneeded competition, where several process-queue will
compete for the serializer file. For example, let’s say that you have two process-queues
targeting the same serializer file. After the first process creates the file the second
process will notice that the file is no longer available. As a result, it will recreate the
file with new content.

At this point the first process runs again and notices that the file isn’t available and
recreate the file again. When this happens, the serializer file’s purpose isn’t fulfilled As
a result, we recommend the use of a different file per server and share.

File Clean Up

The file will need to cleaned up from time to time. The easiest way to do this is to
remove the file when it is no longer needed. The file will be regenerated with fresh
data the next execution if the serializer option is set.

Interaction Between Listener and Windows Password Lockout

Windows supports password lockout policies. If one is enabled on the server where an
ownCloud share is located, and a user fails to enter their password correctly several
times, they may be locked out and unable to access the share.

This is a known issue that prevents these two inter-operating correctly. Currently, the
only viable solution is to ignore that feature and use the wnd:listen and wnd:process-
queue, without the serializer options.

Multiple Server Setup

Setups with several servers might have some difficulties in some scenarios:

• The wnd:listen component might be duplicated among several servers. This
shouldn’t cause a problem, depending on the limitations of the underlying database
engine. The supported database engines should be able to handle concurrent
access and de-duplication.

• The wnd:process-queue should also be able to run from any server, however
limitations for concurrent executions still apply. As a result, you might need to
serialized command execution of the wnd:process-queue among the servers (to
avoid for the password lockout), which might not be possible or difficult to achieve.
You might want to execute the command from just one specific server in this case.

• wnd:process-queue + serializer. First, check the above section to know the
interactions with the password lockout. Right now, the only option you have to set it
up is to store the target file in a common location for all the server. We might need
to provide a specific serializer for this scenario (based on Redis or DB)

Basic Command Execution Examples

External Storage | 589

https://technet.microsoft.com/en-us/library/dd277400.aspx
https://github.com/owncloud/Windows_network_drive/issues/94

sudo -u www-data php occ `wnd:listen` host share username password

sudo -u www-data php occ `wnd:process-queue` host share

sudo -u www-data php occ `wnd:process-queue` host share -c 500

sudo -u www-data php occ `wnd:process-queue` host share -c 500 \
 --serializer-type file \
 --serializer-params file=/opt/oc/store

sudo -u www-data php occ `wnd:process-queue` host2 share2 -c 500 \
 --serializer-type File \
 --serializer-params file=/opt/oc/store2

To set it up, make sure the listener is running as a system service:

sudo -u www-data php occ `wnd:listen` host share username password

Setup a Cron job or similar with something like the following two commands:

sudo -u www-data php occ wnd:process-queue host share -c 500 \
 --serializer-type file \
 --serializer-params file=/opt/oc/store1

sudo rm -f /opt/oc/store1 # With a different schedule

The first run will create the /opt/oc/store1 with the serialized storages, the rest of the
executions will use that file. The second Cron job, the one removing the file, will force
the wnd:process-queue to refresh the data.

It’s intended to be run in a different schedule, so there are several executions of the
wnd:process-queue fetching the data from the file. Note that the file can be removed
manually at any time if it’s needed (for example, the admin has reset some passwords,
or has been notified about password changing).

WND Configuration Quick Guide

Installation


If you are using Ubuntu 20.04 as your OS, you will need to add this
repository:

sudo add-apt-repository ppa:ondrej/php

First, you need to install the samba packages and libraries that are required for the
Windows Network Drives app.

590 | External Storage

sudo apt-get update
sudo apt-get install -y smbclient php-smbclient coreutils libsmbclient

Next, you have to enable the Windows Network Drives app, either in the Web Interface
or the command line:

WebUI

The Windows Network Drive app has to be downloaded from in the Market App.
Navigate to the Market app, search for Windows Network Drives and install it.

Commandline

sudo -u www-data php occ market:install windows_network_drive

Configuration

WebUI

Enable external shares:

• Navigate to admin → settings → storage (in the admin section)
• Enable the external storage
• Create a new share and choose Windows network Drives

Configure external share:

• Folder Name: A name for the WND Share
• Authentication: Choose Log-in credentials, save in database
• Host: domain name or IP address
• Share: name of the top share
• Remote Subfolder: enter $user for every user to get a home drive
• Permission Manager: leave empty to use the default one
• Domain: domain name of your server
• Available for: limit access to groups
• Settings: (gear wheel) enable the options you need


If you plan to use ownCloud only in the Web Browser - your setup of
the WND is complete.

If you plan to use a desktop client, you need to continue and configure the WND
listener and WND process queue.

Commandline

Lastly, you need to setup the wnd listener and process queue to propagate the changes
made directly on the storage of your share to the sync client.

This can be done in 2 ways:

• you configure a new systemd service for the istener and setup a process queue cron
job

External Storage | 591

• you setup a cronjob for the wnd:listen command and process queue cron job

WND Listener Configuration

Create a service for systemd following the instructions below that checks the share for
changes:

• For each WND mount point distinguished by a SERVER - SHARE pair:
◦ Place one copy of a file with following content under

/etc/systemd/system/owncloud-wnd-listen-SERVER-SHARE.service
◦ Replace the all upper case words SERVER, SHARE, USER and PASSWORD in both,

the filename and in the contents below with their respective values.
◦ Take care to also adjust the paths in WorkingDirectory and ExecStart according

to your installation.
◦ Password: Create a file readable only by the www-data and outside the

directories handled by apache (let’s suppose in /tmp/mypass). The file must
contain only the password for the share. In this example our file is:
"/tmp/mypass". The listener will read the contents of the file and use them as the
password for the account. This way, only root and the apache user should have
access to the password.

◦ "--password-trim" removes blank characters from the password file added by
3rdparty software or other services.

[Unit]
Description=ownCloud WND Listener for SERVER SHARE
After=syslog.target
After=network.target
Requires=apache2.service
[Service]
User=www-data
Group=www-data
WorkingDirectory=/var/www/owncloud
ExecStart=/usr/bin/php ./occ wnd:listen -vvv SERVER SHARE USER --password
-file=/tmp/mypass --password-trim
Type=simple
StandardOutput=journal
StandardError=journal
SyslogIdentifier=%n
KillMode=process
RestartSec=3
Restart=always
[Install]
WantedBy=multi-user.target

• Run the following command, once for each created file:

sudo systemctl enable owncloud-wnd-listen-SERVER-SHARE.service
sudo systemctl start owncloud-wnd-listen-SERVER-SHARE.service

592 | External Storage

WND Process Queue Configuration

Create or add a crontab file in /etc/cron.d/oc-wnd-process-queue.

• Make a crontab entry to run a script iterating over all SERVER SHARE pairs with an
appropriate occ wnd:process-queue command. The commands must be strictly
sequential. This can be done by using flock -n and tuning the -c parameter of occ
wnd:process-queue

* * * * * sudo -u www-data /usr/bin/php /var/www/owncloud/occ wnd:process-queue
<HOST> <SHARE>

Execution Serialization

Parallel runs of wnd:process-queue might lead to a user lockout. The reason for this, is
that several wnd:process-queue might use the same wrong password because it hasn’t
been updated by the time they fetch it.

It’s recommended to force the execution serialization of the wnd:process-queue
command. You might want to use Anacron, which seems to have an option for this
scenario, or wrap the command with flock.

If you need to serialize the execution of the wnd:process-queue, check the following
example with flock

* * * * * flock -n /tmp/wnd001 occ wnd:process-queue server1 share1
* * * * * flock -n /tmp/wnd002 occ wnd:process-queue server1 share2
* * * * * flock -n /tmp/wnd003 occ wnd:process-queue server2 share3

Troubleshooting

• process queue will not work if there is a backslash in the share path configured in
webui.

If you encounter issues using Windows network drive, then try the following
troubleshooting steps:

Check the connection to the share by using smbclient on the command line of the
ownCloud server. Here is an example:

smbclient -U Username -L //Servername

Take the example of attempting to connect to the share named MyData using occ
wnd:listen. Running the following command would work:

sudo -u www-data php occ wnd:listen MyHost MyData svc_owncloud password

The command is case sensitive, and it must match the information from the mount
point configuration.

• When the output of the occ process-queue .. command shows 0 Storages found,
then this means, that there was no corresponding external storage configuration
found, because:

External Storage | 593

1. The casing between calling the process queue and the web interface does not
exactly match.

2. The authentication method is not correctly configured, it needs to be Log-in
credentials, save in database

Enterprise File Management

In this section you will find all the details you need to configure enterprise file
management in ownCloud..

Advanced File Tagging With the Workflow App

Introduction

The Workflow App enables admins to specify rules and conditions (file size, file
mimetype, group membership and more) to automatically assign tags to uploaded
files. Based on those tags automated file operations ('Workflow actions') like File
Retention (automated file retention periods) can be conducted. The app has three
parts:

• Tag Manager
• Automatic Tagging
• Retention

The Workflow App should be enabled by default (Apps page), and the three
configuration modules will be visible on your ownCloud Admin page. See Tagging Files
in the ownCloud User manual to learn how to apply and filter tags on files.

Tag Manager


To use tag management, administrators need to install and enable the
Collaborative Tags Management app.

The Tag Manager is used for creating new tags, editing existing tags, and deleting
tags. Tags may be marked as Visible, Static, Restricted, or Invisible.

Visible
All users may see, rename, and apply these tags to files and folders.

Static
Only users in the specified groups can assign and un-assign the tag to a file.
However, only admins can rename and edit the tag.

Restricted
Tags are assignable and editable only to the user groups that you select. Other
users can filter files by restricted tags, but cannot tag files with them or rename
them. The tags are marked (restricted).

Invisible
Tags are visible only to ownCloud admins.

To access this functionality, select Settings › Admin › Workflow & Tags.

594 | Enterprise File Management

https://marketplace.owncloud.com/apps/workflow
user_manual:files/webgui/tagging.pdf
https://marketplace.owncloud.com/apps/systemtags_management

This is an example of what your tags look like in the Tags view on your files page.
Non-admin users will not see invisible tags, but visible and restricted tags only.

Automatic Tagging

The Automatic Tagging module operates on newly-uploaded files. Create a set of
conditions, and then when a file or folder matches those conditions it is automatically
tagged. The tag must already have been created with the Tag Manager.

For example, you can assign the invisible tag iOS Uploads to all files uploaded from
iOS devices. This tag is visible only to admins.

Enterprise File Management | 595

When files with this tag are shared with you, you can view them with the Tags filter on
the Files page.

Automatic Tagging is especially useful with the Retention module.

The settings of a workflow can be fine tuned post creation, see the example below:

Retention

The Retention module is your housecleaning power tool, because it automatically
deletes files after a time period that you specify. Select which tag to set a time limit on,
and then set your time limit. File age is calculated from the file mtime (modification
time).


ownCloud does not preserve directory mtimes (modification time),
though it does update file mtimes.

596 | Enterprise File Management

For best performance, retention tags should be applied high in your file hierarchy. If
subfolders have the same tags as their parent folders, their tags must also be
processed, so it will take a little longer.

Retention Engines

There are two retention engines that further allow you to fine-tune your retention
settings:

TagBasedRetention
This is the default setting and checks files that have a particular tag assigned. Then
it checks (depth-first) the children of the tagged item, before continuing with the
other tagged items. Children that have already been checked will not be checked a
second time.

This is optimised for processing smaller numbers of files that have multiple
retention tags.

UserBasedRetention
Examines files per user. It first iterates over all files and folders (siblings first), then
examines the tags for those items and checks their respective retention periods.
This is optimised for many files with few retention tags.

You can define the way that the retention engine behaves by adding the following
config.php setting. The value can be either tagbased (default) or userbased.

'workflow.retention_engine' => 'userbased',

File Lifecycle Management

Introduction

The File Lifecycle Management extension allows service providers to manage the
lifecycle of files within ownCloud to

• keep storage usage under control by limiting the time users can work with files
before they are cleaned up automatically

• comply with regulations (like GDPR or company policies) by imposing automated
retention and deletion policies for files that contain e.g., personal data and may
only be stored in the company for a certain period of time.

To impose a workflow of Use ⇒ Archive ⇒ Delete, the extension equips ownCloud with
a dedicated archive and allows administrators to define rules for automated archiving
(days passed since upload) and subsequent deletion of files (days passed since
archiving). Only files are archived as folders do not consume storage space and
existing folder structures should be kept available. The archiving and deletion
processes are controlled by background jobs.

Enterprise File Management | 597

Depending on the desired level of enforcement, the extension provides two policies to
control the restoration of files from the archive if they are still needed:

• Soft policy: Users can restore files in self-service
• Hard policy: Only administrators or group administrators can restore files on

request

Users can view the lifecycle status for a file and see when the file is scheduled for
archiving or deletion. All lifecycle events of a file are displayed transparently. They can
be tracked for individual files as well as for a whole user account using the Activity
stream.

To stay informed, users can also receive regular Activity summaries by email. For
auditing purposes, the extension integrates with the Auditing app to provide all events
of interest in the logs.

Setup & Configuration

See the lifecycle occ command set for details when using the command line.

Archive Location

By default, archived files are stored within the ownCloud data directory but outside
the users' files directories so that they are not accessible using the Web UI and other
clients.

Type Location

User files /<datadir>/$userid/files

Archived files /<datadir>/$userid/archive/files/

Setting Upload Times for Existing Files

File Lifecycle Management uses the upload time of files (server time at which they
first appeared on the ownCloud server) to determine when to archive them. As
ownCloud Server generally does not store this metadata, the File Lifecycle
Management extension takes care of this when it is enabled.

When File Lifecycle Management is set up on an existing ownCloud installation, you
therefore have to set an upload time for all files that existed before the extension has
been enabled. The same applies if it was temporarily disabled. Only then can the
archiving policies work. To set an upload time for all files that do not yet have one, you
can use the occ command lifecycle:set-upload-time.

 Files without an upload time will not be considered for archiving.


You only have to conduct this process once when setting up File
Lifecycle Management on an installation with existing files or if it was
temporarily disabled . Files added after enabling File Lifecycle
Management will be tracked automatically.

Example to set missing upload time values to November, 1st 2019:

598 | Enterprise File Management

https://marketplace.owncloud.com/apps/activity
https://marketplace.owncloud.com/apps/admin_audit
configuration/server/occ_command.pdf#file-lifecycle-management

sudo -u www-data php occ lifecycle:set-upload-time 2019-11-01

 The extension only considers files. Folder structures are kept available.

Policy Configuration

Overview

File Lifecycle Management uses policies to determine which files to archive and when,
as well as when to expire the files from archive. In addition, a soft and a hard policy
are available to control whether users can restore archived files in self-service or not.

Three options are available for controlling the archiving and expiration policies, all set
via the config:app:set occ command under the files_lifecycle app:

• archive_period - The number of days passed after upload (or restore) that files will
be archived

• expire_period - The number of days passed after archiving that files will be
permanently deleted

• excluded_groups - Allows defining groups of users that are exempt from the
Lifecycle policies (comma-separated group ids)

Example to set the time passed since upload (or restore) for archiving files to 90 days:

sudo -u www-data php occ config:app:set files_lifecycle archive_period --value='90'

To query existing values, use this example command:

sudo -u www-data php occ config:app:get files_lifecycle archive_period

Restoration Policies for Users

Soft Policy

The soft policy aims at use cases where users should be allowed to restore files from
the archive in self-service if they are still needed. It imposes a soft archiving
enforcement but on the other hand relieves IT departments when archived files need
to be restored. The soft policy is used by default. To switch from the hard policy to the
soft policy, use this occ command:

sudo -u www-data php occ config:app:set files_lifecycle policy --value='soft'

Hard Policy

The hard policy is designed to enforce strict controls on user data, forcing archiving
after the defined time and requiring escalated permissions in order to restore. If the
archived data is still needed, users need to get in contact with a privileged manager
and request the restoration.

Enterprise File Management | 599



When the hard policy is in place only administrators (or also group
administrators, depending the configuration) are able to restore files
from the archive by impersonating the respective users. The
Impersonate app has to be installed and enabled as a prerequisite.
Apart from that, system administrators can also use occ commands to
restore data from the archive (see section Restoring Files).

To put the hard policy in place, use this occ command:

sudo -u www-data php occ config:app:set files_lifecycle policy --value='hard'

Archive and Expiration Background Jobs

To put File Lifecycle Management into actual operation, there are two occ commands
for archiving files and for permanently deleting them from the archive. Scanning the
database for files that are due for archiving or expiration, given the chosen policies,
can take some time. For this reason, these jobs are delegated to specific occ
commands which should be executed using CRON on a daily schedule.

Archiving Background Job

To move files scheduled for archiving (days since upload/restore > archive_time) into
the archive, execute the following occ command:

sudo -u www-data php occ lifecycle:archive


There is a dry-run mode (append -d) that simulates the execution of this
command to allow checking the configuration before putting the actual
process in place.

Archive Expiration Background Job

To permanently delete files from the archive that have met the policy rules (days since
archiving > expire_period), execute the following occ command:

sudo -u www-data php occ lifecycle:expire


There is a dry-run mode (append -d) that simulates the execution of this
command to allow checking the configuration before putting the actual
process in place.

Restoring Files

If archived files are still needed, users can restore them in self-service (soft policy) or
have to request the restoration via privileged managers (hard policy).


When files have been restored, they can again be used for the same
amount of time as they were initially available.

Apart from that, system administrators can restore files from the archive using the occ
command lifecycle:restore:

600 | Enterprise File Management

https://marketplace.owncloud.com/apps/impersonate

Restoration by Path

When a user alice requests to restore all files, e.g., in the folder
/work/projects/project1, a system administrator can execute the following command:

sudo -u www-data php occ lifecycle:restore
/alice/archive/files/work/projects/project1

Restoring All Files from All Archives

File Lifecycle Management provides a way to restore all files from all archives back to
their owners' file directories. To do this, system administrators can use the restore-all
occ command:

sudo -u www-data php occ lifecycle:restore-all

The command will restore all files from all users and report on the progress.


There is a dry-run mode (append -d) that simulates the execution of this
command to allow checking the configuration before putting the actual
process in place.

Enabling/Disabling the User Interface Components

In some scenarios it can be desired to disable the whole user interface for this app.
This can be done by setting the following configuration value:

sudo -u www-data php occ config:app:set files_lifecycle disable_ui --value='yes'

To enable the user interface components again, this config value needs to be removed:

sudo -u www-data php occ config:app:delete files_lifecycle disable_ui

Audit Events

During archiving, restoring and expiration, Audit events are emitted. Logging those to
the audit.log requires the minimum version 2.0.0 of the Auditing app.

Further Notes about Archived Files

• File shares will disappear after archiving. When restoring archived files, shares will
also be restored.

• Users' archives currently can’t be transferred with the occ command transfer-
ownership

• Files within a user’s trash bin are not archived. The regular trash bin deletion
policies have to be used to take care of those.

• Archived files count towards the user’s quota

Enterprise Firewall Configuration

In this section you will find all the details you need to configure enterprise firewall

Enterprise Firewall Configuration | 601

https://marketplace.owncloud.com/apps/admin_audit

configuration in ownCloud appliance..

File Firewall

Introduction

The File Firewall GUI enables you to manage firewall rule sets. You can find it in your
ownCloud admin page, under Admin › Security. The File Firewall lets you control
access and sharing in fine detail, by creating rules for allowing or denying access
restrictions based on: group, upload size, client devices, IP address, time of day, as
well as many more criteria. In addition to these restriction options, the File Firewall
app also supports rules based on regular expressions.

How the File Firewall Works

Each firewall rule set consists of one or more conditions. If a request matches all of
the conditions, in at least one rule set, then the request is blocked by the firewall.
Otherwise, the request is allowed by the firewall.


The File Firewall app cannot lock out administrators from the web
interface when rules are misconfigured.

Using the File Firewall

Figure 1 shows an empty firewall configuration panel. Set your logging level to
Blocked Requests Only for debugging, and create a new rule set by clicking [Add
Group]. After setting up your rules you must click [Save Rules].

Figure 2 shows two rules. The first rule, No Support outside office hours, prevents
members of the support group from logging into the ownCloud Web interface from
5pm-9am, and also blocks client syncing. The second rule prevents members of the
"qa-team" group from accessing the Web UI from IP addresses that are outside of the
local network.

602 | Enterprise Firewall Configuration

http://www.regular-expressions.info/

All other users are not affected, and can log in anytime from anywhere.

Available Conditions

User Group

The user (is|is not) a member of the selected group.

User Agent

The User-Agent of the request (matches|does not match) the given string.

User Device

A shortcut for matching all known (android | ios | desktop) sync clients by their User
Agent string.

Request Time

The time of the request (has to|must not) be in a single range from beginning time to
end time.

Request URL

The full page URL (has to contain) with a given string.

Request Type

The request (is a public link share|other) request.

Enterprise Firewall Configuration | 603

Request IP Range (IPv4) and IP Range (IPv6)

The request’s REMOTE_ADDR header (is|is not) matching the given IP range.

File Size Upload

When a file is uploaded the size has to be (less|greater or equal) to the given size.

File Mimetype Upload

Block a request based on the mimetype of a file being uploaded. The match can be the
complete mimetype, part of the mimetype from the start or end of the mimetype.
Negative matches are also supported; i.e., all mimetypes that don’t match the supplied
mimetype, or all mimetypes that don’t start or end with the partial mimetype supplied.

The full list of conditions is (File mimetype upload):

• is
• is not
• begins with
• doesn’t begin with
• ends with
• doesn’t end with


The complete list of available mimetypes which ownCloud supports is
available in the ownCloud core source.

Common Mimetypes

suffix mimetype

avi video/x-msvideo

exe application/x-ms-dos-executable

flv video/x-flv

mp4 video/mp4

mkv video/x-matroska

msi application/x-msi

php application/x-php

System File Tag

One of the parent folders or the file itself (is|is not) tagged with a System tag.

Regular Expression

The File Firewall supports regular expressions, allowing you to create custom rules
using the following conditions:

• IP Range (IPv4)
• IP Range (IPv6)
• User agent
• User group

604 | Enterprise Firewall Configuration

https://github.com/owncloud/core/blob/master/resources/config/mimetypemapping.dist.json

• Request URL

You can combine multiple rules into one rule, e.g., if a rule applies to both the support
and the qa-team you could write your rule like this:

Regular Expression > ^(support|qa-team)$ > is > User group


We do not recommend modifying the configuration values directly in
your config.php. These use JSON encoding, so the values are difficult to
read and a single typo will break all of your rules.

Controlling Access to Folders

The easiest way to block access to a folder, starting with ownCloud 9.0, is to use a
system tag. A new rule type was added which allows you to block access to files and
folders, where at least one of the parents has a given tag.

Now you just need to add the tag to the folder or file, and then block the tag with the
File Firewall. This example blocks access to any folder with the tag "Confidential" from
outside access.

Block by System Tag:

System file tag: is "Confidential"
IP Range (IPv4): is not "192.168.1.0/24"

Logging

Firewall logging can be set to Off, Blocked Requests Only or All Requests

Off

The firewall blocks requests according to the defined rules but does not log any of its
actions.

Blocked Requests Only

The firewall logs blocked requests to the system log at warning level. To see these
logs, the system log level must be set to a minimum level of warning.

Enterprise Firewall Configuration | 605

All Requests

The firewall logs blocked and successful requests to the system log at warning and
info levels respectively. To see all these logs, the system log level must be set to a
minimum level of info.


Logging all requests can generate a large amount of log data. It is
recommended to only select all requests for short-term checking of rule
settings.

Custom Configuration for Branded Clients

If you are using branded ownCloud clients, you may define firewall.branded_clients in
your config.php to identify your branded clients in the firewall "User Device" rule.

The configuration is a User-Agent ⇒ Device map. Device must be one of the following:

• android
• android_branded
• ios
• ios_branded
• desktop
• desktop_branded

The User-Agent is always compared all lowercase. By default the agent is compared
with equals. When a trailing or leading asterisk, , is found, the agent is compared with
starts with or ends with. If the agent has both a leading and a trailing , the string must
appear anywhere. For technical reasons the User-Agent string must be at least 4
characters, including wildcards. When you build your branded client you have the
option to create a custom User Agent.

In this example configuration you need to replace the example User Agent strings, for
example 'android_branded', with your own User Agent strings:

// config.php

'firewall.branded_clients' => array(
 'my ownbrander android user agent string' => 'android_branded',
 'my ownbrander second android user agent string' => 'android_branded',
 'my ownbrander ios user agent string' => 'ios_branded',
 'my ownbrander second ios user agent string' => 'ios_branded',
 'my ownbrander desktop user agent string' => 'desktop_branded',
 'my ownbrander second desktop user agent string' => 'desktop_branded',
),

The Web UI dropdown then expands to the following options:

• Android Client - always visible
• iOS Client - always visible
• Desktop Client - always visible
• Android Client (Branded) - visible when at least one android_branded is defined
• iOS Client (Branded) - visible when at least one ios_branded is defined

606 | Enterprise Firewall Configuration

enterprise/clients/creating_branded_apps.pdf

• Desktop Client (Branded) - visible when at least one desktop_branded is defined
• All branded clients - visible when at least one of android_branded, ios_branded or

desktop_branded is defined
• All non-branded clients - visible when at least one of android_branded, ios_branded

or desktop_branded is defined
• Others (Browsers, etc.) - always visible

Then these options operate this way:

• The * Client options only match android, ios and desktop respectively.
• The * Client (Branded) options match the *_branded agents equivalent.
• All branded clients matches: android_branded, ios_branded and desktop_branded
• All non-branded clients matches: android, ios and desktop

Installing & Upgrading ownCloud Enterprise Edition

Introduction

After you have completed your initial installation of ownCloud as detailed in the
README, follow the instructions in The Installation Wizard to finish setting up
ownCloud. To upgrade your Enterprise server, refer to How to Upgrade Your ownCloud
Server.

Manual Installation

Download the ownCloud archive from your account at https://customer.owncloud.com/
owncloud, then follow the instructions at Manual Installation on Linux.

SELinux

Linux distributions that use SELinux need to take some extra steps so that ownCloud
will operate correctly under SELinux. Please see SELinux Configuration for some
recommended configurations.

License Keys

Introduction

You need to install a license key to use ownCloud Enterprise Edition. There are two
types of license keys: one is a free 30-day trial key. The other is a full license key for
Enterprise customers.

You can download and try ownCloud Enterprise for 30 days for free, which auto-
generates a free 30-day key. When this key expires your ownCloud installation is not
removed, so if you become an Enterprise customer you can enter your new key to
regain access. See How to Buy ownCloud for sales and contact information.

Configuration

Once you get your Enterprise license key, it needs to be copied to your ownCloud
configuration file config/config.php like in this example:

'license-key' => 'test-20150101-
XXX-YYYYYY',

Installing & Upgrading ownCloud Enterprise Edition | 607

installation/installation_wizard.pdf
maintenance/upgrade.pdf
maintenance/upgrade.pdf
https://customer.owncloud.com/owncloud
https://customer.owncloud.com/owncloud
installation/manual_installation.pdf
installation/selinux_configuration.pdf
https://owncloud.com/download/
https://owncloud.com/how-to-buy-owncloud/

It is also possible to activate your Enterprise Edition on the webUI. Open owncloud
and navigate to:

settings > admin-settings > general

Copy your license key into the field Enter a new license: and click Save to confirm.

Each running instance of ownCloud requires a license key. Keys will work across
upgrades without issue, so new keys will not be required when you upgrade your
ownCloud Enterprise to a new version.

Supported ownCloud Enterprise Edition Apps

See Supported Apps in ownCloud for a list of supported apps.


3rd party and unsupported apps must be disabled before performing a
system upgrade. Then install the upgraded versions, and after the
upgrade is complete re-enable them.

Oracle Database Setup & Configuration

Introduction

This document will cover the setup and preparation of the ownCloud server to support
the use of Oracle as a backend database.

Outline of Steps

This document will cover the following steps:

• Setup of the ownCloud user in Oracle: This involves setting up a user space in
Oracle for setting up the ownCloud database.

• Installing the Oracle Instant Client on the Web server (facilitating the connection to
the Oracle Database).

• Compiling and installing the Oracle PHP Plugin oci8 module
• Pointing ownCloud at the Oracle database in the initial setup process

The document assumes that you already have your Oracle instance running, and have
provisioned the needed resources. It also assumes that you have installed ownCloud
with all of the prerequisites.

Configuring Oracle

Setting up the User Space for ownCloud

Step one, if it has not already been completed by your DBA (DataBase Administrator),
provision a user space on the Oracle instance for ownCloud. This can be done by
logging in as a DBA and running the script below:

CREATE USER owncloud IDENTIFIED BY password;
ALTER USER owncloud DEFAULT TABLESPACE users TEMPORARY TABLESPACE
temp QUOTA unlimited ON users;
GRANT create session, create table, create procedure, create sequence,
create trigger, create view, create synonym, alter session TO owncloud;

608 | Installing & Upgrading ownCloud Enterprise Edition

installation/apps_supported.pdf

Substitute an actual password for password. Items like TableSpace, Quota etc., will be
determined by your DBA (database administrator).

Add OCI8 Client Packages

Installation of the OCI8 client is dependent on your distribution. Given that, please use
the relevant section below to find the relevant instructions to install the client.

Ubuntu

If you’re using Ubuntu, we recommend that you use this very thorough guide from the
Ubuntu Community Wiki to install the OCI8 extension.


This should work for other Debian-based distributions, however your
mileage may vary.

RedHat / Centos / Fedora

To install the OCI8 extension on a RedHat-based distribution, you first need to
download two Oracle Instant Client packages:

• Instant Client Package - Basic (oracle-instantclient12.2-basic-12.2.0.1.0-
1.x86_64.rpm)

• Instant Client Package - SDK (oracle-instantclient12.2-devel-12.2.0.1.0-
1.x86_64.rpm)

Then, to install them, use the following commands:

rpm --install oracle-instantclient12.2-basic-12.2.0.1.0-1.x86_64.rpm \
 oracle-instantclient12.2-devel-12.2.0.1.0-1.x86_64.rpm

Install the OCI8 PHP Extension

With the Oracle packages installed you’re now ready to install PHP’s OCI8 extension.


Provide: instantclient,/usr/lib/oracle/12.2/client64/lib when requested, or
let it auto-detect the location (if possible).

pecl install oci8

With the extension installed, you now need to configure it, by creating a configuration
file for it. You can do so using the command below, substituting FILE_PATH with one
from the list below the command.

cat << EOF > FILE_PATH
; Oracle Instant Client Shared Object extension
extension=oci8.so
EOF

Configuration File Paths

Installing & Upgrading ownCloud Enterprise Edition | 609

Debian & Ubuntu

PHP Version Filename

7.2 /etc/php/7.2/apache2/conf.d/20-oci.ini

RedHat, Centos, & Fedora

PHP Version Filename

7.2 /etc/opt/rh/rh-php72/php.d/20-oci8.ini

Validating the Extension

With all that done, confirm that it’s been installed and available in your PHP
distribution, run the following command:

php -m | grep -i oci8

When the process has completed, assuming that you don’t encounter any errors,
restart Apache and the extension is ready to use.

Configure ownCloud

The next step is to configure the ownCloud instance to point to the Oracle Database,
again this document assumes that ownCloud has previously been installed.

Configuration Wizard

610 | Installing & Upgrading ownCloud Enterprise Edition

Database user

This is the user space created in step 2.1. In our Example this would be owncloud.

Database password

Again this is defined in the script from section 2.1 above, or pre-configured and
provided to you by your DBA.

Database Name

Represents the database or the service that has been pre-configured on the TSN
Listener on the Database Server. This should also be provided by the DBA. In this
example, the default setup in the Oracle install was orcl (there is a TSN Listener entry
for orcl on our database server).

This is not like setting up with MySQL or SQL Server, where a database based on the

Installing & Upgrading ownCloud Enterprise Edition | 611

name you give is created. The oci8 code will call this specific service and it must be
active on the TSN Listener on your Oracle Database server.

Database Table Space

Provided by the DBA. In this example the users table space (as is seen in the user
creation script above), was used.

Configuration File

Assuming all of the steps have been followed to completion, the first run wizard should
complete successfully, and an operating instance of ownCloud should appear.

The configuration file should look something like this:

Useful SQL Commands

Is my Database Reachable?

On the machine where your Oracle database is installed, type:

sqlplus username

SQL> select * from v$version;

BANNER
--
Oracle Database 11g Express Edition Release 11.2.0.2.0 - 64bit Production
PL/SQL Release 11.2.0.2.0 - Production
CORE 11.2.0.2.0 Production
TNS for Linux: Version 11.2.0.2.0 - Production
NLSRTL Version 11.2.0.2.0 - Production

SQL> exit

Show Database Users:

Oracle : SELECT * FROM all_users;

Show available Databases:

Oracle : SELECT name FROM v$database; (requires DBA privileges)

Show ownCloud Tables in Database:

Oracle : SELECT table_name FROM user_tables;

Quit Database:

612 | Installing & Upgrading ownCloud Enterprise Edition

Oracle : quit

Enterprise Logging Configuration

In this section you will find all the details you need to configure enterprise logging
configuration in ownCloud.

Enterprise Logging Apps

The Log user and file sharing actions app (apps/admin_audit) records the file
sharing activity of your users, file tagging, and user logins and logouts.

Your logging level must be set to at least Info, warnings, errors, and fatal issues on
your ownCloud admin page, or 'loglevel' ⇒ 1 in config.php.

View your logfiles on your admin page. Click the Download logfile button to dump
the plain text log, or open the logfile directly in a text editor. The default location is
owncloud/data/owncloud.log.


See Logging Configuration and File Tagging for more information on
logging and tagging.

Enterprise Reporting

In this section you will find all the details you need to setup reporting for the
ownCloud Enterprise installation.

Metrics

Introduction

The Metrics App provides a building block for reporting of ownCloud Server. For
simple use cases, it ships with an integrated dashboard that summarizes information
about users, storage as well as shares and allows exporting it to a CSV file.
Additionally, it adds a Metrics HTTP API endpoint to ownCloud Server, which can be
used to obtain the Metrics data in regular intervals. Thus, more sophisticated analysis
and visualizations can be conducted.

The Metrics data are provided as snapshot values in the JSON format and are
optimized to be consumed by professional data analyzers (like Splunk, ELK or
Prometheus/Grafana) to collect statistics, derive visualizations and to set alerts for
certain events of interest. They can be perfectly combined with the ownCloud Audit
Logs (provided by the Auditing App) to gather time series data and to create a
reporting engine for ownCloud.

Enterprise Logging Configuration | 613

configuration/server/logging/logging_configuration.pdf
enterprise/file_management/files_tagging.pdf
https://marketplace.owncloud.com/apps/metrics
https://marketplace.owncloud.com/apps/admin_audit

Specifically, the extension adds:

• an API endpoint which allows querying snapshot values of the system data as well
as per-user data

• an API endpoint for downloading the data in the CSV format
• a dashboard that displays the snapshot data in the ownCloud Web UI and offers a

CSV download (accessible by ownCloud administrators via the app launcher)



Please note: If you’re operating very large instances
(users/files/shares,) it is recommended to use a special setup in order to
not put the production database under huge load when gathering the
values. For this, please replicate your installation (application server +
read-only database) and install/use the Metrics App on the replica.

The following data is available:

System data
• Date/Time stamp - Server time of the request
• Storage

◦ Used storage (this also includes storage for avatars and thumbnails)
◦ Free storage
◦ Total storage (used + free)
◦ Number of files

• Number of users
◦ registered (total number of known users)
◦ active (number of users with lastLogin less than two weeks ago)
◦ concurrent (number of users with at least one active session)

• Shares
◦ Number of user shares
◦ Number of group shares
◦ Number of guest shares
◦ Number of link shares
◦ Number of federated shares

Per-user data
• User ID
• Display name
• User backend
• Last login
• Active sessions
• Quota

◦ Quota limit
◦ Quota usage

• Number of files
• Shares

◦ Number of user shares

614 | Enterprise Reporting

◦ Number of group shares
◦ Number of guest shares
◦ Number of link shares
◦ Number of federated shares

Usage

Authorization

To get started, you have to set a secret for authenticating requests at the endpoint.

See the following example on how to set it:

sudo -u www-data php occ config:system:set "metrics_shared_secret" --value
"<your-metrics-secret>"


Please make up a passphrase here referred to as <your-metrics-
secret>. You have to set the Metrics secret to use the dashboard.


This token gets stored in config.php as metrics_shared_secret, which
could also be done manually instead of using this occ command.

Endpoints and Parameters

Metrics Endpoint

To query for the Metrics data, use the following endpoint:

https://<your owncloud>/ocs/v1.php/apps/metrics/api/v1/metrics

• URL Parameters
◦ users=true
◦ shares=true
◦ quota=true
◦ userData=true
◦ format=json

• Header "OC-MetricsApiKey: <your-metrics-secret>"

Except for the header, all other parameters are optional. You can split the query into
parts by setting the respective parameters to false.

See the curl example to request the complete output:

curl -H "OC-MetricsApiKey: <your-metrics-secret>" \
 "https://<your owncloud>/ocs/v1.php/apps/metrics/api/v1/metrics?users=
true&files=true&shares=true"a=true&userData=true&format=json"

Enterprise Reporting | 615


Please replace <your-metrics-secret> with your respective system
config value and <your owncloud> with the URL of your ownCloud
instance.

CSV Download Endpoint

Downloading the current user metrics as a CSV file is possible through the Web UI.
However, if you want to set up a cronjob for downloading the metrics regularly without
admin permissions, there is also a public endpoint that requires the configured token
instead of admin privileges.

See the curl example to request a CSV file:

curl -H "OC-MetricsApiKey: <your-metrics-secret>" \
 -H "Content-Type: application/csv" \
 -X GET https://<your owncloud>/index.php/apps/metrics/download-api > \
 /path/to/download/metrics.csv


Please replace <your-metrics-secret> with your respective system
config value and <your owncloud> with the URL of your ownCloud
instance.

Limitations

The Metrics app was designed for ownCloud deployments up to 250 users. On
deployments with more than 250 users, it can take considerably longer to gather the
requested data. To reduce the time needed, exclude userData and quota.

Enterprise Security

In this section you will find all the details you need to configure enterprise security in
ownCloud.

Ransomware Protection

Introduction

Ransomware is an ever-present threat, both for large enterprises as well as for
individuals. Once infected, a whole hard disk (or just parts of it) can become
encrypted, leading to unrecoverable data loss.

Once this happens, attackers usually ask victims to pay a ransom, often via
cryptocurrencies such as Bitcoin, in exchange for the decryption key required to
decrypt their data.

While paying the ransom works in some cases, it is not recommended, as there is no
guarantee that the attackers will supply the key after payment is made. To help
mitigate such threats and ensure ongoing access to user data, ownCloud provides the
Ransomware Protection app.


It is essential to be aware that user data needs to be synchronized with
you ownCloud Server using the ownCloud Desktop synchronization
client. Data that is not synchronized and stored in ownCloud cannot be
protected.

616 | Enterprise Security

https://www.google.de/search?q=ransomware&source=lnms&tbm=nws&sa=X&ved=0ahUKEwiqmvL9rdfXAhWCyaQKHSkgDosQ_AUICigB&biw=1680&bih=908

About Ransomware Protection

The app is tasked with detecting, preventing, and reverting anomalies. Anomalies are
file operations (including create, update, delete, and move) not intentionally
conducted by the user. It aims to do so in two ways: prevention, and protection.

Prevention: Blocking Common Ransomware File Extensions

Like other forms of cyberattack, ransomware has a range of diverse characteristics.
On the one hand it makes them hard to detect and on the other it makes them even
harder to prevent. Recent ransomware attacks either encrypt a user’s files and add a
specific file extension to them (e.g., .crypt), or they replace the original files with an
encrypted copy and add a particular file extension.

File Extension Blacklist

The first line of defense against such threats is a blacklist that blocks write access to
file extensions known to originate from ransomware.

Ransomware Protection ships with a static extension list of more than 3,000 file
extensions. As new extensions are regularly created, this list also needs to be regularly
reviewed and updated. Future releases of Ransomware Protection will include an
updated list and the ability to update the list via syncing with FSRM’s API by using an
occ command


Please check the provided ransomware blacklist! It is strongly
recommended to check the provided ransomware blacklist to ensure
that it fits your needs. In some cases, the patterns might be too generic
and result in false positives.

File Blocking

The second line of defense is file blocking. As files are uploaded, they are compared
against the file extension blacklist. If a match is found, the upload is denied.

 File blocking is always enabled.

Account Locking

The third line of defense is account locking. If a client uploads a file matching a
pattern in the ransomware blacklist, the account is locked (set as read-only) for client
access (create, change, move, and delete operations). Doing this prevents further,
malicious, changes.

Following this, clients receive an error (403 Access Forbidden) which notifies the user
that the account is locked by Ransomware Protection.


Write access (e.g., moving and deleting files) is still possible for users
when they log in with their web browser.

When an account is locked, administrators can unlock the account using the occ
ransomguard:unlock command. Administrators can also manually lock user accounts,
using the occ ransomguard:lock command.


When an account is locked, it will still be fully usable from the
ownCloud web UI. However, ownCloud clients (as well as other
WebDAV clients) will see the account as set to read-only mode.

Users will see a yellow notification banner in the ownCloud web UI directing them to

Enterprise Security | 617

https://fsrm.experiant.ca
https://fsrm.experiant.ca/api/v1/combined
configuration/server/occ_command.pdf

Settings › Personal › Security (Ransomware detected: Your account is locked (read-
only) for client access to protect your data. Click here to unlock.), where additional
information is displayed and users can unlock their account when ransomware issues
are resolved locally.


Locking is enabled by default. If this is not desired, an administrator
can disable it in the Settings › Admin › Security panel.

Protection: Data Retention and Rollback

While Ransomware Prevention mitigates risks of a range of ransomware attacks, it is
not a future-proof solution, because ransomware is becoming ever-more sophisticated.
There are known attacks that change file extensions randomly or keep them
unchanged which makes them harder to detect.

Ultimately there is a consensus that only one solution can provide future-proof
protection from ransomware attacks: retaining data and providing the means to roll
back to a particular point in time.

ownCloud Ransomware Protection will, therefore, record all changes on an ownCloud
Server and allow administrators to rollback user data to a particular point in time,
making use of ownCloud’s integrated Versioning and Trash bin features.

Doing so allows all user data that is synchronized with the server to be rolled back to
its state before the attack occurred. A combination of Ransomware prevention and
protection reduces risks to a minimum acceptable level.

Other Elements of Ransomware Protection

Name Command (if applicable) Description

Ransomware Prevention
(Blocker)

First line of defense against
ransomware attacks.
Ransomware Protection
uses a file name pattern
blacklist to prevent
uploading files that have
file extensions associated
with ransomware (e.g.
.crypt) thereby preserving
the original files on the
ownCloud Server.

Ransomguard Scanner occ ransomguard:scan
<timestamp> <user>

A command to scan the
ownCloud database for
changes in order to
discover anomalies in a
user’s account and their
origin. It enables an
administrator to determine
the point in time where
undesired actions
happened as a prerequisite
for restoration.

618 | Enterprise Security

Name Command (if applicable) Description

Ransomguard Restorer occ ransomguard:restore
<timestamp> <user>

A command for
administrators to revert all
operations in a user
account that occurred after
a certain point in time.

Ransomguard Lock occ ransomguard:lock
<user>

Set a user account as read-
only for ownCloud and
other WebDAV clients. This
prevents any further
changes to the account.

Ransomguard Unlock occ ransomguard:unlock
<user>

Unlock a user account
which was set to read-only.

<timestamp> must be in the Linux timestamp format.

Requirements

Mandatory

1. File Firewall rule (previous approach for ransomware protection). If you
have configured the File Firewall rule which was provided as a preliminary
protection mechanism, please remove it. The functionality (Blocking) is covered by
Ransomware Protection in an improved way.

2. Ransomware Protection. Ransomware protection needs to be in operation before
an attack occurs, as it needs to record file operations to be able to revert them, in
case of an attack.

3. ownCloud Versions App. Required to restore older file versions. The capabilities
of Ransomware Protection depend on its configuration regarding version retention.

4. ownCloud Trash Bin App. Required to restore deleted files. The capabilities of
Ransomware Protection depend on its configuration regarding trash bin retention.

Optional

1. Activity app. For viewing activity logs.

Limitations

• Ransomware Protection works with master-key based storage encryption. With
credential-based storage encryption, only Ransomware Prevention (Blocking)
works.

• Rollback is not based on snapshots:
◦ The trash bin retention policy may delete files, making them unrecoverable. To

avoid this, set trashbin_retention_obligation to disabled, or choose a
conservative policy for trash bin retention. However, please be aware that this
may increase storage requirements.

◦ Trash bin items may be deleted by the user making them unrecoverable by
Ransomware Protection ⇒ Users need to know this.

◦ Versions have a built-in thin-out policy which makes it possible that required file
versions are unrecoverable by Ransomware Protection. To help avoid this, set
versions_retention_obligation to disabled or choose a conservative policy for
version retention. Please be aware that this might increase your storage needs.

• A specific version of a file that is needed for rollback might have been manually
restored, making this version potentially unrecoverable by Ransomware Protection.

Enterprise Security | 619

admin_manual:configuration/server/config_sample_php_parameters.pdf#deleted-items-trash-bin
admin_manual:configuration/server/config_sample_php_parameters.pdf#file-versions
admin_manual:configuration/server/config_sample_php_parameters.pdf#file-versions
admin_manual:configuration/server/config_sample_php_parameters.pdf#file-versions

Currently, after restoration the restored version is not a version anymore, e.g., the
version is not present in versioning.

• Recovery capabilities in received shared folders are currently limited. Changed file
contents and deletions can be restored but MOVE operations can’t. The case when
a ransomware attack renames files in a received shared folder is therefore not yet
covered.

• Contents in secondary storages, such as Windows network drives, Dropbox, and
Google Drive, are unrecoverable by Ransomware Protection, because they do not
have versioning or trash bin enabled in ownCloud.

• Rolling files forward is not currently supported or tested. Therefore it is vital to:
◦ Carefully decide the point in time to rollback to.
◦ To have proper backups to be able to conduct the rollback again, if necessary.

Enterprise Server Branding

In this section you will find all the details you need to configure enterprise server
branding in ownCloud.

Enterprise Server Branding

ownBrander is an ownCloud build service that is exclusive to Enterprise edition
customers for creating branded ownCloud clients and servers. You may brand your
ownCloud server using ownBrander to easily build a custom theme, using your own
logo and artwork. ownCloud has always been theme-able, but it was a manual process
that required editing CSS and PHP files. Now Enterprise customers can use
ownBrander, which provides an easy graphical wizard.

You need an Enterprise subscription, an account on customer.owncloud.com, and the
ownBrander app enabled on your account. When you complete the steps in the wizard
the ownBrander service builds your new branded theme, and in 24-48 hours you’ll see
it in your account.

When you open the ownBrander app, go to the Web tab. You will see an introduction
and the wizard, which starts with uploading your logo. You will need a number of
images in specific sizes and formats, and the wizard tells you what you need. Example
images are on the right, and you can click to enlarge them.

If you see errors when you upload SVG files, such as "Incorrect extension. File type
image/svg+xml is not correct", "This SVG is invalid", or "Error uploading file: Incorrect
size", try opening the file in Inkscape then save as "Plain SVG" and upload your SVG
image again.

The wizard has two sections. The first section contains all the required elements: logos
and other artwork, colors, naming, and your enterprise URL. The Suggested section
contains optional items such as additional logo placements and custom URLs.

When you are finished, click the Generate Web Server button. If you want to change
anything, go ahead and change it and click the Generate Web Server button. This
will override your previous version, if it has not been created yet.In 24-48 hours you’ll
find your new branded theme in the Web folder in your Customer.owncloud.com
account.

Inside the Web folder you’ll find a themes folder. Copy this to your owncloud/themes

620 | Enterprise Server Branding

developer_manual:core/theming.pdf
https://customer.owncloud.com/owncloud
https://inkscape.org/en/
https://customer.owncloud.com/owncloud

directory. You may name your themes folder anything you want, for example
myBrandedTheme. Then configure your ownCloud server to use your branded theme
by entering it in your config.php file:

"theme" => "myBrandedTheme"

If anything goes wrong with your new theme, comment out this line to re-enable the
default theme until you fix your branded theme. The branded theme follows the same
file structure as the default theme, and you may further customize it by editing the
source files.

Always edit only your custom theme files. Never edit the default theme files.

Enterprise User Management

In this section you will find all the details you need to configure enterprise user
management in ownCloud.

• Shibboleth Integration
• SAML 2.0 Based SSO

Shibboleth Integration

Introduction

The ownCloud Shibboleth user backend application integrates ownCloud with a
Shibboleth Service Provider (SP) and allows operations in federated and single-sign-on
(SSO) infrastructures. Setting up Shibboleth has two big steps:

1. Enable and configure the Apache Shibboleth module.
2. Enable and configure the ownCloud Shibboleth app.

The Apache Shibboleth module

Currently supported installations are based on the native Apache integration. The
individual configuration of the service provider is highly dependent on the operating
system, as well as on the integration with the Identity Providers (IdP), and require
case-by-case analysis and installation.

A good starting point for the service provider installation can be found in the official
Shibboleth Wiki.

A successful installation and configuration will populate Apache environment variables
with at least a unique user id which is then used by the ownCloud Shibboleth app to
login a user.

Apache Configuration

This is an example configuration as installed and operated on a Linux server running
the Apache 2.4 Web server. These configurations are highly operating system specific
and require a high degree of customization.

The ownCloud instance itself is installed in /var/www/owncloud/. Further Shibboleth
specific configuration as defined in /etc/apache2/conf.d/shib.conf.

Enterprise User Management | 621

enterprise/user_management/user_auth_shibboleth.pdf
enterprise/user_management/saml_2.0_sso.pdf
https://en.wikipedia.org/wiki/Shibboleth_(Shibboleth_Consortium)
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPApacheConfig
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPLinuxInstall
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPLinuxInstall

Load the Shibboleth module.
LoadModule mod-shib /usr/lib64/shibboleth/mod_shib_24.so

Ensure handler will be accessible
<Location /Shibboleth.sso>
 AuthType None
 Require all granted
</Location>

always fill env with shib variable for logout url
<Location />
 AuthType shibboleth
 ShibRequestSetting requireSession false
 Require shibboleth
</Location>

authenticate only on the login page
<Location ~ "^(/index.php)?/login">
 # force internal users to use the IdP
 <If "-R '192.168.1.0/24'">
 AuthType shibboleth
 ShibRequestSetting requireSession true
 require valid-user
 </If>
 # allow basic auth for eg. guest accounts
 <Else>
 AuthType shibboleth
 ShibRequestSetting requireSession false
 require shibboleth
 </Else>
</Location>

shib session for css, js and woff not needed
#
WARNING!!!: The following lines could potentially override other location
statements
made in other Apache config-files depending on include-order.
Please double-check your Apache config by consulting the Apache debug-log.
<Location ~ "/.*\.(css|js|woff)">
 AuthType None
 Require all granted
</Location>

To allow users to login via the IdP, add a login alternative with the login.alternatives
option in config/config.php. Depending on the ownCloud Shibboleth app mode, you
may need to revisit this configuration.

The ownCloud Shibboleth App

After enabling the Shibboleth app on your Apps page, you need to choose the app

622 | Enterprise User Management

mode and map the necessary Shibboleth environment variables to ownCloud user
attributes on your Admin page.

Choosing the App Mode

After enabling the app it will be in Not active mode, which ignores a Shibboleth
session and allows you to login as an administrator and inspect the currently available
Apache environment variables. Use this mode to set up the environment mapping for
the other modes, and in case you locked yourself out of the system. You can also
change the app mode and environment mappings by using the occ command, like this
example on Ubuntu Linux:

sudo -u www-data php occ shibboleth:mode notactive
sudo -u www-data php occ shibboleth:mapping --uid login

Enterprise User Management | 623

In Single sign-on only mode the app checks if the environment variable for the
Shibboleth session, by default Shib-Session-Id, is set. If that is the case it will take
the value of the environment variable as the uid, by default eppn, and check if a user is
known by that uid. In effect, this allows another user backend, e.g., the LDAP app, to
provide the displayname, email and avatar.

As an example the IdP can send the userPrincipalName which the Apache Shibboleth
module writes to a custom Apache environment variable called login. The ownCloud
Shibboleth app reads that login environment variable and tries to find an LDAP user
with that username. For this to work userPrincipalName needs to be added to the
Additional Search Attributes in the LDAP directory settings on the advanced tab.
We recommend using a scoped login attribute like userPrincipalName or mail because
otherwise the search might find multiple users and prevent login.

In many scenarios Shibboleth is not intended to hide the user’s password from the
service provider, but only to implement SSO. If that is the case it is sufficient to protect
the ownCloud base URL with Shibboleth. This will send Web users to the IdP but allow
desktop and mobile clients to continue using username and password, preventing
popups due to an expired Shibboleth session lifetime.

In Autoprovision Users mode the app will not ask another user backend, but instead
provision users on the fly by reading the two additional environment variables for
display name and email address.



In ownCloud 8.1 the Shibboleth environment variable mapping was
stored in apps/user_shibboleth/config.php. This file was overwritten on
upgrades, preventing a seamless upgrade procedure. In ownCloud 8.2+
the variables are stored in the ownCloud database, making Shibboleth
automatically upgradeable.

624 | Enterprise User Management

configuration/user/user_auth_ldap.pdf

Mapping ownCloud User IDs

From 3.1.2 you can now specify a mapper that is used on inbound ownCloud user IDs,
to adjust them before usage in ownCloud. You can set the mapper using occ:

sudo -u www-data php occ config:app:set user_shibboleth \
 uid_mapper --value="OCA\User_Shibboleth\Mapper\ADFSMapper"

You may view the currently configured mapper using:

sudo -u www-data php occ shibboleth:mapping

The following mappers are provided with the app:

Class Description

OCA\User_Shibboleth\Mapper\NoOpMapper The default, does not alter the UID

OCA\User_Shibboleth\Mapper\ADFSMapper Splits the UID around a ; character and
takes the first piece

OCA\User_Shibboleth\Mapper\GUIDInMemo
ryMapper

Maps in binary GUIDs to strings

Shibboleth with Desktop and Mobile Clients

The ownCloud Desktop Client can interact with an ownCloud instance running inside a
Shibboleth Service Provider by using OAuth2 tokens to authenticate. The ownCloud
Android and iOS mobile apps also work with OAuth2 tokens.

WebDAV Support

Users of standard WebDAV clients can generated an App Password on the Personal
settings page. Use of App Passwords may be enforced with the token_auth_enforced
option in config/config.php.

Known Limitations

Encryption

File encryption can only be used together with Shibboleth when master key-based
encryption is used because the per-user encryption requires the user’s password to
unlock the private encryption key. Due to the nature of Shibboleth the user’s password
is not known to the service provider.

PHP-FPM is incompatible

The provided shibd, apache and ownCloud configuration only works with mod_php.
Make sure that you have disable PHP-FPM and enabled mod_php on your server.
CentOS 8 now installs PHP-FPM by default, so make sure to swap.

Other Login Mechanisms

You can allow other login mechanisms (e.g., LDAP or ownCloud native) by creating a
second Apache virtual host configuration; such as in the below example.

Enterprise User Management | 625

configuration/server/occ_command.pdf#encryption
configuration/server/occ_command.pdf#encryption

<VirtualHost *:80>
 DocumentRoot /var/www/owncloud
 ServerName https://www.myowncloud.com
 ServerAlias myowncloud.com

 <Directory "/var/www/owncloud">
 Options FollowSymlinks MultiViews
 AllowOverride All
 Order Allow,Deny
 Allow from All
 </Directory>

 <Location />
 AuthType shibboleth
 ShibRequestSetting requireSession false
 Require shibboleth
 </Location>

 # Path for shibboleth
 Alias "/index.php/login-shib" "/var/www/owncloud/index.php/login"
 <Location ~ "/index.php/login-shib">
 AuthType shibboleth
 ShibRequestSetting requireSession 1
 ShibRequestSetting REMOTE_ADDR X-Forwarded-For
 require valid-user
 </Location>

 RewriteEngine On
 RewriteCond %{HTTP_HOST} !myowncloud.com$ [NC]
 RewriteRule ^(.*)$ https://myowncloud.com/$1 [L,R=301]
</VirtualHost>


The second location in the above configuration is not protected by
Shibboleth, and you can use your other ownCloud login mechanisms.


The above configuration can be used with multi-factor authentication as
well.

If you use the above configuration, after it’s enabled, configure the alternative logins
option with a button to point to /login-shib. This will trigger the Shibboleth session and
redirect the user back to /login. At this point, the existing session will be picked up,
continuing with the authentication process.

Session Timeout

Session timeout on Shibboleth is controlled by the IdP. It is not possible to have a
session length longer than the length controlled by the IdP. In extreme cases this could
result in re-login on mobile clients and desktop clients every hour.

626 | Enterprise User Management

UID Considerations and Windows Network Drive Compatibility

To log in LDAP users via SAML for Single Sign On the user in LDAP must be uniquely
resolvable by searching for the username that was sent in the SAML token. For this to
work the LDAP attribute containing the username needs to be added to the
Additional Search Attributes in the LDAP directory settings on the advanced tab.
We recommend using a scoped login attribute like userPrincipalName or mail because
otherwise the search might find multiple users and prevent login.

user_shibboleth will do the authentication, and user_ldap will provide user details such
as email and displayname.

SAML 2.0 Based SSO with Active Directory Federation Services (ADFS)
and mod-shib

Preparation

Before you can setup SAML 2.0 based Single Sign-On with Active Directory Federation
Services (ADFS) and mod-shib, ask your ADFS admin for the relevant server URLs.
These are:

• The SAML 2.0 single sign-on service URL, e.g., https://<ADFS server
FQDN>/ADFS/ls

• The IdP metadata URL, e.g., https://<ADFS server
FQDN>/FederationMetadata/2007-06/FederationMetadata.xml

Then, make sure that the web server is accessible with a trusted certificate:

sudo a2enmod ssl
sudo a2ensite default-ssl
sudo service apache2 restart

Installation

Firstly, install mod-shib. You can do this using the following command:

sudo apt-get install libapache2-mod-shib2

This will install packages needed for mod-shib, including shibd. Then, generate
certificates for the shibd daemon by running the following command:

sudo shib-keygen

Download and Filter the ADFS Metadata

The metadata provided by ADFS cannot be automatically imported, and must be
cleaned up before using it with the file based MetadataProvider. To do so, use
adfs2fed.php, as in the following command:

Enterprise User Management | 627

configuration/user/user_auth_ldap.pdf
https://msdn.microsoft.com/en-us/library/bb897402.aspx
https://msdn.microsoft.com/en-us/library/bb897402.aspx
https://packages.ubuntu.com/search?keywords=libapache2-mod-shib

php apps/user_shibboleth/tools/adfs2fed.php \
 https://<ADFS server FQDN>/FederationMetadata/2007-
06/FederationMetadata.xml \
 <AD-Domain> > /etc/shibboleth/filtered-metadata.xml

Configure shibd

Next, you need to configure shibd. To do this, in /etc/shibboleth/shibboleth2.xml:

Define the ownCloud Instance

Use the URL of the ownCloud instance as the entityID in the ApplicationDefaults

<ApplicationDefaults entityID="https://<owncloud server FQDN>/login/saml"
REMOTE_USER="eppn upn">


https://<owncloud server FQDN>/login/saml is just an example.
Adjust <owncloud server FQDN> to the full qualified domain name of
your server.

Configure SSO

Configure the SSO to use the entityID from the filtered-metadata.xml

<SSO entityID="https://<ADFS server FQDN>/<URI>/">
 SAML2
</SSO>

 Grab <ADFS server FQDN>/<URI>/ from the filtered-metadata.xml.

Configure XML

Configure an XML MetadataProvider with the local filtered-metadata.xml file

<MetadataProvider type="XML" path="/etc/shibboleth/filtered-metadata.xml"/>

Metadata Available

Under https://<owncloud server FQDN>/Shibboleth.sso/Metadata shibd exposes the
metadata that is needed by ADFS to add the SP as a Relying party.

Active Directory Federation Services (ADFS)

This part needs to be done by an ADFS administrator. Let him do his job while you
continue with the Apache configuration below.

Add a Relying Party Using Metadata

See step 2 in AD FS 2.0 Step-by-Step Guide.

628 | Enterprise User Management

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/gg317734(v=ws.10)

Configure ADFS to Send the userPrincipalName in the SAML Token

If you have control over ADFS make it send the UPN and Group by adding the following
LDAP claim rule:

• Map User Principal Name to UPN
• Map Token Groups - Unqualified Names and map it to Group

Change shibd attribute-map.xml to:

<Attributes xmlns="urn:mace:shibboleth:2.0:attribute-map"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Attribute name="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/upn"
id="upn"/>
</Attributes>

That will make the userPrincipalName available as the environment variable upn.

Apache2

To protect ownCloud with shibboleth you need to protect the URL with a mod-shib
based auth. Currently, we recommend protecting only the login page.

user_shibboleth

When the app is enabled and ownCloud is protected by mod-shib, due to the Apache 2
configuration, you should be forced to authenticate against an ADFS. After a
successful authentication you will be redirected to the ownCloud login page, where
you can login as the administrator. Double check you have a valid SAML session by
browsing to https://<owncloud server FQDN>/Shibboleth.sso/Session.

In the "User Authentication" settings for Shibboleth the upn environment variables will
be filled with the authenticated user’s userPrincipalName in the "Server Environment"
section.

Use upn as uid and set the app mode to 'SSO Only' by running:

occ shibboleth:mode ssoonly
occ shibboleth:mapping -u upn

displayName and email are only relevant for autoprovisioning mode. Add Claims in
ADFS and map them in the attribute-map.xml if needed.

Testing

• Close the browser tab to kill the session.
• Then visit https://<owncloud server FQDN> again.
• You should be logged in automatically.
• Close the tab or delete the cookies to log out.
• To make the logout work see the Logout section in this document.

Configuring SSO

• On the ADFS Server:

Enterprise User Management | 629

admin_manual:enterprise/user_management/user_auth_shibboleth.pdf#the-apache-shibboleth-module
https://<owncloud

• Add "Windows Authentication" to the "Service" → "Authentication Methods" for
"Intranet"

• Run the following Powershell script for Firefox:

Save the list of currently supported browser user-agents to a variable
$browsers=Get-ADFSProperties | Select -ExpandProperty
WIASupportedUseragents

Add Mozilla/5.0 user-agent to the list
$browsers+="Mozilla/5.0"

Apply the new list
Set-ADFSProperties -WIASupportedUseragents $browsers

Turn off Extended Protection
#Set-ADFSProperties –ExtendedProtectionTokenCheck None

Restart the AD FS service
Restart-Service ADFSsrv

• On the Windows client:
• For Internet Explorer, Edge, and Chrome
• In the "Internet Settings" → "Security" → "Local Intranet"
• Click on "Sites"
• Click on "Advanced"
• Add your ADFS machine with https://<ADFS server FQDN>/ and click OK.
• Click on "customize level"
• Find "User Authentication"
• Check "Automatic login only for Intranet zone"
• For Firefox
• Open "about:config"
• Accept the warning
• Search for network.negotiate-auth.trusted-uris and set it to the FQDN of your ADFS

server
• Search for network.automatic-ntlm-auth.trusted-uris and set it to the FQDN of your

ADFS server

Now if you logged into the domain and open your ownCloud server in the browser of
your choice you should get directly to your ownCloud files without a login.

Debugging

In /etc/shibboleth/shibd.logger, set the overall behavior to debug:

set overall behavior
log4j.rootCategory=DEBUG, shibd_log, warn_log
[...]

630 | Enterprise User Management

After a restart /var/log/shibbloeth/shibd.log will show the parsed SAML requests and
also which claims / attributes were found and mapped, or why not.

Browsers

• For Chrome there is a SAML Chrome Panel that allows checking the SAML
messages in the developer tools reachable via F12.

• For Firefox there is SAML tracer
• In the Network tab of the developer extension make sure that "preserve logs" is

enabled in order to see the redirects without wiping the existing network requests

Logout

In SAML scenarios the session is held on the SP as well as the IdP. Killing the SP
session will redirect you to the IdP where you are still logged in, causing another
redirect that creates a new SP session, making logout impossible. Killing only the IdP
session will allow you to use the SP session until it expires.

There are multiple ways to deal with this:

1. By default ownCloud shows a popup telling the user to close the browser tab. That
kills the SP session. If the whole browser is closed the IdP may still use a Kerberos-
based authentication to provide SSO in effect making logout impossible.

2. Hide the logout action in the personal menu via CSS. This forces users to log out at
the IdP.

OAuth2

In upcoming versions the clients will use OAuth2 to obtain a device specific token to
prevent session expiry, making the old /oc-shib/remote.php/nonshib-webdav obsolete

Further Reading

• ADFS 2.0 Step-by-Step Guide: Federation with Shibboleth 2 and the InCommon
Federation

• ADFS: How to Invoke a WS-Federation Sign-Out
• Shibboleth Service Provider Integration with ADFS
• adfs2fed Python Script
• AD FS 2.0 Step-by-Step Guide: Federation with Shibboleth 2 and the InCommon

Federation
• Shibboleth Basic Configuration (Version 2.4 and Above)
• Shibboleth XML MetadataProvider
• Shibboleth NativeSPServiceSSO

Enterprise User Management | 631

https://chrome.google.com/webstore/detail/saml-chrome-panel/paijfdbeoenhembfhkhllainmocckace
https://addons.mozilla.org/de/firefox/addon/saml-tracer/
https://technet.microsoft.com/en-us/library/gg317734%28v=ws.10%29.aspx
https://technet.microsoft.com/en-us/library/gg317734%28v=ws.10%29.aspx
https://social.technet.microsoft.com/wiki/contents/articles/1439.ad-fs-how-to-invoke-a-ws-federation-sign-out.aspx
https://blog.kloud.com.au/2014/10/29/shibboleth-service-provider-integration-with-adfs/
https://github.com/rohe/pysfemma/blob/master/tools/adfs2fed.py
https://technet.microsoft.com/de-de/library/gg317734(v=ws.10).aspx#BKMK_EditClaimRulesforRelyingPartyTrust
https://technet.microsoft.com/de-de/library/gg317734(v=ws.10).aspx#BKMK_EditClaimRulesforRelyingPartyTrust
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPApplication#NativeSPApplication-BasicConfiguration(Version2.4andAbove)
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPMetadataProvider#NativeSPMetadataProvider-XMLMetadataProvider
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPServiceSSO

Document Classification and Policy
Enforcement

Introduction

When dealing with large amounts of data in an enterprise, it is essential to have
mechanisms in place that allow you to stay in control of data flows. To implement such
mechanisms the first step to take is to define guidelines that describe how the content
of different security levels have to be treated.

Depending on the industry, such information security guidelines can originate from
regulatory requirements, from recommendations of industry associations, or they can
be self-imposed if there’s no external factor but internal risk management
requirements that demand special treatment for specific information.

The leading information security standard ISO 27001 defines guidelines for managing
information security which can be certified. More specifically:

1. Information should enter an asset inventory (A.8.1.1)
2. Information should be classified (A.8.2.1)
3. Information should be labeled (A.8.2.2)
4. Information should be handled in a secure way (A.8.2.3)

As the leading international standard and certification for information security, ISO
27001 covers 75-80% of the GDPR. This makes it the ideal framework choice to
support GDPR compliance requirements. Please see the GDPR to ISO-27001 Mapping
Guide as an example to match the mentioned ISO Controls to the relevant General
Data Protection Regulation (GDPR) articles.

Once the guidelines are set up, they need to be put into practice. First of all, highly
sensitive data needs to be separated from less sensitive data. This is, usually, done by
outlining the security levels present in the enterprise, and defining the criteria for
information to qualify for each of these security levels.

Typically used security levels are "Public", "Internal", "Confidential", and "Strictly
Confidential", but the requirements are usually determined individually. For example,
if you are seeking GDPR compliance, then administrators can add additional ones,
such as "No PID (Personally Identifiable Information)", "PID", and "Special PID".

The actual separation of information can then be done by requiring users to classify
documents according to the security levels before they leave their workstation, or by
using other criteria to assign classification levels to data during further processing.

Based on the classification level, information can then be labeled and policies can be
enforced to ensure that information is handled in a secure way - and in compliance
with corporate guidelines.

ownCloud can boost productivity with unique collaboration features. Firstly, there’s
"Document Classification and Policy Enforcement". This adds the capability to ensure
that sensitive data is handled as required by information security guidelines.

Specifically, it enables ownCloud providers to:

• Comply with information security standards, such as ISO 27001/2 as recommended
by the German Association of the Automotive Industry (VDA) and get certified to
work securely within your value chain.

• Handle data in compliance with GDPR

632 | Introduction

https://www.iso.org/isoiec-27001-information-security.html
https://www.certificationeurope.com/app/uploads/2018/05/GDPR-ISO-27001-Mapping-Guide.pdf
https://gdpr-info.eu
https://www.certificationeurope.com/app/uploads/2018/05/GDPR-ISO-27001-Mapping-Guide.pdf
https://www.certificationeurope.com/app/uploads/2018/05/GDPR-ISO-27001-Mapping-Guide.pdf
https://www.iso.org/isoiec-27001-information-security.html
https://www.vda.de/en/services/Publications/information-security-assessment.html
https://www.vda.de/en/services/Publications/information-security-assessment.html

• Manage risks effectively and cover potential data breaches.
• Separate information based on metadata.
• Display the data classification levels to raise user awareness.
• Prevent human mistakes when dealing with sensitive information.
• Fulfil corporate data protection requirements.

Classification

Employing document classification and respective policies in ownCloud generally
involves three steps, which are outlined in detail below.

1. Create tags for classification
2. Configure rules for classification (tagging)
3. Associate policies to the classification rules

Tags for Classification

Document classification levels in ownCloud are represented via Collaborative Tags.
Different categories of tags can be used to achieve different behaviors for users; these
are detailed in the table below.

Table 1. Tag Categories Available in ownCloud

Tag Name Description

Visible These tags are not available for classification based on metadata and
feature policies because users can edit and delete them, which is
undesirable in many cases

Restricted These tags can be created by administrators using Collaborative Tags
Management. This category is recommended as it enables users to
recognize the classification level of files and to be able to filter
accordingly. Additionally, certain groups of users can have the privilege
to edit and assign or unassign these tags.

Static These tags can be created by administrators using Collaborative Tags
Management. This category is recommended as it enables users to
recognize the classification level of files and to be able to filter
accordingly. Additionally this tag category should be used for manual
classification as users in specified groups can only assign and unassign
them but only administrators can edit or delete them. This way
administrators can provide a tag linked to a classification policy that
specified users can then impose on files.

Invisible These tags can be created by administrators using Collaborative Tags
Management. This category is recommended when users should not be
able to recognize the classification level of files or to be able to filter
accordingly.

For setting up each classification rule, create a separate tag using Collaborative Tags
Management, which you can later assign to classification rules and/or policies.

Automated Classification Based on Document Metadata

Automated classification based on document metadata consists of two parts:

1. The actual classification metadata is embedded in documents using Office suite
features

Classification | 633

user_manual:files/webgui/tagging.pdf
enterprise/file_management/files_tagging.pdf#tag-manager
enterprise/file_management/files_tagging.pdf#tag-manager
enterprise/file_management/files_tagging.pdf#tag-manager
enterprise/file_management/files_tagging.pdf#tag-manager
enterprise/file_management/files_tagging.pdf#tag-manager
enterprise/file_management/files_tagging.pdf#tag-manager
enterprise/file_management/files_tagging.pdf#tag-manager
enterprise/file_management/files_tagging.pdf#tag-manager

2. Document metadata is evaluated on file upload via the web interface and all
ownCloud Clients. Automated classification in ownCloud therefore takes place on
file upload. Existing files containing classification metadata currently can’t be
classified subsequently, except via manual user interaction.

Office Suite Features for Document Classification

Microsoft Office can be extended with the NovaPath addon, to provide classification
capabilities. Currently Microsoft Office formats (docx, dotx, xlsx, xltx, pptx, ppsx and
potx) are supported LibreOffice provides an integrated classification manager (TSCP).

To use automated classification based on document metadata, install and enable the
Document Classification extension. The configuration depends on the tools and the
classification framework in use.

Administrators can find examples and generalized configuration instructions below.

Basic Examples for Classification and Policy Enforcement

Microsoft Office with Add-Ons

Microsoft Office does not provide classification capabilities out-of-the-box. To extend it,
we recommend the Microsoft Azure Information Protection or NovaPath add-ons.
These extensions come with easy-to-use default classification categories, and provide
the flexibility to set up custom classification schemes as desired.

Let’s assume you want to use the default classification framework provided by
NovaPath. In addition, let’s assume that you take the classification level for documents
classified as Confidential over to ownCloud to set up a policy that prevents said
documents from being accessed by users in the group "Trainees".

This is how you set up an automated classification and the access policy in ownCloud:

• As an ownCloud administrator, navigate to Settings › Workflows & Tags. Adding
a group with special privileges for the tag is optional.

• Within "User Management", create the group "Trainees" and add some users.
• Set up the classification rule in the panel "Document Classification and Feature

Policies" in the same section, and set the following two properties:
◦ Property XPath = //property[@name='Klassifizierung']/vt:lpwstr
◦ Property Value = Confidential

 Take care, the property and value fields are case-sensitive!

• For "Tag", choose [Class: Confidential].
• Don’t tick a policy checkbox as you don’t want to set up a feature policy but an

access policy.
• Hit [Save].
• Set up the access policy in Settings › Security.
• In the panel "File Firewall" enter a name for the group of rules, e.g., Confidential

(optional). Hint: first click [Add group] if you already have other rules configured.
• From the drop-down menu, choose [System file] tag. In the tag picker, choose
[Class: Confidential]. Now you should have [System file tag] [is] [Class:
Confidential].

• To add the group restriction, click [Add rule], choose [User group] from the
drop-down menu. In the group picker drop-down, choose [Trainees]. Now you

634 | Classification

https://www.m-und-h.de/en-novapath/
https://marketplace.owncloud.com/apps/files_classifier
https://azure.microsoft.com/en-us/services/information-protection/
https://www.m-und-h.de/en-novapath/

should have [User group] [is] [Trainees].
• Hit [Save Rules] to put the rules in place.
• To verify that the rule is in place, upload a classified file and check for the tag.

Then share it with a member of the group "Trainees" (or with the whole group) and
try to access it from a user account that is a member of said group.

LibreOffice

LibreOffice implemented the open standards produced by TSCP (Transglobal Secure
Collaboration Participation, Inc.):

• The Business Authentication Framework (BAF) specifies how to describe the
existing policy in a machine-readable format

• The Business Authorization Identification and Labeling Scheme (BAILS) defines
how to refer to such a BAF policy in a document

There are three default BAF categories that come with different classification levels,
which can be used out-of-the-box:

• Intellectual Property
• National Security
• Export Control

Assume you want to use the BAF category "Intellectual Property" and take the
classification level for documents classified as "Confidential" over to ownCloud, to set
up a policy that prevents said documents from being shared via a public link. This is
how you set up an automated classification and the feature policy in ownCloud:

• As an ownCloud administrator, navigate to Settings › Workflows & Tags. Adding
a group with special privileges for the tag is optional.

• Set up the classification rule and feature policy in the panel "Document
Classification and Feature Policies" of the same section:
◦ Property XPath =

//property[@name='urn:bails:IntellectualProperty:BusinessAuthorizationCategory:
Name']/vt:lpwstr

◦ Property Value = Confidential (Take care, the property and value fields are
case-sensitive!)

◦ For "Tag" choose [Class: Confidential].
◦ Tick the checkbox [Prevent link sharing].
◦ Hit [Save].

• To verify that the rule is in place, upload a classified file, check for the tag and try
to create a public link share.

General Approach

Apart from the concrete examples above, a generalized method to employ document
classification is available below.

Find the Metadata Properties and Values

• Classify a document in LibreOffice/MS Office and save it in an MS Office format.
• Rename the document’s file extension to ".zip" and open it.
• Find the file docProps/custom.xml in the archive and open it with a text editor.

General Approach | 635

https://help.libreoffice.org/Writer/Document_Classification/tr
https://www.tscp.org/wp-content/uploads/2013/08/TSCP_BAFv1.pdf
https://www.tscp.org/wp-content/uploads/2013/08/TSCP_BAILSv1.pdf
user_manual:files/public_link_shares.pdf

• Within custom.xml, find the property that contains the classification level value.
• Note down the classification property and value.
• Repeat the steps for all classification properties and values you want to set up

classification rules for in ownCloud.

Set Up Classification Rules

• As an ownCloud administrator, navigate to Settings › Workflows & Tags
• In the panel Document Classification and Feature Policies set up the rules:

◦ Property XPath: Enter the XPath that identifies the classification property.
Below you find a generalized example where classification-property is a
placeholder for the property to evaluate.

//property[@name='classification-property']/vt:lpwstr

◦ Property Value: Enter the value that triggers the classification rule when it
matches with the metadata of an uploaded document, e.g., Confidential. Take
care, the property and value fields are case-sensitive.

◦ Tag: Choose the tag to apply to files when a match occurs.
• Repeat the steps to create classification rules for all desired properties and values

Automated Classification Based on File or User Properties

Apart from automated classification based on document metadata, uploaded files may
also be classified according to criteria inherent to files or to the users uploading them,
making use of the Workflow extension.

• Administrators may add rules for automated classification of files according to a
file’s size or file type.

• File uploads by specific users, devices, or source networks can be used as
indicators for classification.

• Furthermore, administrators can define shared folders to automatically classify
files uploaded to such folders, by tagging the respective folder and creating a
Workflow rule based on the chosen System file tag.

• Additionally, the rules may be linked to achieving a more granular classification
behavior (e.g., PDF files uploaded by a specific group of users should be classified
as Confidential).

Assume you want to automatically classify all PDF documents uploaded by users that
are members of the "Management" group. You can construct a workflow rule using
the following steps:

• Within user management create the group "Management" and add some users.
• Navigate to Settings › Workflows & Tags.
• In the Collaborative Tags Management panel, create a tag of type "Static" and call

it Class: Confidential. Adding a group with special privileges for the tag is optional.
• In the panel "Workflow" you can now set up the classification rules. Hit [Add new
workflow] and specify a useful name. Now configure the conditions that trigger the
classification once they are met. For that choose "User group" from the drop-down
menu, click [+], then choose "File mimetype" and click [+] again. Then you have to
provide the group "Management" and the MIME type for PDF (application/pdf) in
the respective fields.

636 | General Approach

enterprise/file_management/files_tagging.pdf
enterprise/file_management/files_tagging.pdf#tag-manager

• Select the tag [Class: Confidential] to be added when the rules match.
• Click [Add workflow] to save and enable it.


For more information, please check the options available for auto-
tagging and consult the Workflow Extension documentation. For files
classified with the Workflow extension, administrators can impose
feature and access policies as described in the next section.

Manual Classification

As a further measure, it is possible to supply tags for users to autonomously classify all
types of files in their own or shared spaces.

• As an ownCloud administrator, create a group within user management and add the
users that should be able to classify files.

• Then navigate to Settings › Workflows & Tags.
• In the Collaborative Tags Management panel, create a tag of type "Static" and give

it a meaningful name. Then assign the group you created, in the beginning, to give
it’s users special privileges for the tag.

• Users that are not a member of the specified group(s) will only be able to see the
respective tag but can’t alter or assign/un-assign it.

For files that are classified manually, administrators can impose feature and access
policies as described in the next section.

Policy Enforcement

ownCloud currently provides two types of policies that can be enforced based on
classification, Feature and Access policies. These policies can be imposed
independently of the classification mechanism. The following sections illustrate the
available policies and explain how they can be applied to classified contents.

Feature Policies

Feature policies are restrictions that prevent users from using a feature or force them
to use it in a certain way. They are provided by the Document Classification extension,
which currently supports the following policies:

• Prevent Upload
• Prevent Link Sharing
• Unprotected Links Expire After X Days

Prevent Upload

To follow guidelines that prevent data of certain classification levels (e.g., "strictly
confidential") from being used in ownCloud at all, the "Prevent upload" policy is the
right instrument to use. To impose such policies, tick the checkbox associated with the
classification rule for the respective classification level.

When trying to upload documents caught by the policy, users will get an error
message: A policy prohibits uploading files classified as '<tag>', where <tag> is the tag
chosen for the classification rule.


Even though the server won’t accept the uploaded files, in the end, it is
mandatory to configure a tag for the classification rule to work.

Policy Enforcement | 637

enterprise/file_management/files_tagging.pdf
enterprise/file_management/files_tagging.pdf#tag-manager
https://marketplace.owncloud.com/apps/files_classifier

Prevent Link Sharing

The prevent link sharing policy is tasked to ensure that classified data of certain
confidentiality levels can’t be shared publicly. This way, users can collaborate on the
data internally, but it can’t leave the company via ownCloud. To enable such policies,
tick the checkbox associated with the classification rule for the respective
classification level.

Documents with the associated classification level:

• Can’t be shared via link (public links on single files and folders containing classified
files); and

• Can’t be moved to a publicly shared folder.

In all cases the user will see an error message containing the reasoning and the
respective file(s): The file(s) "<file1>, <file2>" can’t be shared via public link
(classified as <tag>), where <tag> is the tag chosen for the classification rule.

Unprotected Links Expire After X Days

The policy Unprotected links expire after X days enables administrators to define
public link expiration policies depending on the classification levels of the data that is
shared via public links without password protection.

This makes it possible, for instance, to allow documents classified as public to be
shared via public links for 30 days while documents classified as internal require
public links to expire after seven days. To enable such policies, just define an
expiration period associated with the classification rule for the respective
classification level.


The Password Policy extension also provides options to enforce public
link expiration depending on whether the user sets a password or not.

The option "X days until link expires if password is not set" is mutually exclusive with
this policy. When you enable the Password Policy option, it will always be dominant
and effectively override the policy discussed in this section. In contrast, the Password
Policy option "X days until link expires if password is set" can be used in parallel.


The Sharing settings option provides the means to define a general
public link expiration policy. This option currently is also mutually
exclusive and will always override the policy discussed in this section.

Setting Up Policies Without Automated Classification Based on
Document Metadata

All policies can also be enforced when using Manual Classification or Automated
Classification based on File or User Properties. For this, specify the tag that
determines the files that the policy should apply to and leave the fields for "Property
XPath" and "Property Value" empty. Then choose the desired policy and click [Save].

Access Policies

Access policies are restrictions that prevent users or groups of users from accessing
specific resources even though they appear in their file list, e.g., via a share from
another user. They are provided by the File Firewall extension which currently
supports policies to prevent access to classified documents.

To link access policies with classification levels, the bottom line of such policies is the

638 | Access Policies

configuration/server/security/password_policy.pdf
configuration/files/file_sharing_configuration.pdf
enterprise/firewall/file_firewall.pdf

associated classification tag ([System file tag] [is] [<tag>]). It can, for instance, be
combined with the following conditions to realize exclusive ([is]) or inclusive ([is not])
policies:

Documents with the respective classification tag can’t be accessed:

• User group: by users that are a member of the configured group (or can only be
accessed by users that are a member of the configured group when using the [is
not] operator).

• User device: from the configured device(s) (or only from the configured devices
when using the [is not] operator)

• Request time: within the configured time frame (or only within the configured time
frame when using the [is not] operator)

• IP Range (Source network): from the configured IP range (or only from the
configured IP range when using the [is not] operator)

Logging

When classified documents are uploaded, log entries will be written to ownCloud’s log
file, (data/owncloud.log). For this, it is possible to additionally specify another
metadata property that will be used to add it’s value to the log entries in the form of a
"Document ID".

With this, it is possible to filter the log according to a document identifier or to
forward classification events for certain documents to external log analyzers. To set it
up, add the desired property XPath to the "Document ID XPath" field of the respective
rule as you did for the classification property.

Each uploaded file will generate three entries with different log levels. See some
exemplary entries below:

INFO: `"Checking classified file 'confidential.xlsx' with document id '2'"`
INFO: `"Alice uploaded a classified file 'confidential.xlsx' with document class
'Confidential'"`
DEBUG: `"Assigning tag 'Class: Confidential' to 'confidential.xlsx'"`

Limitations

Automated Classification Based on Document Metadata: Handling
Classification Changes for Existing Files

• When a formerly classified document is replaced with a new version that does not
contain classification metadata, the classification tag will remain assigned, and
configured policies will still apply. In this case, it is recommended to either delete
the original or upload the new version with a different name.

• When a formerly unclassified document is replaced with a new version that does
contain classification metadata, the classification tag will be assigned. However,
when the policy "Prevent upload" is set up in addition, the original file will be
deleted, and the new version will be rejected due to the policy.

Logging | 639

Troubleshooting
In this section you will find all the details you need to troubleshoot ownCloud.

Retrieve Log Files and Configuration Settings

Introduction

When you report a problem to ownCloud Support or our Forum (ownCloud Central)
you will be asked to provide certain log files or configurations for our engineers (or
other users). These are essential in better understanding your issue, your specific
configuration, and the cause of the problem.

Here are instructions for how to collect them.

Generate a Config Report

You can use the webUI or the command line to generate a config report. The webUI
includes the web server environment, while the command line generated one doesn’t
as it can’t access it. Therefore, if possible, always generate it through the webUI.
Please note that you have to have the configreport app enabled. Check if it’s already
enabled by going to the apps section of the admin settings. You can enable this app
using the following commands:

Install it, if it’s not already installed
sudo -u www-data php occ market:install configreport

Or enable it, if it’s already installed
sudo -u www-data php occ:app enable configreport

Generate via webUI

To generate a config report using the webUI, navigate to:
Settings › Admin › General › "Generate Config report" › "Download ownCloud
config report".

Generate via Command Line

To generate a config report from the command line, run the following command from
the root directory of your ownCloud installation:

sudo -u www-data php occ configreport:generate > config_report.txt

ownCloud Server Log File

Generate via webUI

You can use the webUI to download your ownCloud Server log file. To do so, navigate
to:
Settings › Admin › General › Log › "Download logfile".

Generate via Command Line

If the log file is too big, you will need to transfer it from the command line. The

640 | Retrieve Log Files and Configuration Settings

https://owncloud.com/licenses/owncloud-support-maintenance/
https://central.owncloud.org/latest

location of the log file can be found in your config.php. It’s in your data directory.

 'datadirectory' => '/var/www/owncloud/data',

You also can specify a different location of the log file.

'logfile' => '/home/www-data/owncloud.log',

Note that the web server user has to have rights to write in that directory.

LDAP Config

Assuming that LDAP is used, viewing the LDAP configuration is important when
checking for errors between your ownCloud instance and your LDAP server. To get the
output file, execute this command:

sudo -u www-data php occ ldap:show-config > ldap_config.txt

Retrieve Log Files and Configuration Settings | 641

Have You Found a Mistake In The
Documentation?
If you have found a mistake in the documentation, no matter how large or small,
please let us know by creating a new issue in the docs repository.

642 | Have You Found a Mistake In The Documentation?

https://github.com/owncloud/docs/issues/new

	ownCloud Administration Manual
	Table of Contents
	Introduction
	ownCloud Videos and Blogs
	Target Audience

	Release Notes
	Changes in 10.6.0
	Changes in 10.5.0
	Changes in 10.4.1
	Changes in 10.4.0
	Changes in 10.3.2
	Changes in 10.3.1
	Changes in 10.3.0
	Changes in 10.2.1
	Changes in 10.2.0
	Changes in 10.1.1
	Changes in 10.1.0
	Changes in 10.0.10
	Changes in 10.0.9
	Changes in 10.0.8
	Changes in 10.0.7
	Changes in 10.0.6
	Changes in 10.0.5
	Changes in 10.0.4
	Changes in 10.0.3
	Changes in 10.0.1
	Changes in 10.0.0
	Changes in 9.1
	Changes in 9.0
	Changes in 8.2
	Changes in 8.1
	Changes in 8.0
	Changes in 7.0

	Frequently Asked Questions
	I want to upgrade from Community Version to Enterprise Version. What are the changes?
	How do I transfer files from one user to another?
	How do I deal with problems caused by using self-signed SSL certificates?
	I’m the admin and I lost my password! What do I do now!
	What is a Federated System?
	Platform-wide known limitations, excluded files

	Installation
	Manual Installation
	Installing With Docker
	Example Installation on Ubuntu
	Linux Package Manager
	Deployment Considerations
	Deployment Recommendations
	System Requirements
	Configuration Notes and Tips
	Installation
	Troubleshooting
	Changing Your ownCloud URL
	Installing and Managing Apps
	Supported Apps in ownCloud
	SELinux Configuration
	Let’s Encrypt SSL Certificates

	Configuration
	Database
	Encryption
	External Storage
	Files and Sharing
	General Topics
	Full Text Search
	Mimetypes Management
	Server Configuration
	User

	Maintenance
	How to Upgrade Your ownCloud Server
	Backing up ownCloud
	Maintenance Mode Configuration
	Data Exporter
	How To Manually Move a Data Directory
	Encryption
	Migrating to a Different Server
	Restoring ownCloud

	What is the Appliance?
	How to Install the Appliance
	Appliance Configuration
	Appliance Maintenance
	Troubleshooting

	Enterprise Edition
	Enterprise Clients
	Enterprise Collaboration
	External Storage
	Enterprise File Management
	Enterprise Firewall Configuration
	Installing & Upgrading ownCloud Enterprise Edition
	Enterprise Logging Configuration
	Enterprise Reporting
	Enterprise Security
	Enterprise Server Branding
	Enterprise User Management

	Document Classification and Policy Enforcement
	Introduction
	Classification
	General Approach
	Policy Enforcement
	Access Policies
	Logging
	Limitations

	Troubleshooting
	Retrieve Log Files and Configuration Settings

	Have You Found a Mistake In The Documentation?

