
ownCloud Desktop Client Manual

The ownCloud Team

Version: 2.8, January 16, 2022



Table of Contents

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Improvements and New Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Installing the Desktop Synchronization Client. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Customizing the Windows Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Installation Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Using the Synchronization Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Used Client Icons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Systray Icon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

File Manager Overlay Icons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Sharing From Your Desktop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

Activity Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Server Notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

General Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

Using the Network Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Using the Ignored Files Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Using the Virtual Filesystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Microsoft VFS Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

ownCloud VFS Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

Filename Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

Forbidden Printable ASCII Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

Non-Printable Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

Reserved File Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

Other Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

Examples and Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

Manage Synchronisation Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Example Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Uploading Conflicts (experimental) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Automatic Updating of the Desktop Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

Basic Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

Preventing Automatic Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

Removing the Desktop Synchronization Client. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

Removing the Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

Windows Navigation Sidebar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

Some Files Are Continuously Uploaded to the Server, Even When They Are Not Modified. . . . . .  32

Syncing Stops When Attempting to Sync Deeper Than 100 Sub-Directories . . . . . . . . . . . . . . . . . .  32



I See a Warning Message for Unsupported Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

There Was a Warning About Changes in Synchronized Folders Not Being Tracked Reliably . . . . .  33

I Want to Move My Local Sync Folder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

My Sync Folder Displays a Different Quota Than the Web Interface . . . . . . . . . . . . . . . . . . . . . . . . .  34

I Want to Change My Server URL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

Advanced Usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

Command Line Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

Configuration File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

The Command Line Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40

Low Disk Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

Appendix Building the Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

Appendix History and Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49

Appendix Troubleshooting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61



Introduction
Available for Windows, Mac OS X, and various Linux distributions, the ownCloud
Desktop Sync client enables you to:

• Specify one or more directories on your computer that you want to synchronize to
the ownCloud server.

• Always have the latest files synchronized, wherever they are located.

Your files are always automatically synchronized between your ownCloud server and
local PC.

Desktop Sync clients older than. 2.2.1 are not allowed to connect and sync with
ownCloud 8.1+ server. It is highly recommended to keep your server and client
updated.

Improvements and New Features

Each release of the ownCloud Desktop Sync client has new features and
improvements, for details see the complete changelog.

Improvements and New Features | 1

https://owncloud.com/changelog/desktop/


Installing the Desktop Synchronization
Client

Introduction

You can download the latest version of the ownCloud Desktop Synchronization Client
from the ownCloud download page. There are clients for Linux, macOS, and Microsoft
Windows.

Installation on Mac OS X and Windows is the same as for any software application:
download the program and then double-click it to launch the installation, and then
follow the installation wizard. After it is installed and configured the sync client will
automatically keep itself updated; see autoupdate for more information.

Linux users must follow the instructions on the download page to add the appropriate
repository for their Linux distribution, install the signing key, and then use their
package managers to install the desktop sync client. Linux users will also update their
sync clients via package manager, and the client will display a notification when an
update is available.

Linux users must also have a password manager enabled, such as GNOME Keyring or
KWallet, so that the sync client can login automatically.

You will also find links to source code archives and older versions on the download
page.

System Requirements

• Windows 7+ (x86 with 32-bit or x86-64; Native WinVFS available for Windows 10
version 1709 or later)

• macOS 10.12+ (x86-64 or Apple M in Rosetta 2 emulation; unsupported legacy
builds for Mac OS X 10.10 & 10.11 available)

• CentOS 7.6+ & 8 (x86-64)
• Debian 9.0 & 10 (x86-64)
• Fedora 31 & 32 & 33 (x86-64)
• Ubuntu 18.04 & 20.04 & 20.10 & 21.04 (x86-64)
• openSUSE Leap 15.1 & 15.2 (x86-64)


For Linux distributions, we support, if technically feasible, the latest 2
versions per platform and the previous Ubuntu LTS.

Customizing the Windows Installation

If you just want to install ownCloud Desktop Synchronization Client on your local
system, you can simply launch the .msi file and configure it in the wizard that pops up.

Features

The MSI installer provides several features that can be installed or removed
individually, which you can also control via command-line, if you are automating the
installation, then run the following command:

2 | Introduction

https://owncloud.com/download/#desktop-clients
https://wiki.gnome.org/Projects/GnomeKeyring/
https://utils.kde.org/projects/kwalletmanager/
https://wiki.ubuntu.com/LTS


msiexec /passive /i ownCloud-x.y.z.msi.

The command will install the ownCloud Desktop Synchronization Client into the
default location with the default features enabled. If you want to disable, e.g., desktop
shortcut icons you can simply change the above command to the following:

msiexec /passive /i ownCloud-x.y.z.msi REMOVE=DesktopShortcut.

See the following table for a list of available features:

Feature Enabled by
default

Description Property to disable.

Client Yes,
required

The actual client

DesktopShortcut Yes Adds a shortcut to the
desktop.

NO_DESKTOP_SHORTCUT

StartMenuShortcuts Yes Adds shortcuts to the
start menu.

NO_START_MENU_SHORTC
UTS

ShellExtensions Yes Adds Explorer
integration

NO_SHELL_EXTENSIONS

Installation

You can also choose to only install the client itself by using the following command:

msiexec /passive /i ownCloud-x.y.z.msi ADDDEFAULT=Client.

If you for instance want to install everything but the DesktopShortcut and the
ShellExtensions feature, you have two possibilities:

• You explicitly name all the features you actually want to install (whitelist) where
Client is always installed anyway.

msiexec /passive /i ownCloud-x.y.z.msi ADDDEFAULT=StartMenuShortcuts.

• You pass the NO_DESKTOP_SHORTCUT and NO_SHELL_EXTENSIONS properties.

msiexec /passive /i ownCloud-x.y.z.msi NO_DESKTOP_SHORTCUT="1"
NO_SHELL_EXTENSIONS="1"


The ownCloud .msi file remembers these properties, so you don’t need
to specify them on upgrades.


You cannot use these to change the installed features, if you want to do
that, see the next section.

Customizing the Windows Installation | 3



Changing Installed Features

You can change the installed features later by using REMOVE and ADDDEFAULT
properties.

• If you want to add the desktop shortcut later, run the following command:

msiexec /passive /i ownCloud-x.y.z.msi ADDDEFAULT="DesktopShortcut"

• If you want to remove it, simply run the following command:

msiexec /passive /i ownCloud-x.y.z.msi REMOVE="DesktopShortcut"

Windows keeps track of the installed features and using REMOVE or ADDDEFAULT will
only affect the mentioned features.

Compare REMOVE and ADDDEFAULT on the Windows Installer Guide.


You cannot specify REMOVE on initial installation as it will disable all
features.

Installation Folder

You can adjust the installation folder by specifying the INSTALLDIR property like this.

msiexec /passive /i ownCloud-x.y.z.msi INSTALLDIR="C:\Program Files (x86)\Non
Standard ownCloud Client Folder"

Be careful when using PowerShell instead of cmd.exe, it can be tricky to get the
whitespace escaping right there. Specifying the INSTALLDIR like this only works on
first installation, you cannot simply re-invoke the .msi with a different path. If you still
need to change it, uninstall it first and reinstall it with the new path.

Disabling Automatic Updates.

To disable automatic updates, you can pass the SKIPAUTOUPDATE property.

msiexec /passive /i ownCloud-x.y.z.msi SKIPAUTOUPDATE="1"

Launch After Installation

To launch the client automatically after installation, you can pass the LAUNCH
property.

msiexec /i ownCloud-x.y.z.msi LAUNCH="1"

This option also removes the checkbox to let users decide if they want to launch the
client for non passive/quiet mode.

 This option does not have any effect without GUI.

4 | Customizing the Windows Installation

https://docs.microsoft.com/en-us/windows/win32/msi/remove
https://docs.microsoft.com/en-us/windows/win32/msi/adddefault


No Reboot After Installation

The ownCloud Client schedules a reboot after installation to make sure the Explorer
extension is correctly (un)loaded. If you’re taking care of the reboot yourself, you can
set the REBOOT property.

msiexec /i ownCloud-x.y.z.msi REBOOT=ReallySuppress.

This will make msiexec exit with error ERROR_SUCCESS_REBOOT_REQUIRED
(3010). If your deployment tooling interprets this as an actual error and you want to
avoid that, you may want to set the DO_NOT_SCHEDULE_REBOOT instead.

msiexec /i ownCloud-x.y.z.msi DO_NOT_SCHEDULE_REBOOT="1"

Installation Wizard

The installation wizard takes you step-by-step through configuration options and
account setup. First you need to enter the URL of your ownCloud server.

Enter your ownCloud login on the next screen.

On the "Local Folder Option" screen you may sync all of your files on the ownCloud
server, or select individual folders. The default local sync folder is ownCloud, in your
home directory. You may change this as well.

Installation Wizard | 5



When you have completed selecting your sync folders, click the "Connect" button at
the bottom right. The client will attempt to connect to your ownCloud server, and
when it is successful you’ll see two buttons:

• One to connect to your ownCloud Web GUI.
• One to open your local folder.

It will also start synchronizing your files.

6 | Installation Wizard



Using the Synchronization Client

Introduction

The ownCloud Desktop Client remains in the background and is visible as an icon in
the system tray (Windows, KDE), menu bar (macOS), or notification area (Linux).

Used Client Icons

The status indicator uses icons to indicate the current status of your synchronization.
The green circle with the white checkmark tells you that your synchronization is
current and you are connected to your ownCloud server.

The blue icon with the white semi-circles means synchronization is in progress.

The yellow icon with the parallel lines tells you your synchronization has been paused.
(Most likely by you.)

The gray icon with three white dots means your sync client has lost its connection with
your ownCloud server.

When you see a white circle with the letter "i" that is the informational icon, so you
should click it to see what it has to tell you.

The red circle with the white "x" indicates a configuration error, such as an incorrect
login or server URL.

Introduction | 7



Systray Icon

A right-click on the systray icon opens a menu for quick access to multiple operations.

This menu provides the following options:

• Quick access to your accounts.
• Sync status.
• Recent Changes, showing latest activities.
• Settings.
• Help menu.
• Pause synchronizations.
• An option to log in or log out of all of your accounts at once.
• Quit ownCloud, logging out and closing the client.

A left-click on your systray icon opens the desktop client to the account settings
window.

Configuring ownCloud Account Settings

At the top of the window are tabs for each configured sync account, and three others
for Activity, General and Network settings. On your account tabs you have the
following features:

• Connection status, showing which ownCloud server you are connected to, and your
ownCloud username.

8 | Systray Icon



• An Account button, which contains a dropdown menu with Add New, Log Out,
and Remove.

• Used and available space on the server.
• Current synchronization status.
• Add Folder Sync Connection button.

The little button with three dots (the overflow menu) that sits to the right of the sync
status bar offers four additional options:

• Open Folder.
• Choose What to Sync (This appears only when your file tree is collapsed, and

expands the file tree)
• Pause Sync / Resume Sync.
• Remove folder sync connection.

Open Folder opens your local ownCloud sync folder.

Pause Sync pauses sync operations without making any changes to your account. It
will continue to update file and folder lists, without downloading or updating files. To
stop all sync activity use Remove Folder Sync Connection.


ownCloud does not preserve the mtime (modification time) of
directories, though it does update the mtimes on files. See Wrong folder
date when syncing for discussion of this.

Adding New Accounts

You may configure multiple ownCloud accounts in your desktop sync client. Simply
click the Account › Add New button on any account tab to add a new account, and
then follow the account creation wizard. The new account will appear as a new tab in
the settings dialog, where you can adjust its settings at any time. Use Account ›
Remove to delete accounts.


To use Two-Factor Authentication (2FA), ownCloud server must have
the OAuth2 app installed, configured, and enabled. Please contact your
ownCloud administrator for more details.

File Manager Overlay Icons

The ownCloud sync client provides overlay icons, in addition to the normal file type
icons, for your system file manager (Explorer on Windows, Finder on Mac and
Nautilus on Linux) to indicate the sync status of your ownCloud files.

The overlay icons are similar to the systray icons introduced above. They behave
differently on files and directories according to sync status and errors.

The overlay icon of an individual file indicates its current sync state. If the file is in
sync with the server version, it displays a green checkmark.

File Manager Overlay Icons | 9

https://github.com/owncloud/core/issues/7009:
https://github.com/owncloud/core/issues/7009:
https://marketplace.owncloud.com/apps/oauth2


If the file is ignored from syncing, for example because it is on your exclude list, or
because it is a symbolic link, it displays a warning icon.

If there is a sync error, or the file is blacklisted, it displays an eye-catching red X. If the
file is waiting to be synced, or is currently syncing, the overlay icon displays a blue
cycling icon.

When the client is offline, no icons are shown to reflect that the folder is currently out
of sync and no changes are synced to the server.

The overlay icon of a synced directory indicates the status of the files in the directory.
If there are any sync errors, the directory is marked with a warning icon.

If a directory includes ignored files that are marked with warning icons that does not
change the status of the parent directories.

Sharing From Your Desktop

The ownCloud desktop sync client integrates with your file manager: Finder on Mac
OS X, Explorer on Windows, and Nautilus on Linux. (Linux users must install the
owncloud-client-nautilus plugin.) You can create share links, and share with internal
ownCloud users the same way as in your ownCloud Web interface.

Right-click your systray icon, hover over the account you want to use, and left-click
Open folder › "folder name" to quickly enter your local ownCloud folder. Right-click
the file or folder you want to share to expose the share dialog, and click Share with
ownCloud.

The share dialog has all the same options as your ownCloud Web interface.

10 | Sharing From Your Desktop



Use Share with ownCloud to see who you have shared with, and to modify their
permissions, or to delete the share.

Activity Window

The Activity window contains the log of your recent activities, organized over three
tabs: Server Activities, which includes new shares and files downloaded and deleted,
Sync Protocol, which displays local activities such as which local folders your files
went into, and. Not Synced shows errors such as files not synced. Double clicking an
entry pointing to an existing file in Server Activities or Sync Protocol will open the
folder containing the file and highlight it.

Server Notifications

Starting with version 2.2.0, the client will display notifications from your ownCloud
server that require manual interaction by you. For example, when a user on a remote
ownCloud creates a new Federated share for you, you can accept it from your desktop

Activity Window | 11



client.

The desktop client automatically checks for available notifications automatically on a
regular basis. Notifications are displayed in the Server Activity tab, and if you have
Show Desktop Notifications. enabled (General tab) you’ll also see a systray
notification.

This also displays notifications sent to users by the ownCloud admin via the
Announcements app.

General Window

The General window has configuration options such as "Launch on System Startup",
"Use Monochrome Icons", and "Show Desktop Notifications". This is where you will
find the "Edit Ignored Files" button, to launch the ignored files editor, and "Ask
confirmation before downloading folders larger than [folder size]".

12 | General Window




While you can elect whether to show or hide the crash reporter, from
the General window, you can also configure whether to show or hide it
from the general section of the configuration file as well. Doing so can
help with debugging on-startup-crashes.

Using the Network Window

proxy settings, SOCKS, bandwith, throttling, limiting.

The Network settings window enables you to define network proxy settings, and also
to limit download and upload bandwidth.

Using the Ignored Files Editor

Ignored files, exclude files, patterns.

You might have some local files or directories that you do not want to backup and
store on the server. To identify and exclude these files or directories, you can use the
General Tab › Ignored Files Editor

For your convenience, the editor is pre-populated with a default list of typical ignore
patterns. These patterns are contained in a system file. (typically sync-exclude.lst)
located in the ownCloud Client application directory. You cannot modify these pre-
populated patterns directly from the editor. However, if necessary, you can hover over

Using the Network Window | 13

advanced_usage/configuration_file.pdf#section-general


any pattern in the list to show the path and filename associated with that pattern,
locate the file, and edit the sync-exclude.lst file.


Modifying the global exclude definition file might render the client
unusable or result in undesired behavior.

Each line in the editor contains an ignore pattern string. When creating custom
patterns, in addition to being able to use normal characters to define an ignore
pattern, you can use wildcards characters for matching values. As an example, you can
use an asterisk (*) to identify an arbitrary number of characters or a question mark (?)
to identify a single character.

Patterns that end with a slash character (/) are applied to only directory components of
the path being checked.


Custom entries are currently not validated for syntactical correctness
by the editor, so you will not see any warnings for bad syntax. If your
synchronization does not work as you expected, check your syntax.

Each pattern string in the list is preceded by a checkbox. When the check box contains
a check mark, in addition to ignoring the file or directory component matched by the
pattern, any matched files are also deemed "fleeting metadata" and removed by the
client.

In addition to excluding files and directories that use patterns defined in this list:

• The ownCloud Client always excludes files containing characters that cannot be
synchronized to other file systems.

• Files are removed that cause individual errors three times during a
synchronization. However, the client provides the option of retrying a
synchronization three additional times on files that produce errors.

For more detailed information see the Ignored Files section.

14 | Using the Ignored Files Editor

architecture.pdf#ignored-files


Using the Virtual Filesystem

Introduction

ownCloud offers the possibility for users to enable a virtual file system (VFS) when
synchronizing data. This has the big advantage that all files and folders are visible to
the client, but the files are not downloaded until the user requests to do so. Here are
some of the key benefits:

• Full access to files and folders without having to download them all first
• Selectively sync folders and files based on user requirements
• Optimize space usage on the client

The quote below gives you a brief overview of what a virtual file system is about.

A virtual file system (VFS) or virtual filesystem switch is an
abstract layer on top of a more concrete file system. The purpose
of a VFS is to allow client applications to access different types of
concrete file systems in a uniform way. A VFS can, for example, be
used to access local and network storage devices transparently
without the client application noticing the difference. It can be
used to bridge the differences in Windows, classic Mac OS/macOS
and Unix filesystems, so that applications can access files on local
file systems of those types without having to know what type of
file system they are accessing.
— https://en.wikipedia.org/wiki/Virtual_file_system

Microsoft VFS Implementation

Background

A sync engine is a service that syncs files, typically between a
remote host and a local client. Sync engines on Windows often
present those files to the user through the Windows file system
and File Explorer.
— https://docs.microsoft.com/en-us/windows/win32/cfapi/build-a-cloud-file-sync-engine

Files can exist in three states:
Full pinned file

The file has been hydrated explicitly by the user through File Explorer and is
guaranteed to be available offline.

Full file
The file has been hydrated implicitly and could be dehydrated by the system if space
is needed.

Placeholder file
An empty representation of the file and only available if the sync service is
available.

The following image demonstrates how the full pinned, full and placeholder file states

Introduction | 15



are shown in File Explorer.

Limitations and Restrictions

Limitations

A virtual file system needs a root folder all synchronization items will be stored in. The
following locations are not allowed as synchronization root:

• The root of a disk like D:\
• A non-NTFS Filesystem
• Mounted network shares
• Symbolic links or junction points
• Assigned drives

Restrictions

Similar to OneDrive as it also uses Microsoft’s virtual file system, there are some
additional restrictions which should be considered like the maximum file size, invalid
file or folder names, etc. See the Restrictions and limitations in OneDrive and
SharePoint for more information.

ownCloud VFS Implementation

New Sync with VFS enabled

To set up a new synchronization with virtual file system enabled, perform the following
steps:

1. Add a new synchronization by clicking the [+ Add account] button.

2. Enter the server address and your credentials in the following dialogs.
3. Select the radio button [Use virtual files] and set the local folder where your

synchronization data will reside.

16 | ownCloud VFS Implementation

https://support.microsoft.com/en-us/office/restrictions-and-limitations-in-onedrive-and-sharepoint-64883a5d-228e-48f5-b3d2-eb39e07630fa?ui=en-US&rs=en-US&ad=US#filenamepathlengths
https://support.microsoft.com/en-us/office/restrictions-and-limitations-in-onedrive-and-sharepoint-64883a5d-228e-48f5-b3d2-eb39e07630fa?ui=en-US&rs=en-US&ad=US#filenamepathlengths


4. When everything is done, you should see a similar screen as below, showing that
the setup completed successfully.

5. After the first sync, your synchronization folder will show your items with the
Placeholder icon.

ownCloud VFS Implementation | 17



6. When opening a file, the file gets downloaded and its synchronization icon changes
to Full.

Convert Full Sync to VFS

If you have full synchronization enabled, you can change to a virtual file system at any
time.

1. Open your existing synchronization, click the […] button and Enable virtual file
support.

2. Your local files will get replaced by placeholders, thus freeing up the space
previously occupied.

Convert VFS to Full Sync

You can also change the synchronization setting from virtual file system to full sync.

1. Open your existing synchronization, click the […] button and Disable virtual file
support.

18 | ownCloud VFS Implementation



2. A notification window will ask you to confirm before completing the conversion.

3. When done, your files will be fully downloaded, which you can tell by the sync
icons, see the example image below. Depending on the quantity and size of the files,
this may take a while.

Manage VFS from ownCloud

You can manage the synchronization for all files and folders via ownCloud. This can be
beneficial if you e.g. want all files to be downloaded (pinned) without you having to
open every single one, or if you want to free up all space at once.

ownCloud VFS Implementation | 19



Make All Files Full Pinned

1. Open your existing synchronization, click the […] button and Availability › Make
always available locally.

2. When opening the Explorer, you will see that all files get the sync icon .

3. The icon will change to Full Pinned when downloaded.

20 | ownCloud VFS Implementation



Make All Files Placeholders

You can free up space by unpinning all files at once and making them placeholders
with only a view clicks.

1. Open your existing synchronization, click the […] button and Availability › Free
up local space.

2. When done, Explorer will show the files in Placeholder state.

ownCloud VFS Implementation | 21



Manage VFS from Windows Explorer

You can manage individual files in the Explorer window by right-clicking on them.
This opens a drop-down menu of actions that can be performed on a specific file.

Create a Local Copy of a File

1. To create a Full Pinned file (have a local copy of it), use the action [Always keep
on this device].

The state of the file will change to synchronizing.

22 | ownCloud VFS Implementation



When the local copy has been created, the state (icon) changes to Full Pinned.

Free up Space of a File

1. To free up the space the file occupied, use the action [Free up space].

ownCloud VFS Implementation | 23



2. When done, Explorer will show the file in Placeholder state.

24 | ownCloud VFS Implementation



Filename Considerations

Introduction

When using the client, depending the operating system (OS) you are using, file and
folder names can have different restrictions. Creating files and folders with allowed
names on one OS, may have issues or even can´t be synced because of different rules
in another OS. This page gives you a brief overview of limitations of different OS for
file and folder names.

 This is not an ownCloud rule but an OS dependency



Here are some rules of thumb
1. Do not use any of the mentioned characters or words in any OS

when using the Desktop Sync Client.
2. When the sync client is on Linux/Unix and the target mount to sync

on is on SMB, file and folder names on Linux/Unix must comply with
the Windows rules for successful syncing.

3. When the sync client is on Linux/Unix and the target mount to sync
on is on SMB and you want to just rename the file with different
casings, rename the file to a total different name, let it sync and
then rename it again to the name that you want.

Forbidden Printable ASCII Characters

Linux/Unix
/ (forward slash)

Windows
< (less than)
> (greater than)
: (colon - sometimes works, but is actually NTFS Alternate Data Streams)
" (double quote)
/ (forward slash)
\ (backslash)
| (vertical bar or pipe)
? (question mark)
* (asterisk)

Non-Printable Characters

If your files are created via a program, do not use non-printable characters. See the
Wikipedia "Control code chart" section for more information on ASCII control
characters.

Linux/Unix
0 (NULL byte)


While it is legal under Linux/Unix file systems to create files with
control characters in the filename, they might be inaccessible and/or
unsyncable.

Windows
0-31 (ASCII control characters)

Introduction | 25

https://en.wikipedia.org/wiki/ASCII#Control_code_chart


Reserved File Names

The following file names are reserved:

Windows
CON, PRN, AUX, NUL COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9,
LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, LPT9

Other Rules

Linux/Unix
When the sync client is on Linux/Unix and the target mount to sync on is on SMB,
you cannot have the same file or folder name but with different casings. A cross
icon will be shown that indicates that the file can’t be synced. Files on Linux/Unix
must comply with the Windows rules for successful syncing.

Windows
Filenames cannot end in a space or dot

Examples and Pitfalls

1. When creating a file in Linux/Unix like my-filename. (see the dot at the end) or my-
filename.LPT1 (see the reserved name LPT1), you can sync the file to your
ownCloud if the mount target is Linux/Unix. When a Windows user tries to sync
these files, Windows rejects the file. Comparing the file list in both environments
shows that one side has more files than the other. There will be no notification as
this is an OS dependency.

2. When renaming an existing file in Linux/Unix by just changing the casing like
owncloud → ownCloud, you might get issues on the windows sync side as for
Windows the file looks the same.

26 | Reserved File Names



Manage Synchronisation Conflicts

Introduction

The ownCloud desktop client uploads local changes and downloads remote changes.
When a file has changed on the local and on the remote side between synchronization
runs, the client will be unable to resolve the situation on its own. It will create a
conflict file with the local version, downloads the remote version and notifies the user
that a conflict occurred which needs attention.

Example Situation

Imagine there is a file called mydata.txt your synchronized folder. It has not changed
for a while and contains the text "contents" locally and remotely. Now, nearly at the
same time you update it locally to say "local contents" while the file on the server gets
updated to contain "remote contents" by someone else.

When attempting to upload your local changes the desktop client will notice that the
server version has also changed. It creates a conflict and you will now have two files
on your local machine:

• mydata.txt containing "remote contents"
• mydata (conflicted copy 2018-04-10 093612).txt containing "local contents"

In this situation the file mydata.txt has the remote changes (and will continue to be
updated with further remote changes when they happen), but your local adjustments
have not been sent to the server (unless the server enables conflict uploading, see
below).

The desktop client notifies you of this situation via system notifications, the system
tray icon and a yellow "unresolved conflicts" badge in the account settings window.
Clicking this badge shows a list that includes the unresolved conflicts and clicking one
of them opens an explorer window pointing at the relevant file.

To resolve this conflict, open both files, compare the differences and copy your local
changes from the "conflicted copy" file into the base file where applicable. In this
example you might change mydata.txt to say "local and remote contents" and delete
the file with "conflicted copy" in its name. With that, the conflict is resolved.

Uploading Conflicts (experimental)

By default the conflict file (the file with "conflicted copy" in its name that contains your
local conflicting changes) is not uploaded to the server. The idea is that you, the
author of the changes, are the best person for resolving the conflict and showing the
conflict to other users might create confusion.

However, in some scenarios it makes a lot of sense to upload these conflicting changes
such that local work can become visible even if the conflict won’t be resolved
immediately.

In the future there might be a server-wide switch for this behavior. For now it can
already be tested by setting the environment variable:
OWNCLOUD_UPLOAD_CONFLICT_FILES = 1.

Introduction | 27



Automatic Updating of the Desktop Client

Introduction

The Automatic Updater ensures that you always have the latest features and bug fixes
for your ownCloud Desktop synchronization client. The Automatic Updater updates
only on Mac OS X and Windows computers; Linux users only need to use their normal
package managers. However, on Linux systems the Updater will check for updates and
notify you when a new version is available.

Basic Workflow

The following sections describe how to use the Automatic Updater on different
operating systems.

Windows

The ownCloud client checks for updates and downloads them when available. You can
view the update status under Settings › General › Updates in the ownCloud client.

If an update is available, and has been successfully downloaded, the ownCloud client
starts a silent update prior to its next launch and then restarts itself. Should the silent
update fail, the client offers a manual download.

 Administrative privileges are required to perform the update.

Mac OS X

If a new update is available, the ownCloud client initializes a pop-up dialog to alert you
of the update and requesting that you update to the latest version. Due to their use of
the Sparkle frameworks, this is the default process for Mac OS X applications.

Linux

Linux distributions provide their own update tools, so ownCloud clients that use the
Linux operating system do not perform any updates on their own. The client will
inform you (Settings › General › Updates) when an update is available.

Preventing Automatic Updates

In controlled environments, such as companies or universities, you might not want to
enable the auto-update mechanism, as it interferes with controlled deployment tools
and policies. To address this case, it is possible to disable the auto-updater entirely.
The following sections describe how to disable the auto-update mechanism for
different operating systems.

Preventing Automatic Updates in Windows Environments

Users may disable automatic updates by adding this line to the [General] section of
their owncloud.cfg files:

owncloud.cfg is usually located in
C:\Users\<USERNAME>\AppData\Roaming\ownCloud\owncloud.cfg.

skipUpdateCheck=true

28 | Introduction



Windows administrators have more options for preventing automatic updates in
Windows environments by using one of two methods. The first method allows users to
override the automatic update check mechanism, whereas the second method
prevents any manual overrides.

To prevent automatic updates, but allow manual overrides:

1. Edit these Registry keys:

a. (32-bit-Windows) HKEY_LOCAL_MACHINE\Software\ownCloud\ownCloud
b. (64-bit-Windows)
HKEY_LOCAL_MACHINE\Software\Wow6432Node\ownCloud\ownCloud

2. Add the key skipUpdateCheck (of type DWORD).
3. Specify a value of 1 to the machine.

To manually override this key, use the same value in HKEY_CURRENT_USER. To prevent
automatic updates and disallow manual overrides:


This is the preferred method of controlling the updater behavior using
Group Policies.

1. Edit this Registry key:

HKEY_LOCAL_MACHINE\Software\Policies\ownCloud\ownCloud

2. Add the key skipUpdateCheck (of type DWORD).
3. Specify a value of 1 to the machine.


Enterprise branded clients (Building Branded ownCloud Clients) have
different key names, which are set in ownBrander using the Application
Vendor and Application Name fields.

Your key names look like this:

HKEY_LOCAL_MACHINE\Software\Policies\myCompanyName\myAppName

Preventing Automatic Updates in Mac OS X Environments

You can disable the automatic update mechanism, in the Mac OS X operating system,
by copying the file
owncloud.app/Contents/Resources/deny_autoupdate_com.owncloud.desktopclient.plist
to /Library/Preferences/com.owncloud.desktopclient.plist.

Preventing Automatic Updates in Linux Environments

Because the Linux client does not provide automatic updating functionality, there is no
need to remove the automatic-update check. However, if you want to disable it edit
your desktop client configuration file, $HOME/.config/ownCloud/owncloud.cfg, add this
line to the [General] section:

Preventing Automatic Updates | 29

https://doc.owncloud.com/branded_clients/


skipUpdateCheck=true

30 | Preventing Automatic Updates



Removing the Desktop Synchronization
Client

Removing the Configuration File

When you remove the client - the configuration file remains on your system. If you
then decide to install the client again, you won’t need to re-enter the connection
information.

In case you want a clean removal of the client, you manually have to delete the
configuration file. The location of the configuration file is operating system dependent
and can be found in the Configuration File description.

Windows Navigation Sidebar

If you have removed the Windows Synchronization Client but still have the ownCloud
shortcut or symbol in the Windows Navigation Side Bar, here is how you to remove it:

1. Open regedit. (press the Windows Key and type regedit)
2. Search (CTL+F) for the name of the client, in this case `owncloud `.
3. Press F3 for next search result.
4. Look for the key System.IsPinnedToNameSpaceTree.
5. Right click on the key name, change, set to 0 instead of 1.

You have to do this twice. Once for the x64 and x32 system settings.

Once this is done, you don’t need a reboot, just open and close your explorer - the
sidebar is clean.

Removing the Configuration File | 31

advanced_usage/configuration_file.pdf


FAQ

Some Files Are Continuously Uploaded to the Server,
Even When They Are Not Modified

It is possible that another program is changing the modification date of the file. If the
file has an .eml extension, Windows automatically and continually changes the file,
unless you remove it.
\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\PropertySystem\
PropertyHandlers from the windows registry. See http://petersteier.wordpress.com/
2011/10/22/windows-indexer-changes-modification-dates-of-eml-files/ for more
information.

Syncing Stops When Attempting to Sync Deeper Than
100 Sub-Directories

The sync client has been intentionally limited to sync no deeper than 100 sub-
directories. The hard limit exists to guard against bugs with cycles like symbolic link
loops. When a deeply nested directory is excluded from synchronization it will be
listed with other ignored files and directories in the "Not synced" tab of the "Activity"
pane.

I See a Warning Message for Unsupported Versions

Keeping software up to date is crucial for file integrity and security – if software is
outdated, there can be unfixed bugs. That’s why you should always upgrade your
software when there is a new version.

The ownCloud Desktop Client talks to a server, e.g. the ownCloud server, so you don’t
only have to upgrade your client when there is a new version for it, also the server has
to be kept up-to-date by your sysadmin. Starting with version 2.5.0, the client will
show a warning message if you connect to an outdated or unsupported server:

Because Earlier Versions Are Not Maintained Anymore, Only ownCloud
10.0.0 or Higher Is Supported

So if you encounter such a message, you should ask your administrator to upgrade
ownCloud to a secure version. An important feature of the ownCloud Client is
checksumming – each time you download or upload a file, the client and the server
both check if the file was corrupted during the sync. This way you can be sure that you
don’t lose any files.

There are servers out there which don’t have checksumming implemented on their
side, or which are not tested by ownCloud’s QA team. They can’t ensure file integrity,
they have potential security issues, and we can’t guarantee that they are compatible
with the ownCloud Desktop Client.

32 | Some Files Are Continuously Uploaded to the Server, Even When They Are Not Modified

http://petersteier.wordpress.com/2011/10/22/windows-indexer-changes-modification-dates-of-eml-files/
http://petersteier.wordpress.com/2011/10/22/windows-indexer-changes-modification-dates-of-eml-files/


We Care About Your Data and Want It to Be Safe

That’s why you see this warning message, so you can evaluate your data security.
Don’t worry – you can still use the client with an unsupported server, but do so at your
own risk.

There Was a Warning About Changes in Synchronized
Folders Not Being Tracked Reliably

On Linux, when the synchronized folder contains a high number of subfolders, the
operating system may not allow for enough inotify watches to monitor the changes in
all of them.

In this case the client will not be able to immediately start the synchronization process
when a file in one of the unmonitored folders changes. Instead, the client will show the
warning and manually scan folders for changes in a regular interval (two hours by
default).

This problem can be solved by setting the fs.inotify.max_user_watches sysctl to a
higher value and can usually be done either temporarily:

echo 524288 > /proc/sys/fs/inotify/max_user_watches.

or permanently by adjusting /etc/sysctl.conf.

I Want to Move My Local Sync Folder

The ownCloud desktop client does not provide a way to change the local sync folder
directly. However, it can be done in two ways:

1. Copy the folder and avoid a full re-sync:
a. Stop the client and edit the localPath= line in the configuration file according

your needs.
b. Copy (or move) all your data from the current to the new location manually and

start the client.
2. Create a new sync connection with a new location:

a. Remove the existing connection which syncs to the old directory.

To do so, in the client UI, which you can see below, click the drop down menu
Account › Remove.

There Was a Warning About Changes in Synchronized Folders Not Being Tracked Reliably | 33

advanced_usage/configuration_file.pdf#location-of-the-configuration-file


This will display a "Confirm Account Removal" dialog window. If you’re sure,
click [Remove connection].

b. Add a new connection which syncs to the desired directory.

Click the drop-down menu Account › Add new.

This opens the ownCloud Connection Wizard, which you can see below, but with
an extra option. This option provides the ability to either keep the existing data
(synced by the previous connection) or to start a clean sync (erasing the existing
data).



Be careful before choosing the "Start a clean sync" option. The
old sync folder may contain a considerable amount of data,
ranging into the gigabytes or terabytes. If it does, after the client
creates the new connection, it will have to download all of that
information again.

Instead, first move or copy the old local sync folder, containing a
copy of the existing files, to the new location. Then, when
creating the new connection choose "keep existing data" instead.
The ownCloud client will check the files in the newly-added sync
folder and find that they match what is on the server and not
need to download anything.

Make your choice and click [Connect…] This will then lead you through the
Connection Wizard, just like when you set up the previous sync connection, but
giving you the opportunity to choose a new sync directory.

My Sync Folder Displays a Different Quota Than the
Web Interface

When other users share data with you, it’s downloaded to the sync folder and counted
as space used by the desktop client although it doesn’t affect your quota for storage
usage. There are more factors taken into account when calculating the quota status.

34 | My Sync Folder Displays a Different Quota Than the Web Interface



For more information, see the User Manual on quota:
https://doc.owncloud.com/server/next/user_manual/files/webgui/quota.html

I Want to Change My Server URL

Since changing server urls is a potentially dangerous operation the ownCloud desktop
client does not provide a user interface for this change. Typically, server url changes
should be implemented by serving a permanent redirect to the new location on the old
url. The client will then permanently update the server url the next time it queries the
old url.

For situations where arranging for a redirect is impossible, url changes can be done by
editing the config file. Before doing so make sure that the new url does indeed point to
the same server, with the same users and the same data. Then go through these steps:

1. Shut down the ownCloud client.
2. Locate the configuration file
3. Open it with a text editor.
4. Find your old server url and adjust it.
5. Save the file and start the ownCloud client again.

I Want to Change My Server URL | 35

https://doc.owncloud.com/server/next/user_manual/files/webgui/quota.html
https://doc.owncloud.com/server/next/user_manual/files/webgui/quota.html
advanced_usage/configuration_file.pdf#location-of-the-configuration-file


Advanced Usage
In this section, you find information about advanced usage.

Command Line Options

Introduction

Depending on your operating system, you can start the ownCloud client from the
command line by typing owncloud or owncloud.exe. You may need to change to the
directory of the binary first. When starting owncloud manually, you can add options to
this command.

List Options

To get the list of options, run the following example command:

owncloud -h
or
owncloud --help

Use Options

Option Description

--logwindow Opens a window displaying log output.

-s --showsettings Show the settings dialog while starting

-q --quit Quit the running instance

--logfile <filename> Write log output to the file specified. To write to stdout,
specify - as the filename.

--logdir <name> Writes each synchronization log output in a new file in the
specified directory.

--logexpire <hours> Removes logs older than the value specified (in hours).
This command is used with --logdir.

--logflush Clears (flushes) the log file after each write action.

--logdebug Also output debug-level messages in the log equivalent to
setting the environment variable QT_LOGGING_RULES =
"qt.=true;.debug=true".

--confdir <dirname> Uses the specified configuration directory.

Configuration File

Introduction

The ownCloud Client uses a configuration file. It has several sections for particular
settings. You will find more sections in the configuration file than described here. Do
not change any of those settings except support advises you to do so.

Location of the Configuration File

The location of the configuration file depends on the operating system used. You can
locate this configuration file as follows:

36 | Command Line Options



System Location

Linux $HOME/.config/ownCloud/owncloud.cfg

Microsoft
Windows

%APPDATA%\ownCloud\owncloud.cfg

macOS $HOME/Library/Preferences/ownCloud/owncloud.cfg

The configuration file contains settings using the Microsoft Windows .ini file format.
You can overwrite changes using the ownCloud configuration dialog.


Use caution when making changes to the ownCloud Client
configuration file. Incorrect settings can produce unintended results.

Section [ownCloud]

Variable Default Meaning

remotePollInterval 30000 Specifies the poll time for the remote repository
in milliseconds.

forceSyncInterval 7200000 The duration of no activity after which a
synchronization run shall be triggered
automatically.

fullLocalDiscoveryInte
rval

3600000 The interval after which the next synchronization
will perform a full local discovery.

notificationRefreshInt
erval

300000 Specifies the default interval of checking for new
server notifications in milliseconds.

Section [General]

Variable Default Meaning

chunkSize 10000000
(or 10 MB)

Specifies the initial chunk size of uploaded files in
bytes. The client will dynamically adjust this size
within the maximum and minimum bounds (see
below).

maxChunkSize 100000000
(or 100
MB)

Specifies the maximum chunk size of uploaded
files in bytes.

minChunkSize 1000000
(or 1 MB)

Specifies the minimum chunk size of uploaded
files in bytes.

targetChunkUploadDu
ration

60000
(1 minute)

Target duration in milliseconds for chunk uploads.
The client adjusts the chunk size until each chunk
upload takes approximately this long. Set to 0 to
disable dynamic chunk sizing.

promptDeleteAllFiles true If a UI prompt should ask for confirmation if it
was detected that all files and folders were
deleted.

crashReporter true Whether to show the crash reporter when a crash
occurs.

timeout 300 The timeout for network connections in seconds.

Configuration File | 37

https://en.wikipedia.org/wiki/INI_file


Variable Default Meaning

moveToTrash false If non-locally deleted files should be moved to
trash instead of deleting them completely. This
option only works on linux

showExperimentalOpt
ions

false Whether to show experimental options that are
still undergoing testing in the user interface.
Turning this on does not enable experimental
behavior on its own. It does enable user interface
options that can be used to opt in to experimental
features.

Section [Proxy]

Variable Default Meaning

host 127.0.0.1 The address of the proxy server.

port 8080 The port were the proxy is listening.

type 2 * 0 for System Proxy
* 1 for SOCKS5 Proxy
* 2 for No Proxy
* 3 for HTTP(S) Proxy

Environment Variables

Introduction

The behavior of the client can also be controlled using environment variables.


The value of the environment variables override the values in the
configuration file.


Most environment variables only exist for debugging or testing. They
are not officially supported and may change from version to version. If
you end up relying on a setting only available through an environment
variable, please create a bug report.

Available Environment Variables

Setting Default Description

OWNCLOUD_CHUNK_
SIZE

10000000
(or 10 MB)

Specifies the initial chunk size of uploaded files in
bytes. The client will dynamically adjust this size
within the maximum and minimum bounds (see
below). To disable chunking completely, set
OWNCLOUD_CHUNK_SIZE=0 .

OWNCLOUD_MAX_CH
UNK_SIZE

100000000
(or 100
MB)

Specifies the maximum chunk size of uploaded
files in bytes.

OWNCLOUD_MIN_CHU
NK_SIZE

1000000
(or 1 MB)

Specifies the minimum chunk size of uploaded
files in bytes.

38 | Environment Variables



Setting Default Description

OWNCLOUD_TARGET_
CHUNK_UPLOAD_DUR
ATION

60000 Target duration in milliseconds for chunk uploads.
The client adjusts the chunk size until each chunk
upload takes approximately this long. Set to 0 to
disable dynamic chunk sizing.

OWNCLOUD_CHUNKIN
G_NG

depend on
server
capability

Force-enable ("1") or force-disable ("0") the NG
chunking algorithm.

OWNCLOUD_NO_TUS Set to any value to disable uploads using the tus
protocol

OWNCLOUD_TIMEOUT 300 The timeout for network connections in seconds.

OWNCLOUD_CRITICAL
_FREE_SPACE_BYTES

50*1000*1
000 bytes

The minimum disk space needed for operation. A
fatal error is raised if less free space is available.

OWNCLOUD_FREE_SP
ACE_BYTES

250*1000*
1000 bytes

Downloads that would reduce the free space
below this value are skipped. More information
available under the "Low Disk Space" section.

OWNCLOUD_MAX_PA
RALLEL

6 Maximum number of parallel jobs.

OWNCLOUD_BLACKLI
ST_TIME_MIN

25 Minimum timeout, in seconds, for blacklisted
files.

OWNCLOUD_BLACKLI
ST_TIME_MAX

24*60*60
(or one
day)

Maximum timeout, in seconds, for blacklisted
files.

OWNCLOUD_HTTP2_E
NABLED

depend on
Qt version

Force-enable ("1") or force-disable ("0") HTTP2
support. Note that HTTP2 use also depends on
whether the server supports it.

OWNCLOUD_MINIMAL
_TRAY_MENU

unset If set a minimal tray menu is used. Helpful if a
platform’s tray has problematic behavior.

OWNCLOUD_TRAY_UP
DATE_WHILE_VISIBLE

0 Set to "1" to allow the tray menu to be updated
while it’s visible to the user.

OWNCLOUD_FORCE_T
RAY_SHOW_HIDE

unset Set to "1" to reestablish the tray icon every time
the menu changes.

OWNCLOUD_FORCE_T
RAY_FAKE_DOUBLE_C
LICK

unset Set to "1" if single tray clicks sometimes get
recognized as double clicks.

OWNCLOUD_FORCE_T
RAY_MANUAL_VISIBILI
TY

unset Set to "1" if the tray menu is flickering while
opened.

OWNCLOUD_FORCE_T
RAY_NO_ABOUT_TO_S
HOW

unset Set to "1" if the tray menu sometimes contains
stale entries.

OWNCLOUD_FULL_LO
CAL_DISCOVERY_INTE
RVAL

3600000
(1 hour)

Maximum time in milliseconds that fast local
discovery is allowed for after a full local
discovery. Set to 0 to always require full local
discovery. Set to -1 to never require full local
discovery.

Environment Variables | 39



Setting Default Description

OWNCLOUD_SQLITE_J
OURNAL_MODE

depends on
filesystem

Set a specific sqlite journal mode.

OWNCLOUD_SQLITE_L
OCKING_MODE

EXCLUSIV
E

Set a specific sqlite locking mode.

OWNCLOUD_SQLITE_T
EMP_STORE

unset Set the given temp_store on the sqlite database.

OWNCLOUD_DISABLE
_CHECKSUM_COMPUT
ATIONS

unset Set to disable all file checksum computations.

OWNCLOUD_DISABLE
_CHECKSUM_UPLOAD

unset Set to disable computing checksums for uploaded
files.

OWNCLOUD_CONTEN
T_CHECKSUM_TYPE

SHA1 Select the file checksumming algorithm.
"Adler32", "MD5", "SHA1", "SHA256", "SHA3-
256" are valid, but not all have server support.

OWNCLOUD_UPLOAD_
CONFLICT_FILES

unset Set to "1" to enable uploading conflict files to the
server.

QT_LOGGING_RULES unset Set to "sync.httplogger=true" to enable verbose
http logging. See also troubleshooting.adoc for
more.

The Command Line Client

Introduction

The ownCloud Client packages contain a command line client, owncloudcmd, that can
be used to synchronize ownCloud files to client machines.

owncloudcmd performs a single sync run and then exits the synchronization process.
In this manner, owncloudcmd processes the differences between client and server
directories and propagates the files to bring both repositories to the same state.
Contrary to the GUI-based client, owncloudcmd does not repeat synchronizations on
its own. It also does not monitor for file system changes.

To invoke owncloudcmd, you must provide the local and the remote repository URL
using the following command:

owncloudcmd [OPTIONS...] sourcedir owncloudurl.

sourcedir is the local directory and owncloudurl is the server URL. Other command line
switches supported by owncloudcmd include the following:

Switch Description

--user, -u [user] Use user as the login name.

--password, -p [password] Use password as the password.

-n Use netrc (5) for login.

--non-interactive Do not prompt for questions.

--silent, --s Inhibits verbose log output.

40 | The Command Line Client



Switch Description

--trust Trust any SSL certificate, including invalid
ones.

--httpproxy
http://[user@pass:]<server>:<port>

Uses server as HTTP proxy.

--davpath [path] Overrides the WebDAV Path with path

--exclude [file] Exclude list file.

--unsyncedfolders [file] File containing the list of un-synced remote
folders (selective sync)

--max-sync-retries [n] Retries maximum n times (defaults to 3)

-h Sync hidden files,do not ignore them.

Credential Handling

owncloudcmd requires the user to specify the username and password using the
standard URL pattern, for example:

$ owncloudcmd /home/user/my_sync_folder
https://carla:secret@server/owncloud/remote.php/webdav/

To synchronize the ownCloud directory Music to the local directory media/music,
through a proxy listening on port 8080, and on a gateway machine using IP address
192.168.178.1, the command line would be:

$ owncloudcmd --httpproxy http://192.168.178.1:8080 \
              $HOME/media/music \
              https://server/owncloud/remote.php/webdav/Music.

owncloudcmd will prompt for the user name and password, unless they have been
specified on the command line or -n has been passed.

Exclude List

owncloudcmd requires access to an exclude list file. It must either be installed along
with owncloudcmd and thus be available in a system location, be placed next to the
binary as sync-exclude.lst or be explicitly specified with the --exclude switch.

Low Disk Space

Introduction

When disk space is low, the ownCloud Client will be unable to synchronize all files.
This section describes its behavior in a low disk space situation as well as the
adjustable environment variables that influence it.

Cases

Low Disk Space | 41



Issue Adjustable Environment Variable

Synchronization of a folder aborts entirely
if the remaining disk space falls below 50
MB.

OWNCLOUD_CRITICAL_FREE_SPACE_BYTES

Downloads that would reduce the free
disk space below 250 MB will be skipped
or aborted. The download will be retried
regularly and other synchronization is
unaffected.

OWNCLOUD_FREE_SPACE_BYTES

42 | Low Disk Space



Appendices
In this section, you find supporting information.

Appendix Building the Client

Introduction

This section explains how to build the ownCloud Client from source for all major
platforms. You should read this section if you want to develop for the desktop client.
Build instructions are subject to change as development proceeds.

 Please check the version for which you want to build.

These instructions are updated to work with the latest version of the ownCloud Client.

Getting the Source Code

The generic build instructions pull the latest code directly from GitHub, and work on
Linux, Mac OS X, and Windows.

Linux

For the published desktop clients we link against QT5 dependencies from our own
repositories so that we can have the same versions on all distributions. This chapter
shows you how to build the client yourself with this setup. If you want to use the QT5
dependencies from your system, see the next chapter.

You may wish to use source packages for your Linux distribution, as these give you the
exact sources from which the binary packages are built. These are hosted on the
ownCloud repository from OBS. Go to the Index of repositories to see all the Linux
client repositories.



To get the .deb source packages, add the source repository for your
Debian or Ubuntu version, as in the following example for Debian 9:

# Run as root
echo 'deb
http://download.opensuse.org/repositories/isv:/ownCloud:/desktop/D
ebian_9.0/ /' >> /etc/apt/sources.list.d/owncloud-client.list
echo 'deb-src
http://download.opensuse.org/repositories/isv:/ownCloud:/desktop/D
ebian_9.0/ /' >> /etc/apt/sources.list.d/owncloud-client.list

The above registers the source repository of the released client. There is also …
/desktop:/testing/… and e.g. …/desktop:/daily:/2.7/… for beta versions or daily
snapshots.

Install the dependencies using the following commands for your specific Linux
distribution. Make sure the repositories for source packages are enabled. These are:

Distribution Installation Instructions

Debian/Ubuntu apt update; apt build-dep owncloud-client

Appendix Building the Client | 43

https://owncloud.org/download/#owncloud-desktop-client
http://software.opensuse.org/download/package?project=isv:ownCloud:desktop&package=owncloud-client
http://download.opensuse.org/repositories/isv:/ownCloud:/desktop/


Distribution Installation Instructions

openSUSE/SLES zypper ref; zypper si -d owncloud-client

Fedora/CentOS/RHEL yum install yum-utils; yum-builddep owncloud-client

Follow the generic build instructions, starting with step 2.

Linux with System Dependencies

Build sources from a GitHub checkout with dependencies provided by your Linux
distribution. While this allows more freedom for development, it does not exactly
represent what we ship as packages. See above for how to recreate packages from
source.



To get the source dependencies on Debian and Ubuntu, run the
following command:

sudo apt install qtdeclarative5-dev libinotifytools-dev \
  qt5keychain-dev python3-sphinx \
  libsqlite3-dev

Follow the generic build instructions, starting with step 1.

macOS

In addition to needing Xcode (along with the command line tools), developing in the
macOS environment requires extra dependencies. You can install these dependencies
through MacPorts or Homebrew. These dependencies are required only on the build
machine, because non-standard libs are deployed in the app bundle.

The tested and preferred way to develop in this environment is through the use of
HomeBrew. The ownCloud team has its own repository containing non-standard
recipes. To set up your build environment for development using HomeBrew:

1. Install Xcode.
2. Install Xcode command line tools using

xcode-select --install

3. Install Homebrew using

/bin/bash -c "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

4. Add the ownCloud repository using the command

brew tap owncloud/owncloud

5. Install a Qt5 version, ideally from from 5.10.1, using the command

44 | Appendix Building the Client

http://www.macports.org
https://docs.brew.sh
https://docs.brew.sh
https://docs.brew.sh
https://developer.apple.com/xcode
https://github.com/Homebrew/install


brew install qt5

6. Install any missing dependencies, using the command:

brew install $(brew deps owncloud-client)

7. Install qtkeychain by running

git clone https://github.com/frankosterfeld/qtkeychain.git

Make sure you make the same install prefix as later while building the client e.g.

-DCMAKE_INSTALL_PREFIX=/Path/to/client/../install

8. For compilation of the client, follow the generic build instructions.
9. Install the Packages package creation tool.

10. In the build directory, run

admin/osx/create_mac.sh <CMAKE_INSTALL_DIR> <build dir> <installer sign
identity>

If you have a developer signing certificate, you can specify its Common Name as a
third parameter (use quotes) to have the package signed automatically.


Contrary to earlier versions, version 1.7 and later are packaged as a
pkg installer. Do not call make package at any time when compiling
for OS X, as this will build a disk image, which will not work
correctly.

Windows Development Build with KDE Craft

If you want to test some changes, you can build the ownCloud Client natively on
Windows using KDE Craft. You can also use it to build unsupported and unoptimized
installers.

Install KDE Craft

To install KDE Craft, Python 2.7 or Python 3.6+, and PowerShell 5.0+ must be
installed. You can find the full installation guide in the KDE Community Wiki.


If you want to use Microsoft Visual Studio, naturally, that must be
installed as well.

When the dependencies are installed, install KDE Craft using the following lines in
PowerShell:

Appendix Building the Client | 45

http://s.sudre.free.fr/Software/Packages/about.html
https://community.kde.org/Craft
https://www.python.org/download/releases/2.7/
https://www.python.org/downloads/release/python-360/
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-windows-powershell?view=powershell-6
https://community.kde.org/Guidelines_and_HOWTOs/Build_from_source/Windows


Set-ExecutionPolicy -Scope CurrentUser RemoteSigned
iex ((new-object net.webclient).DownloadString
('https://raw.githubusercontent.com/KDE/craft/master/setup/install_craft.ps1'))

The first command allows running scripts from remote sources. The second command
starts installing KDE Craft. You are asked where you want to put the main folder,
called CraftRoot, which will contain all source, build, and install folders. Please chose a
disk with sufficient free space.

Last but not least, you need to chose the compiler you want to use. The official builds
only supports Microsoft Visual Studio 2019. However, if you’re feeling adventurous,
you can also try to use Mingw-w64. In contrast to Visual Studio, which you need to
install in advance, KDE Craft can install Mingw-w64 for you.


Unless you need 32bit builds, you should stick to the default of x64
builds.

Setup KDE Craft

After you install KDE Craft, there are two steps left before the ownCloud Client can be
compiled. These are:

1. Launch the KDE Craft Environment
2. Build the Client

Launch the KDE Craft Environment

To launch the KDE Craft environment, you need to run the following command in
PowerShell. This provides you with a shell with all the environment variables set that
you need to work with KDE Craft.

C:\CraftRoot\craft\craftenv.ps1

 This needs to be done every time you want to work with Craft.


We’re assuming that you installed KDE Craft in the default path of
C:\CraftRoot. If you have installed it somewhere else, please adjust the
path as necessary.

Setup the ownCloud repository

The last step before we can begin, is adding the ownCloud repository. It provides you
with additional dependencies and tools, which are not available from the standard
KDE repository.

craft --add-blueprint-repository https://github.com/owncloud/craft-blueprints-
owncloud.git

 You only need to do this once.

46 | Appendix Building the Client

https://visualstudio.microsoft.com/en/downloads/
https://www.mingw-w64.org/docs/overview/


Build The Client

Finally we can build the client with the following command:

craft owncloud-client

This installs all required dependencies and builds the ownCloud Client from the
master git branch. If you want to build a different branch, first install all dependencies
and then clone the source code from git, like this:

craft --install-deps owncloud-client
craft --fetch owncloud-client

You can find the git checkout in C:\CraftRoot\downloads\git\owncloud\owncloud-client.
There you can use the usual git commands to switch branches and remotes, e.g., to
build the 2.8 stable branch you can use craft with --set version parameter:

git checkout 2.8
craft --set version=2.8 owncloud-client

Afterwards you can build the client like this:

craft --configure --make --install
craft owncloud-client

Run the Client

Neither craft owncloud-client nor craft --configure --make --install make the ownCloud
Client available in your PATH, they only install to the so-called image directory. This is
so KDE Craft knows which files belong to which package. In order to run the client,
you first need to merge the image directory to the regular KDE Craft root (
C:\CraftRoot). Afterwards, you can run owncloud.exe from your shell.

craft --qmerge owncloud-client
owncloud.exe

Package the Client (Unsupported)

Although this is not officially supported, it is, generally, possible to build an installer
with:

craft nsis
craft --package owncloud-client

Now you should have a file called: owncloud-client-master-${COMMIT_HASH}-windows-
${COMPILER}.exe in C:\CraftRoot\tmp.


This is not supported, optimised, nor regularly tested! Fully supported
Windows installers are currently only provided by ownBrander.

Appendix Building the Client | 47



Generic Build Instructions

To build the most up-to-date version of the client:

1. Clone the latest versions of the client from Git as follows:

git clone git://github.com/owncloud/client.git
cd client
# master this default, but you can also check out a tag like v2.5.4
git checkout master
git submodule init
git submodule update

2. Create the build directory:

mkdir client-build
cd client-build

3. Configure the client build:

cmake -DCMAKE_PREFIX_PATH=/opt/ownCloud/qt-5.12.4
-DCMAKE_INSTALL_PREFIX=/Users/path/to/client/../install/ ..

For Linux builds (using QT5 libraries via build-dep) a typical setting is

-DCMAKE_PREFIX_PATH=/opt/ownCloud/qt-5.12.4/

However, the version number may vary. For Linux builds using system
dependencies -DCMAKE_PREFIX_PATH is not needed. You must use absolute paths
for the include and library directories.

On Mac OS X, you need to specify -DCMAKE_INSTALL_PREFIX=target, where target
is a private location, i.e. in parallel to your build dir by specifying ../install.

qtkeychain must be compiled with the same prefix e.g.,

-DCMAKE_INSTALL_PREFIX=/Users/path/to/client/../install/

4. Call

make

The ownCloud binary will appear in the bin directory.

5. (Optional) Call make install to install the client to the /usr/local/bin directory (or as
per CMAKE_INSTALL_PREFIX).
The following are known CMake parameters:

48 | Appendix Building the Client

http://git-scm.com


◦ QTKEYCHAIN_LIBRARY=/path/to/qtkeychain.dylib
-DQTKEYCHAIN_INCLUDE_DIR=/path/to/qtkeychain/ Used for stored credentials.
When compiling with Qt5, the library is called qt5keychain.dylib. You need to
compile QtKeychain with the same Qt version. If you install QtKeychain into the
CMAKE_PREFIX_PATH then you don’t need to specify the path manually.

◦ WITH_DOC=TRUE: Creates doc and man pages through running make; also adds
install statements, providing the ability to install using make install.

◦ CMAKE_PREFIX_PATH=/path/to/Qt5.12.4/5.12.4/yourarch/lib/cmake/: Builds using
that Qt version.

◦ CMAKE_INSTALL_PREFIX=path: Set an install prefix. This is mandatory on Mac
OS.

6. Optional: Run a client that was installed in a custom CMAKE_INSTALL_PREFIX
may not pick up the correct libraries automatically. You can use LD_LIBRARY_PATH
to help finding the libraries like this:

LD_LIBRARY_PATH=/opt/ownCloud/qt-5.12.4/lib/x86_64-linux-
gnu/:/Users/path/to/client/../install/lib/x86_64-linux-gnu/
/Users/path/to/client/../install/bin/owncloud

Compiling via ownBrander

If you don’t want to go through the trouble of doing all the compile work manually, you
can use ownBrander to create installer images for all platforms.

Appendix History and Architecture

Introduction

ownCloud provides desktop sync clients to synchronize the contents of local
directories from computers, tablets, and handheld devices to the ownCloud server.

Synchronization is accomplished using csync, a bidirectional file synchronizing tool
that provides both a command line client as well as a library. A special module for
csync was written to synchronize with the ownCloud built-in WebDAV server.

The ownCloud Client software is written in C++ using the Qt Framework As a result,
the ownCloud Client runs on Linux, Windows, and MacOS.

The Synchronization Process

The process of synchronization keeps files in two separate repositories the same.
When synchronized:

• If a file is added to one repository it is copied to the other synchronized repository.
• When a file is changed in one repository, the change is propagated to any other

synchronized repository.
• If a file is deleted in one repository, it is deleted in any other.

It is important to note that the ownCloud synchronization process does not use a
typical client/server system where the server is always master. This is a major
difference between the ownCloud synchronization process and other systems like a file
backup, where only changes to files or folders and the addition of new files are
propagated, but these files and folders are never deleted unless explicitly deleted in
the backup.

Appendix History and Architecture | 49

https://doc.owncloud.com/branded_clients/
http://www.csync.org
http://www.qt-project.org


During synchronization, the ownCloud Client checks both repositories for changes
frequently. This process is referred to as a sync run. In between sync runs, the local
repository is monitored by a file system monitoring process that starts a sync run
immediately if something was edited, added, or removed.

Synchronization by Time versus ETag

Until the release of ownCloud 4.5 and ownCloud Client 1.1, the ownCloud
synchronization process employed a single file property — the file modification
time — to decide which file was newer and needed to be synchronized to the other
repository.

The modification timestamp is part of the files metadata. It is available on every
relevant filesystem and is the typical indicator for a file change. Modification
timestamps do not require special action to create, and have a general meaning. One
design goal of csync is to not require a special server component. This design goal is
why csync was chosen as the backend component.

To compare the modification times of two files from different systems, csync must
operate on the same base. Before ownCloud Client version. 1.1.0, csync required both
device repositories to run on the exact same time. This requirement was achieved
through the use of enterprise standard NTP time synchronization on all machines.

Because this timing strategy is rather fragile without the use of NTP, ownCloud 4.5
introduced a unique number (for each file?) that changes whenever the file changes.
Although this number is a unique value, it is not a hash of the file. Instead, it is a
randomly chosen number, that is transmitted in the Etag field. Because the file
number changes if the file changes, its use is guaranteed to determine if one of the
files has changed and, thereby, launching a synchronization process.


ownCloud Client release 1.1 and later requires file ID capabilities on
the ownCloud server. Servers that run with release earlier than 4.5.0 do
not support using the file ID functionality.

Before the 1.3.0 release of the Desktop Client, the synchronization process might
create false conflict files if time deviates. Original and changed files conflict only in
their timestamp, but not in their content. This behavior was changed to employ a
binary check if files differ.

Like files, directories also hold a unique ID that changes whenever one of the
contained files or directories is modified. Because this is a recursive process, it
significantly reduces the effort required for a synchronization cycle, because the client
only analyzes directories with a modified ID.

The following table outlines the different synchronization methods used, depending on
server/client combination:

Table 1. Compatibility Table

Server Version Client Version Sync Methods

4.0.x or earlier 1.0.5 or earlier Time Stamp

4.0.x or earlier 1.1 or later n/a (incompatible)

4.5 or later 1.0.5 or earlier Time Stamp

4.5 or later 1.1 or later File ID, Time Stamp

We strongly recommend using ownCloud Server release 4.5 or later when using
ownCloud Client 1.1 or later. Using an incompatible time stamp-based synchronization

50 | Appendix History and Architecture

http://en.wikipedia.org/wiki/Network_Time_Protocol
http://en.wikipedia.org/wiki/HTTP_ETag


mechanism can lead to data loss in rare cases, especially when multiple clients are
involved and one utilizes a non-synchronized NTP time.

Comparison and Conflict Cases

As mentioned above, during a sync run the client must first detect if one of the two
repositories have changed files. On the local repository, the client traverses the file
tree and compares the modification time of each file with an expected value stored in
its database. If the value is not the same, the client determines that the file has been
modified in the local repository.


On the local side, the modification time is a good attribute to use for
detecting changes, because the value does not depend on time shifts
and such.

For the remote (that is, ownCloud server) repository, the client compares the ETag of
each file with its expected value. Again, the expected ETag value is queried from the
client database. If the ETag is the same, the file has not changed and no
synchronization occurs.

In the event a file has changed on both the local and the remote repository since the
last sync run, it can not easily be decided which version of the file is the one that
should be used. However, changes to any side will not be lost. Instead, a conflict case
is created. The client resolves this conflict by renaming the local file, appending a
conflict label and timestamp, and saving the remote file under the original file name.

Example: Assume there is a conflict in message.txt because its contents have changed
both locally and remotely since the last sync run. The local file with the local changes
will be renamed to message. (conflicted copy 2016-01-01 153110).txt and the remote
file will be downloaded and saved as message.txt.

Conflict files are always created on the client and never on the server.

Checksum Algorithm Negotiation

In ownCloud 10.0 we implemented a checksum feature which checks the file integrity
on upload and download by computing a checksum after the file transfer finishes. The
client queries the server capabilities after login to decide which checksum algorithm
to use. Currently, SHA1 is hard-coded in the official server release and can’t be
changed by the end-user. Note that the server additionally also supports MD5 and
Adler-32, but the desktop client will always use the checksum algorithm announced in
the capabilities:

GET http://localhost:8000/ocs/v1.php/cloud/capabilities?format=json

{
   "ocs":{
      "meta":{
         "status":"ok",
         "statuscode":100,
         "message":"OK",
         "totalitems":"",
         "itemsperpage":""
      },
      "data":{

Appendix History and Architecture | 51



         "version":{
            "major":10,
            "minor":0,
            "micro":0,
            "string":"10.0.0 beta",
            "edition":"Community"
         },
         "capabilities":{
            "core":{
               "pollinterval":60,
               "webdav-root":"remote.php/webdav"
            },
            "dav":{
               "chunking":"1.0"
            },
            "files_sharing":{
               "api_enabled":true,
               "public":{
                  "enabled":true,
                  "password":{
                     "enforced":false
                  },
                  "expire_date":{
                     "enabled":false
                  },
                  "send_mail":false,
                  "upload":true
               },
               "user":{
                  "send_mail":false
               },
               "resharing":true,
               "group_sharing":true,
               "federation":{
                  "outgoing":true,
                  "incoming":true
               }
            },
            "checksums":{
               "supportedTypes":[
                  "SHA1"
               ],
               "preferredUploadType":"SHA1"
            },
            "files":{
               "bigfilechunking":true,
               "blacklisted_files":[
                  ".htaccess"
               ],
               "undelete":true,

52 | Appendix History and Architecture



               "versioning":true
            }
         }
      }
   }
}

Upload

A checksum is calculated with the previously negotiated algorithm by the client and
sent along with the file in an HTTP Header: OC-Checksum: [algorithm]:[checksum].

During file upload, the server computes SHA1, MD5, and Adler-32 checksums and
compares one of them to the checksum supplied by the client.

On mismatch, the server returns HTTP Status code 400 (Bad Request) thus signaling
the client that the upload failed. The server then discards the upload, and the client
blacklists the file:

Appendix History and Architecture | 53



<?xml version='1.0' encoding='utf-8'?>
<d:error xmlns:d="DAV:" xmlns:s="http://sabredav.org/ns">
  <s:exception>Sabre\DAV\Exception\BadRequest</s:exception>
  <s:message>The computed checksum does not match the one received from the
client.</s:message>
</d:error>

The client retries the upload using exponential back-off. On success, (matching
checksum) the computed checksums are stored by the server in oc_filecache alongside
the file.

Chunked Upload

Mostly same as above. The checksum of the full file is sent with every chunk of the file.
But the server only compares the checksum after receiving the checksum sent with
the last chunk.

Download

The server sends the checksum in an HTTP header with the file. (same format as
above) If no checksum is found in oc_filecache (freshly mounted external storage) it is
computed and stored in oc_filecache on the first download. The checksum is then
provided on all subsequent downloads but not on the first.

Ignored Files

The ownCloud Client supports the ability to exclude or ignore certain files from the
synchronization process. Some system wide file patterns that are used to exclude or
ignore files are included with the client by default and the ownCloud Client provides
the ability to add custom patterns.

By default, the ownCloud Client ignores the following files:

• Files matched by one of the patterns defined in the Ignored Files Editor.
• Files starting with .sync*.db*, .sync_*.db*, .csync_journal.db*, .owncloudsync.log*,

as these files are reserved for journalling.
• Files with a name longer than 254 characters.

54 | Appendix History and Architecture



• The file Desktop.ini in the root of a synced folder.
• Files matching the pattern _conflict- unless conflict file uploading is enabled.
• Files matching the pattern (conflicted copy unless conflict file uploading is enabled.
• Windows only: Files containing characters that do not work on typical Windows

filesystems (\, /, :, ?, *, ", >, <, |).
• Windows only: Files with a trailing space or dot.
• Windows only: Filenames that are reserved on Windows.

If a pattern selected using a checkbox in the Ignored Files Editor, or if a line in the
exclude file starts with the character ] directly followed by the file pattern, files
matching the pattern are considered.

fleeting meta data.

These files are ignored and removed by the client if found in the synchronized folder.
This is suitable for meta files created by some applications that have no sustainable
meaning.

If a pattern ends with the forward slash (/) character, only directories are matched.
The pattern is only applied for directory components of filenames selected using the
checkbox.

To match filenames against the exclude patterns, the UNIX standard C library function
fnmatch is used. This process checks the filename against the specified pattern using
standard shell wildcard pattern matching. For more information, please refer to the
pattern matching documentation.

The path that is checked is the relative path under the sync root directory.

Pattern and File Match Examples:.

Pattern File Matches

~$* ~$foo, ~$example.doc

fl?p flip, flap

moo/ map/moo/, moo/

The Sync Journal

The client stores the ETag number in a per-directory database, called the journal. This
database is a hidden file contained in the directory to be synchronized.

If the journal database is removed, the ownCloud Client CSync backend rebuilds the
database by comparing the files and their modification times. This process ensures
that both server and client are synchronized using the appropriate NTP time before
restarting the client following a database removal.

Custom WebDAV Properties

In the communication between client and server a couple of custom WebDAV
properties were introduced. They are either needed for sync functionality or help have
a positive effect on synchronization performance.

This chapter describes additional XML elements which the server returns in response
to a successful PROPFIND request on a file or directory. The elements are returned in
the namespace oc.

Appendix History and Architecture | 55

navigating.pdf#using-the-ignored-files-editor
http://pubs.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html#tag_02_13_01
http://pubs.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html#tag_02_13_01


Server Side Permissions

The XML element <oc:permissions> represents the permission- and sharing state of
the item. It is a list of characters, and each of the chars has a meaning as outlined in
the table below:

Code Resource Description

S File or Folder is shared.

R File or Folder can share (includes re-share)

M File or Folder is mounted (like on Dropbox, Samba, etc.)

W File can write file.

C Folder can create file in folder.

K Folder can create folder (mkdir)

D File or Folder can delete file or folder.

N File or Folder can rename file or folder.

V File or Folder can move file or folder.

Example:

<oc:permissions>RDNVCK</oc:permissions>

File- or Directory Size

The XML element <oc:size> represents the file- or directory size in bytes. For
directories, the size of the whole file tree underneath the directory is accumulated.

Example:

<oc:size>2429176697</oc:size>

FileID

The XML element <oc:id> represents the so called file ID. It is a non volatile string id
that stays constant as long as the file exists. It is not changed if the file changes or is
renamed or moved.

Example:

<oc:id>00000020oc5cfy6qqizm</oc:id>

Appendix Troubleshooting

Introduction

The following two general issues can result in failed synchronization:

• The server setup is incorrect.

56 | Appendix Troubleshooting



• The client contains a bug.

When reporting bugs, it is helpful if you first determine what part of the system is
causing the issue.

Identifying Basic Functionality Problems

Performing a general ownCloud Server test
The first step in troubleshooting synchronization issues is to verify that you can log
on to the ownCloud web application. To verify connectivity to the ownCloud server
try logging in via your Web browser. If you are not prompted for your username and
password, or if a red warning box appears on the page, your server setup requires
modification. Please verify that your server installation is working correctly.

Ensure the WebDAV API is working
If all desktop clients fail to connect to the ownCloud Server, but access using the
Web interface functions properly, the problem is often a misconfiguration of the
WebDAV API. The ownCloud Client uses the built-in WebDAV access of the server
content. Verify that you can log on to ownCloud’s WebDAV server. To verify
connectivity with the ownCloud WebDAV server, open a browser window and enter
the address to the ownCloud WebDAV server. For example, if your ownCloud
instance is installed at https://yourserver.com/owncloud, your WebDAV server
address is https://yourserver.com/owncloud/remote.php/webdav. If you are prompted
for your username and password but, after providing the correct credentials,
authentication fails, please ensure that your authentication backend is configured
properly.

Use a WebDAV command line tool to test
A more sophisticated test method for troubleshooting synchronization issues is to
use a WebDAV command line client and log into the ownCloud WebDAV server. One
such command line client — called cadaver — is available for Linux distributions. You
can use this application to further verify that the WebDAV server is running
properly using PROPFIND calls. As an example, after installing the cadaver app, you
can issue the propget command to obtain various properties pertaining to the
current directory and also verify WebDAV server connection.

CSync Unknown Error

If you see this error message stop your client, delete the ._sync_xxxxxxx.db file, and
then restart your client. There is a hidden ._sync_xxxxxxx.db file inside the folder of
every account configured on your client.


Please note that this will also erase some of your settings about which
files to download.

See https://github.com/owncloud/client/issues/5226 for more discussion of this issue.

Isolating Other Issues

Other issues can affect synchronization of your ownCloud files:

• If you find that the results of the synchronizations are unreliable, please ensure
that the folder to which you are synchronizing is not shared with other
synchronization applications.

• Synchronizing the same directory with ownCloud and other synchronization
software such as Unison, rsync, Microsoft Windows Offline Folders, or other cloud
services such as Dropbox or Microsoft SkyDrive is not supported and should not be
attempted. In the worst case, it is possible that synchronizing folders or files using

Appendix Troubleshooting | 57

https://github.com/owncloud/client/issues/5226


ownCloud and other synchronization software or services can result in data loss.
• If you find that only specific files are not synchronized, the synchronization protocol

might be having an effect. Some files are automatically ignored because they are
system files, other files might be ignored because their filename contains
characters that are not supported on certain file systems. For more detailed
information see the Ignored Files section.

• If you are operating your own server, and use the local storage backend (the
default), make sure that ownCloud has exclusive access to the directory.



The data directory on the server is exclusive to ownCloud and must not
be modified manually.

• If you are using a different file backend on the server, you can try to
exclude a bug in the backend by reverting to the built-in backend.

• If you are experiencing slow upload/download speed or similar
performance issues be aware that those could be caused by on-
access virus scanning solutions, either on the server (like the
files_antivirus app) or the client.

Log Files

Effectively debugging software requires as much relevant information as can be
obtained. To assist the ownCloud support personnel, please try to provide as many
relevant logs as possible. Log output can help with tracking down problems and, if you
report a bug, log output can help to resolve an issue more quickly.

The client log file is often the most helpful log to provide.

Obtaining the Client Log File

There are several ways to produce log files. The most commonly useful is enabling
logging to a temporary directory, described first.



Client log files contain file and folder names, metadata, server URLs
and other private information. Only upload them if you are comfortable
sharing the information. Logs are often essential for tracking down a
problem though, so please consider providing them to developers
privately.

Logging to a Temporary Directory

1. Open the ownCloud Desktop Client.
2. Press [F12] or [Ctrl-L] or [Cmd+L] on your keyboard.

The Log Output window opens.

58 | Appendix Troubleshooting

architecture.pdf#ignored-files
https://github.com/owncloud/files_antivirus


3. Enable the [Enable logging to temporary folder] checkbox.
4. Later, to find the log files, click the [Open folder] button.
5. Select the logs for the time frame in which the issue occurred.

 That the choice to enable logging will be persist across client restarts.

Saving Files Directly

The ownCloud client allows you to save log files directly to a custom file or directory.
This is a useful option for easily reproducible problems, as well as for cases where you
want logs to be saved to a different location.

To save log files to a file or a directory:

1. To save to a file, start the client using the --logfile <file> command, where <file> is
the filename to which you want to save the file.

2. To save to a directory, start the client using the --logdir <dir> command, where
<dir> is an existing directory.

When using the --logdir command, each sync run creates a new file. To limit the
amount of data that accumulates over time, you can specify the --logexpire <hours>
command. When combined with the --logdir command, the client automatically erases
saved log data in the directory that is older than the specified number of hours.

Adding the --logdebug flag increases the verbosity of the generated log files.

As an example, to define a test where you keep log data for two days, you can issue
the following command:

owncloud --logdir /tmp/owncloud_logs --logexpire 48

Logging in the Console

If the ownCloud client isn’t able to start and immediately crashes the first two options
are not available. Therefore it might need to be necessary to start the ownCloud client
using the command line in order to be see the error message

On Linux and Mac simply open the terminal and run:

Appendix Troubleshooting | 59



owncloud --logfile - --logflush

On Windows open a PowerShell and run the following command:

& 'C:\Program Files\ownCloud\owncloud.exe' --logfile - --logflush | Write-Host

Make sure to copy the whole command and adjust the path to your owncloud.exe, if
you have chosen to install the client in a different path.

To further increase the verbosity of the output you can also combine these commands
with the --logdebug argument.

Control Log Content

Thanks to the Qt framework, logging can be controlled at run-time through the
QT_LOGGING_RULES environment variable.

Exclude log item categories

QT_LOGGING_RULES='gui.socketapi=false;sync.database*=false' \
  /PATH/TO/CLIENT \
  --logdebug --logfile <file>

Add HTTP logging entries

QT_LOGGING_RULES='sync.httplogger=true' \
  /PATH/TO/CLIENT \
  --logdebug --logfile <file>

Only show specific log item categories

QT_LOGGING_RULES='*=false;sync.httplogger=true' \
  /PATH/TO/CLIENT \
  --logdebug --logfile <file>

ownCloud Server Log File

The ownCloud server also maintains an ownCloud specific log file. This log file must be
enabled through the ownCloud Administration page. On that page, you can adjust the
log level. We recommend that when setting the log file level that you set it to a verbose
level like Debug or Info.

You can view the server log file using the web interface or you can open it directly
from the file system in the ownCloud server data directory.

Need more information on this. How is the log file accessed? Need to explore
procedural steps in access and in saving this file, similar to how the log file is
managed for the client. Perhaps it is detailed in the Admin Guide and a link should be
provided from here. I will look into that when I begin heavily editing the Admin Guide.

60 | Appendix Troubleshooting



Webserver Log Files

It can be helpful to view your webserver’s error log file to isolate any ownCloud-
related problems. For Apache on Linux, the error logs are typically located in the
/var/log/apache2 directory. Some helpful files include the following:

• error_log — Maintains errors associated with PHP code.
• access_log — Typically records all requests handled by the server; very useful as a

debugging tool because the log line contains information specific to each request
and its result.

You can find more information about Apache logging at http://httpd.apache.org/docs/
current/logs.html

Core Dumps

On macOS X and Linux systems, and in the unlikely event the client software crashes,
the client is able to write a core dump file. Obtaining a core dump file can assist
ownCloud Customer Support tremendously in the debugging process.

To enable the writing of core dump files, you must define the OWNCLOUD_CORE_DUMP
environment variable on the system.

For example:

OWNCLOUD_CORE_DUMP=1 owncloud

This command starts the client with core dumping enabled and saves the files in the
current working directory.



Core dump files can be fairly large. Before enabling core dumps on
your system, ensure that you have enough disk space to accommodate
these files. Also, due to their size, we strongly recommend that you
properly compress any core dump files prior to sending them to
ownCloud Customer Support.

Release Notes

Changelog for the Desktop Client

ownCloud provides a full changelog with a summary and details for each release of the
Desktop Client. Click the following link to access it at GitHub.

Release Notes | 61

http://httpd.apache.org/docs/current/logs.html
http://httpd.apache.org/docs/current/logs.html
https://github.com/owncloud/client/blob/master/CHANGELOG.md

	ownCloud Desktop Client Manual
	Table of Contents
	Introduction
	Improvements and New Features

	Installing the Desktop Synchronization Client
	Introduction
	System Requirements
	Customizing the Windows Installation
	Installation Wizard

	Using the Synchronization Client
	Introduction
	Used Client Icons
	Systray Icon
	File Manager Overlay Icons
	Sharing From Your Desktop
	Activity Window
	Server Notifications
	General Window
	Using the Network Window
	Using the Ignored Files Editor

	Using the Virtual Filesystem
	Introduction
	Microsoft VFS Implementation
	ownCloud VFS Implementation

	Filename Considerations
	Introduction
	Forbidden Printable ASCII Characters
	Non-Printable Characters
	Reserved File Names
	Other Rules
	Examples and Pitfalls

	Manage Synchronisation Conflicts
	Introduction
	Example Situation
	Uploading Conflicts (experimental)

	Automatic Updating of the Desktop Client
	Introduction
	Basic Workflow
	Preventing Automatic Updates

	Removing the Desktop Synchronization Client
	Removing the Configuration File
	Windows Navigation Sidebar

	FAQ
	Some Files Are Continuously Uploaded to the Server, Even When They Are Not Modified
	Syncing Stops When Attempting to Sync Deeper Than 100 Sub-Directories
	I See a Warning Message for Unsupported Versions
	There Was a Warning About Changes in Synchronized Folders Not Being Tracked Reliably
	I Want to Move My Local Sync Folder
	My Sync Folder Displays a Different Quota Than the Web Interface
	I Want to Change My Server URL

	Advanced Usage
	Command Line Options
	Configuration File
	Environment Variables
	The Command Line Client
	Low Disk Space

	Appendices
	Appendix Building the Client
	Appendix History and Architecture
	Appendix Troubleshooting
	Release Notes


