ownCloud Desktop Client Manual

The ownCloud Team

Version: 2.10, July 22, 2022

Table of Contents

Introduction
Improvements and New Features
Installing the Desktop App
Introduction
System Requirements and Installation
Customizing the Windows Installation
Installation Wizard
Using the Desktop App
Introduction
Used App Icons
Systray Icon
File Manager Overlay Icons
Sharing From Your Desktop
Activity Window
Settings Window
Using the Virtual Filesystem
Introduction
Microsoft VFS Implementation
ownCloud VFS Implementation
Filename Considerations
Introduction
Forbidden Printable ASCII Characters
Non-Printable Characters
Reserved File Names
Other Rules
Examples and Pitfalls
Manage Synchronisation Conflicts
Introduction
Example Situation
Uploading Conflicts (experimental)
Automatic Updating of the Desktop App
Introduction
Basic Workflow
Preventing Automatic Updates
Removing the Desktop App
Introduction
Removing the Binary
Removing the Configuration File

N NN =

10
12
12
12
13
15
16
17
19
23
23
23
24
31
31
31
31
32
32
32
33
33
33
33
35
35
35
35
38
38
38
38

Windows Navigation Sidebar

Desktop Frequently Asked Questions (FAQ)

Introduction
Usage
Major Configuration Changes

Error Messages

Advanced Usage

Command Line Options
Configuration File
Environment Variables
The Command Line Client

Low Disk Space

Appendices

Appendix Building the Desktop App
Appendix History and Architecture
Appendix Troubleshooting

GUI Testing the Desktop App

Release Notes

38
39
39
39
39
41
46
46
46
48
50
52
53
53
60
67
73
76

Introduction

Available for Windows, macOS, and various Linux distributions, the ownCloud Desktop App
enables you to:

» Specify one or more directories on your computer that you want to synchronize to the
ownCloud server.

» Always have the latest files synchronized, wherever they are located.

Your files are always automatically synchronized between your ownCloud server and local PC.

Improvements and New Features

Each release of the ownCloud Desktop App has new features and improvements, for details see the
complete changelog.

https://owncloud.com/changelog/desktop/

Installing the Desktop App

Introduction

The Desktop App enables users to access and sync files and folders from their ownCloud, work on
remote files right from the desktop as if they were stored on their computer — because they are.
Continuous synchronization to and from the ownCloud server provides ease of use combined with
comprehensive access control.

System Requirements and Installation

You can download the latest version of the ownCloud Desktop App from the Desktop App Download
page. There are Desktop Apps for Linux, macOS, and Microsoft Windows available. When using
Linux, you can also use AppImage.

System Requirements

Depending on the operating system used, some minimum system requirements need to be met.
ownCloud provides Linux packages for a variety of Linux distributions, see the list of supported
distros below.

Windows

» Windows 7+
o x86 with 32-bit or x86-64 with 64-bit
o Native WinVFS available for Windows 10 version 1709 or later

macOS
e macOS 10.12+

> x86-64 or Apple M in Rosetta 2 emulation; unsupported legacy builds for Mac OS X 10.10
& 10.11 available

o M1 native support planned for Q4 2022 - no issues in regard to performance or otherwise
known at this time!

Linux

e CentOS 7.x with minimum version x=8 (x86-64)

o Note the Python extensions for nautilus (GNOME) and its forks nemo (Cinnamon) and
caja (MATE) are available only in the third-party EPEL archives which needs to be
installed separately before the ownCloud package can be installed. To do so, run

sudo yum install epel-release

e Debian 10 & 11 (x86-64)
e Fedora 34 & 35 (x86-64)
» openSUSE Leap 15.2 & 15.3 (x86-64)

https://owncloud.com/desktop-app/

* Ubuntu 20.04 & 21.04 & 21.10 (x86-64)

o For Linux distributions, we support, if technically feasible, the latest 2 versions per
platform and the previous Ubuntu LTS.

Installation on Mac OS X and Windows

Installation on Mac OS X and Windows is the same as for any software application: download the
installer, double-click it to launch the installation and follow the installation wizard. After it is
installed and configured the Desktop App will automatically keep itself updated; see autoupdate for
more information.

Installation on Linux

* No matter whether the Desktop App is installed natively or used as an AppIlmage, you can add
command line parameters when starting up post installation. One parameter to mention is the
option -s. This option forces the settings page to be shown on startup. While not necessary
during general usage, it can be helpful if system tray icons are not available any more within
your desktop environment.

* Linux users should also have a password manager enabled, such as GNOME Keyring or KWallet,
so that the Desktop App can log in automatically.

* Note, our description focuses on the GNOME desktop. Adapt the procedures for other desktop
environments accordingly.

* Using GNOME on recent distributions like Ubuntu 22.04, Debian 11 or others, the system tray is
typically no longer available. This makes it hard to get back an app that has been minimized to
the system tray. You have to install an extension in order to restore the system tray in this case
in order to be able to find and restore the minimized application.

For distributions like Ubuntu 22.04 or Debian 11, please use the command below to install the
extension, otherwise please follow the AppIndicator Support installation.

sudo apt install gnome-shell-extension-appindicator

When the extension is installed, you need to restart the GNOME shell. To do so, hit [Alt+F2] on
the keyboard, type [r] and [Enter]. Now you will see the new extensions added to the
extensions list. To enable an extension, switch the button on the right to the [On] position. For
the particular system tray icon extension, the name for all distributions is Ubuntu
AppIndicators because the notification system AppIndicators has been developed by Ubuntu.
Once enabled, the system tray is shown again within the desktop environment.

https://wiki.ubuntu.com/LTS
https://wiki.gnome.org/Projects/GnomeKeyring/
https://utils.kde.org/projects/kwalletmanager/
https://extensions.gnome.org/extension/615/appindicator-support/

General L Native Mpr:emm

Appearance

Places status indicator
Extensions Add a menu for quickly navigating places in the syst

Fonts
Removable drive menu
Keyboard & Mouse
Startup Applications
Screenshot window sizer
TopBar esize windows for gnome so

Window Titlebars
Ubuntu appindicators
Windows Support app indicators in top,

Workspaces 3
User themes

Load shell themes from user directo o

Native installation

Linux users must follow the instructions on the download page to add the appropriate repository
for their Linux distribution, install the signing key and use their package managers to install the
Desktop App. Linux users will also update their Desktop App via package manager. The Desktop
App will display a notification when an update is available.

You will also find links to source code archives and older versions on the download page.

AppImage

Starting with Desktop App version 2.9, an Applmage build of the ownCloud Desktop App is
available to support more Linux platforms. You can download the AppImage at the Linux section of
the Download Desktop App page.

Applmage is an alternative way to use Linux applications —instead of having multiple files in
several places making up a package, the entire application is contained in a single file ending with
an .AppImage suffix, including all necessary dependencies and libraries. ownCloud provides a single
AppImage which runs on all (modern) Linux platforms.

Known limitations for the 2.10.x AppImage

* CentOS 7 is currently not supported.

* For Ubuntu 22.04, Debian 11 and other very recent distributions, you need to install 1ibfuse2
as a prerequisite. For details see issue with libfuse on Ubuntu >=22.04 or Debian 11 Setting
up FUSE 2.x alongside of FUSE 3.x on recent Ubuntu (>=22.04).

» The file browser integration, which means overlay icons and the context menu, is not
included in the AppImage. You need to install file browser extension packages manually.

* AppImages do not start automatically. You have to configure your desktop to automatically
start the Desktop App when logging in.

o For GNOME, search for startup applications in the desktop menu.

o As an alternative, use the ApplmageLauncher App which also helps managing
AppImages.

* There is no automatic updating. Any update is like installing the AppImage.

Installing libfuse2 if required

https://owncloud.com/desktop-app/
https://en.wikipedia.org/wiki/AppImage
https://owncloud.com/desktop-app/
https://owncloud.com/desktop-app/
https://docs.appimage.org/user-guide/troubleshooting/fuse.html#setting-up-fuse-2-x-alongside-of-fuse-3-x-on-recent-ubuntu-22-04-debian-and-their-derivatives
https://docs.appimage.org/user-guide/troubleshooting/fuse.html#setting-up-fuse-2-x-alongside-of-fuse-3-x-on-recent-ubuntu-22-04-debian-and-their-derivatives
https://docs.appimage.org/introduction/software-overview.html#ref-appimagelauncher

* Checkif libfuse2 is already installed:
dpkg -1 libfuse2

* Check if there is an installation candidate for libfuse2:
sudo apt-cache show libfuse?

* Install libfuse2:
sudo apt install libfuse2

Install the AppImageLauncher app
See the Install AppImageLauncher wiki for details about installing it. AppImageLauncher does
not need to be started. It hooks in when you start an AppImage. There are different responses
when starting an AppImage:

How to launch an AppImage

When you open an Applmage file via your file browser that you have not opened before then
double click on it:

Opening ownCloud-2.10.1.7389.Applmage x

You have chosen to open:
ownCloud-2.10.1.7389.AppImage

which is: Applmage application bundle (46.3 MB)
from: https://download.owncloud.com

What should Firefox do with this file?
O 0Openwith | Applmagelauncher (default) v

Save File

Cancel 0K

First time usage

After opening an Applmage, if AppImageLauncher has been started for the first time, it will
ask you to define some basic settings:

https://github.com/TheAssassin/AppImageLauncher/wiki

First run — ApplmageLauncher x

Welcome to ApplmageLauncher!

This little helper is designed to improve your
Applmage experience on your computer.

It appears you have never run ApplmageLauncher
‘ before. Please take a minute and configure your

preferences. You can always change these later on,
using the control panel.

v Ask me whether to move new Applmages into a central location

Integration target destination directory:
/home/user/Applications (default) [TICustomize

Restore Defaults @ Cancel [PoK ‘

AppImage Integration Question

Post first time configuration or when you open the AppImage file via your file browser, for
example by double clicking on it:

Desktop Integration — ApplmageLauncher x ‘
|

[/tmp/mozilla_user0/ownCloud-2.10.1.7389.AppImage has not been

| integrated into your system. |
Y Integrating it will move the AppImage into a predefined location, and

| include it in your application launcher. |

To remove or update the Applmage, please use the context menu of
| the application icon in your task bar or launcher.

The directory where the integrated Applmages are stored in is
currently set to: /home/user/Applications

Integrate and run| Run once

Install and run the Desktop App AppImage

The example below uses the terminal but you can also use the GUI. For details see How to run an
Applmage.

* Go to the download page and download the recent AppImage into the Applications folder in
your home directory. Replace the URL from the example with the actual URL from the
download page. Note the folder name Applications can be any name and helps to collect all
AppImages you have on one location. The ApplmageLauncher, if used, has this name
predefined unless you change it.

mkdir -p ~/Applications

cd ~/Applications

wget https://download.owncloud.com/desktop/ownCloud/stable//2.10.1.7187/1inux-
appimage/ownCloud-2.10.1.7187.AppImage

» The following steps are only necessary when the AppImageLauncher is not used:

https://docs.appimage.org/introduction/quickstart.html#ref-quickstart
https://docs.appimage.org/introduction/quickstart.html#ref-quickstart
https://owncloud.com/desktop-app/

- Make the AppIlmage executable:
sudo chmod +x ownCloud-2.10.1.7187.AppImage
« Start the AppImage by invoking the following command:
~/Applications/ownCloud-2.10.1.7187.AppImage

* Note when you start the AppImage after setting it to be executable, AppImageLauncher will
open if installed.

Customizing the Windows Installation

If you just want to install the ownCloud Desktop App on your local system, you can simply launch
the .msi file and configure it in the wizard that pops up.

Features

The MSI installer provides several features that can be installed or removed individually, which
you can also control via command-line, if you are automating the installation, then run the
following command:

msiexec /passive /i ownCloud-x.y.z.msi.

The command will install the ownCloud Desktop App into the default location with the default
features enabled. If you want to disable, e.g., desktop shortcut icons you can simply change the
above command to the following:

msiexec /passive /i ownCloud-x.y.z.msi REMOVE=DesktopShortcut.

See the following table for a list of available features:

Feature Enabled by Description Property to disable.
default
Client Yes, The actual client
required
DesktopShortcut Yes Adds a shortcut to the NO_DESKTOP_SHORTCUT
desktop.
StartMenuShortcu Yes Adds shortcuts to the NO_START_MENU_SHORTCUTS
ts start menu.
ShellExtensions Yes Adds Explorer NO_SHELL_EXTENSIONS
integration

Installation

You can also choose to only install the Desktop App itself by using the following command:
msiexec /passive /i ownCloud-x.y.z.msi ADDDEFAULT=Client.

If you for instance want to install everything but the DesktopShortcut and the ShellExtensions
feature, you have two possibilities:

* You explicitly name all the features you actually want to install (whitelist) where (Client is
always installed anyway.

msiexec /passive /i ownCloud-x.y.z.msi ADDDEFAULT=StartMenuShortcuts.
* You pass the NO_DESKTOP_SHORTCUT and NO_SHELL_EXTENSIONS properties.

msiexec /passive /i ownCloud-x.y.z.msi NO_DESKTOP_SHORTCUT="1"
NO_SHELL_EXTENSIONS="1"

o The ownCloud .msi file remembers these properties, so you don’t need to specify
them on upgrades.

o You cannot use these to change the installed features, if you want to do that, see
the next section.

Changing Installed Features
You can change the installed features later by using REMOVE and ADDDEFAULT properties.

 If you want to add the desktop shortcut later, run the following command:
msiexec /passive /i ownCloud-x.y.z.msi ADDDEFAULT="DesktopShortcut"

* If you want to remove it, simply run the following command:

msiexec /passive /i ownCloud-x.y.z.msi REMOVE="DesktopShortcut"

Windows keeps track of the installed features and using REMOVE or ADDDEFAULT will only affect the
mentioned features.

Compare REMOVE and ADDDEFAULT on the Windows Installer Guide.

0 You cannot specify REMOVE on initial installation as it will disable all features.

https://docs.microsoft.com/en-us/windows/win32/msi/remove
https://docs.microsoft.com/en-us/windows/win32/msi/adddefault

Installation Folder

You can adjust the installation folder by specifying the INSTALLDIR property like this.

msiexec /passive /i ownCloud-x.y.z.msi INSTALLDIR="C:\Program Files (x86)\Non Standard
ownCloud Client Folder"

Be careful when using PowerShell instead of cmd.exe, it can be tricky to get the whitespace escaping
right there. Specifying the INSTALLDIR like this only works on first installation, you cannot simply re-
invoke the .msi with a different path. If you still need to change it, uninstall it first and reinstall it
with the new path.

Disabling Automatic Updates.

To disable automatic updates, you can pass the SKIPAUTOUPDATE property.

msiexec /passive /i ownCloud-x.y.z.msi SKIPAUTOUPDATE="1"

Launch After Installation

To launch the Desktop App automatically after installation, you can pass the LAUNCH property.
msiexec /i ownCloud-x.y.z.msi LAUNCH="1"

This option also removes the checkbox to let users decide if they want to launch the Desktop App
for non-passive/quiet mode.

o This option does not have any effect without GUIL

No Reboot After Installation

The ownCloud Desktop App schedules a reboot after installation to make sure the Explorer
extension is correctly (un)loaded. If you’re taking care of the reboot yourself, you can set the REBOOT

property.
msiexec /i ownCloud-x.y.z.msi REBOOT=ReallySuppress.

This will make msiexec exit with error ERROR_SUCCESS_REBOOT_REQUIRED (3010). If your
deployment tooling interprets this as an actual error and you want to avoid that, you may want to
set the DO_NOT_SCHEDULE_REBOOT instead.

msiexec /i ownCloud-x.y.z.msi DO_NOT_SCHEDULE_REBOOT="1"

Installation Wizard

The installation wizard takes you step-by-step through configuration options and account setup.
First you need to enter the URL of your ownCloud server.

| <. ownCloud Connection Wizard
afih,
€

_ >
ownlou r::I

server Address Dittps://studio/owncloud

I <. ownCloud Connection Wizard

Enter user credentials

Connect to ownCloud 2B,
d@).

ownCloud

Username molly

Password ssses|

< Back][Mext =]

On the "Local Folder Option" screen you may sync all of your files on the ownCloud server, or select
individual folders. The default local sync folder is ownCloud, in your home directory. You may change
this as well.

10

Connect to ownCloud

@
Setup local folder options “‘.”

ownCloud

@ Sync everything from server (7.4 ME)

% |Choose what to sync

S

Server

e é E [C:\Users\CarlaownCloud

Local Folder

Skip folders configuration < Back

When you have completed selecting your sync folders, click the "Connect” button at the bottom
right. The Desktop App will attempt to connect to your ownCloud server, and when it is successful
you’ll see two buttons:

* One to connect to your ownCloud Web GUI

* One to open your local folder.

It will also start synchronizing your files.

11

Using the Desktop App

Introduction

The ownCloud Desktop App remains in the background and is visible as an icon in the system tray
(Windows, KDE), menu bar (macOS), or notification area (Linux).

Used App Icons

The status indicator uses icons to indicate the current status of your synchronization. The green
circle with the white checkmark tells you that your synchronization is current and you are
connected to your ownCloud server.

The blue icon with the white semi-circles means synchronization is in progress.

The yellow icon with the parallel lines tells you your synchronization has been paused. (Most likely
by you.)

The gray icon with three white dots means your Desktop App has lost its connection with your
ownCloud server.

When you see a white circle with the letter "i" that is the informational icon, so you should click it
to see what it has to tell you.

The red circle with the white "x" indicates a configuration error, such as an incorrect login or
server URL.

Systray Icon

A right-click on the systray icon opens a menu for quick access to multiple operations.

Open in browser molly@studio
Managed Folders: R g
Open folder "ownCloud' Up to date
Pause all folders I "
Log out Settings...

Help

Pause all synchronization

Log out of all accounts

Quit ownCloud

This menu provides the following options:

* Quick access to your accounts.

* Sync status.

* Recent Changes, showing the latest activities.

* Settings.

* Help menu.

* Pause synchronizations.

* An option to log in or log out of all of your accounts at once.

* Quit ownCloud, logging out and closing the Desktop App.

A left-click on your systray icon opens the Desktop App to the account settings window.

13

Configuring ownCloud Account Settings

At the top of the window are tabs for each configured sync account, and three others for Activity,
General and Network settings. On your account tabs you have the following features:

* Connection status, showing which ownCloud server you are connected to, and your ownCloud
username.

* An Account button, which contains a dropdown menu with Add New, Log Out, and Remove.

» Used and available space on the server.

* Current synchronization status.

Add Folder Sync Connection button.

The little button with three dots (the overflow menu) that sits to the right of the sync status bar
offers four additional options:

Show in Explorer

Opens your local ownCloud sync folder.

Show in web browser

Opens your ownCloud via the browser.

Choose What to Sync

Select the folders and mounts in the main window to be synced. This appears only when your
file tree is collapsed, and expands the file tree.

Force sync now / Restart sync

Start the sync process immediately - if none is running, or restart a running sync process

Pause Sync

Pauses sync operations without making any changes to your account. It will continue to update
file and folder lists, without downloading or updating files.

14

Remove Folder Sync Connection

Stop all sync activity

Enable virtual file support

Enable the virtual file support for an account

Show in Explorer

Show in web browser

Choose what to sync
Force sync now
Pause sync

Remove folder sync connection

Enable virtual file support...

ownCloud does not preserve the mtime (modification time) of directories, though
o it does update the mtimes on files. See Wrong folder date when syncing for
discussion of this.

Adding New Accounts

You may configure multiple ownCloud accounts in your Desktop App. Simply click the Account >
Add New button on any account tab to add a new account, and then follow the account creation
wizard. The new account will appear as a new tab in the settings dialog, where you can adjust its

settings at any time. Use Account » Remove to delete accounts.

To use Two-Factor Authentication (2FA), ownCloud server must have the OAuth?2
app installed, configured, and enabled. Please contact your ownCloud
administrator for more details.

File Manager Overlay Icons

The ownCloud Desktop App provides overlay icons, in addition to the normal file type icons, for
your system file manager (Explorer on Windows, Finder on Mac and Nautilus on Linux) to indicate
the sync status of your ownCloud files.

The overlay icons are similar to the systray icons introduced above. They behave differently on files
and directories according to sync status and errors.

15

https://github.com/owncloud/core/issues/7009:
https://marketplace.owncloud.com/apps/oauth2
https://marketplace.owncloud.com/apps/oauth2

The overlay icon of an individual file indicates its current sync state. If the file is in sync with the
server version, it displays a green checkmark.

If the file is ignored from syncing, for example because it is on your exclude list, or because it is a
symbolic link, it displays a warning icon.

If there is a sync error, or the file is blacklisted, it displays an eye-catching red X. If the file is
waiting to be synced, or is currently syncing, the overlay icon displays a blue cycling icon.

When the Desktop App is offline, no icons are shown to reflect that the folder is currently out of
sync and no changes are synced to the server.

The overlay icon of a synced directory indicates the status of the files in the directory. If there are
any sync errors, the directory is marked with a warning icon.

If a directory includes ignored files that are marked with warning icons that does not change the
status of the parent directories.

Sharing From Your Desktop

The ownCloud Desktop App integrates with your file manager: Finder on Mac OS X, Explorer on
Windows, and Nautilus on Linux. (Linux users must install the owncloud-client-nautilus plugin.)
You can create share links, and share with internal ownCloud users the same way as in your
ownCloud Web interface.

.h_

: H ;
. S \ =y
t X g
) o o~ 0 O)
Documents Photos sCreenies shared .csync_journal.db
@ @ @
.csync_journal.db .csync_journal.db .owncloudsync.lo adorbs-kitten.pn AlienSong_mpd.
-shm -wal g g mov
‘\ 4
annabelle.png buffalo-sanitary- Dragons eagle.png egret-dance,jpg
wipers.jpg Dream.webm

2 VBN
muddog.jpeg pinballsmas.png

Right-click your systray icon, hover over the account you want to use, and left-click Open folder >
"folder name" to quickly enter your local ownCloud folder. Right-click the file or folder you want
to share to expose the share dialog, and click Share with ownCloud.

16

‘1 In m

blue- Open
Open in new window

Add to Windows Media Player list
Play with Windows Media Player

c;yn @ Scan with Microsoft Security Essentials...

Share with k
Restore previcus versions

Include in library k

Share with ownCloud

The share dialog has all the same options as your ownCloud Web interface.

o ™
I Cloud Sharing -

F.Ji: | AlienSong_mp4.mov

Share with users or groups ...

freva can share can edit E] @

Share link

http: //192, 168.0. 125/owndoud findex.php/s/j3eod...

[7] Password protect

[7] set expiration date 5/12/2016

Use Share with ownCloud to see who you have shared with, and to modify their permissions, or to
delete the share.

Activity Window

The Activity window contains the log of your recent activities, organized over three tabs:

17

Server Activities

Includes new shares and files downloaded and deleted.

Sync Protocol

Displays local activities such as which local folders your files went into.

Not Synced
Shows errors such as files not synced because of being excluded or any other failing status.

| B3 server actvty | # Sync protocol | 4 Not Synced (8)

Server Adtvities | Filter

Activit Account Time v

3 minute(s) ago
18 minute(s) ago
1 day(s) ago
1 day(s) ago
5 day(s) ago
7 day(s) ago
8 day(s) ago
8 day(s) ago
8 day(s) ago
8 day(s) ago
8 day(s) ago

8 day(s) ago

8 day(s) ago

In Windows, double-clicking an activity entry pointing to an existing file in tabs Server Activities
or Sync Protocol, will open the folder containing the file and highlight it.

On Linux, you can do the same with mouse » right-click > Show file in browser
In any of the activity tabs you can mark a single line, multiple lines or all lines with CTRL + a and
copy the selected lines to the clipboard with mouse > right-click » Copy to clipboard.

Server Notifications

The desktop client will display notifications from your ownCloud server that require manual
interaction. It automatically checks for available notifications automatically on a regular basis.

Notifications are displayed in the Server Activity tab. If you have enabled Settings » General

Settings » Show Desktop Notifications you’ll also see a systray notification.

For example, when a user on a remote ownCloud creates a new Federated share for you, you can
accept it from your desktop client. This also displays notifications sent to users by the ownCloud
admin via the Announcements app.

18

X
L Activil General
Add sccount 172,18,16.225 R4

Server Activity | €& Sync Protocol | & Not Synced (1)

Action Required: Notifications
* You received "/Images Ireland” as a remote share from milli@172.18.16.225/0c9

Decline Accept
Created at 1 minute(s) ago

Server Activities

& You received a new remote share Images Ireland from milli@... 2 minute(s) ago on 172.18.16.225
& You changed sync/klaas2.txt and sync/welcome.txt 2 day(s) ago on 172.18.16.225
‘ You created 'L smiley_with_a_5_byte_utf8_glyph.txt 2 day(s) ago on 172.18.16.225
& You deleted sync/:smile:.txt 2 day(s) ago on 172.18.16.225
& You created sync/:smile:.txt 2 day(s) ago on 172.18.16.225

1 You created sync/alonalonalenalena/bongbonabona/chonachonach... 7 dav(s) ago on 172.18.16.225

Copy

@ Close

Settings Window

The Settings Window has configuration options such as

General Settings
* Launch on System Startup
* Show Desktop Notifications
* Use Monochrome Icons
Advanced

» Show sync folders in Explorer’s Navigation Pane

Sync hidden files

» Show crash reporter and the

Buttons for [Edit Ignored Files] (see below) and [Log settings]

Advanced - Approval of folder sync

* Ask confirmation before downloading folders larger than [folder size]

» Ask for confirmation before synchronizing external storages

. ownCloud

+ 55

Add account Activity Settings
General Settings
v Launch on System Startup v Show Desktop Notifications
Use Monochrome Icons in the system tray
Language | (use default) v
Advanced
V| Show sync folders in Explorer's Navigation Pane
V| Sync hidden files
V| Show crash reporter
Edit Ignored Files Log Settings

Advanced - Approval of folder sync (Non virtual file mode only)

V| Ask for confirmation before synchronizing folders larger than | 490 < | MB

v Ask for confirmation before synchronizing external storages

Network

While you can select whether to show or hide the crash reporter, from the Settings
@ Window, you can also configure whether to show or hide it from the general
- section of the configuration file as well. Doing so can help with debugging on-
startup-crashes.

Using the Network Window

The Network settings window enables you to define network proxy settings and defines limits to
the download and upload bandwidth.

Proxy Settings
* No proxy
* Use system proxy
 Specify proxy manually as
o HTTP(S)
> SOCKS5
Download and Upload Bandwidth
* No limit

* Limit automatically
When activated, the client limits the upload or download bandwidth to 25% of the currently
available bandwidth for each operation. The available bandwidth is measured on the fly at
the beginning of every operation for a very short period of time.

e Limit to

20

advanced_usage/configuration_file.pdf#section-general
advanced_usage/configuration_file.pdf#section-general

- .5 0}

Quit ownCloud

Network =
Proxy Settings
() No Proxy
(®) Use system proxy

O Specify proxy manually as HTTP(S) proxy

[HEZNE

{usemmame for prosy server Password for proxy server |

Download Bandwidth Upload Bandwidth

(®) No limit @) No limit

O Limit automatically O Limit automatically

O Limitto (80 <] Keytes/s O Lmitto [10 = | Kkpytes/s

Updates

No updates available. Your installation is at the latest version.

Using the Ignored Files Editor

You might have some local files or directories that you do not want to backup and store on the
server. To identify and exclude these files or directories, you can use the Settings » Advanced >

Ignored Files Editor

B ionored I8 Editor- - L&

Global Ignore Settings

[sync hidden files

Files Ignored by Patterns

Pattern Allow Deletion = Add

*filepart = Remove

&

*

Jpart

*.crdownload

| *.unison®
*csync_timedif.ckmp®

«syne_journal.db

.csyne_journal.db.ctmp als

Files or folders matching a pattern will not be synchronized.

Items where deletion iz allowed will be deleted if they prevent a directory from
being removed. This is useful for meta data.

L=

For your convenience, the editor is pre-populated with a default list of typical ignore patterns.
These patterns are contained in a system file. (typically sync-exclude.lst) located in the ownCloud
Client application directory. You cannot modify these pre-populated patterns directly from the
editor. However, if necessary, you can hover over any pattern in the list to show the path and
filename associated with that pattern, locate the file, and edit the sync-exclude.1st file.

o Modifying the global exclude definition file might render the client unusable or
result in undesired behavior.

21

Each line in the editor contains an ignore pattern string. When creating custom patterns, in
addition to being able to use normal characters to define an ignore pattern, you can use wildcards
characters for matching values. As an example, you can use an asterisk (*) to identify an arbitrary
number of characters or a question mark (?) to identify a single character.

Patterns that end with a slash character (/) are applied to only directory components of the path
being checked.

Custom entries are currently not validated for syntactical correctness by the
o editor, so you will not see any warnings for bad syntax. If your synchronization
does not work as you expected, check your syntax.

Each pattern string in the list is preceded by a checkbox. When the checkbox contains a check
mark, in addition to ignoring the file or directory component matched by the pattern, any matched
files are also deemed "fleeting metadata" and removed by the client.

In addition to excluding files and directories that use patterns defined in this list:

* The ownCloud Client always excludes files containing characters that cannot be synchronized to
other file systems.

* Files are removed that cause individual errors three times during a synchronization. However,
the client provides the option of retrying a synchronization three additional times on files that
produce errors.

For more detailed information see the Ignored Files section.

22

architecture.pdf#ignored-files

Using the Virtual Filesystem

Introduction

ownCloud offers the possibility for users to enable a virtual file system (VFS) when synchronizing
data. This has the big advantage that all files and folders are visible to the Desktop App, but the files
are not downloaded until the user requests to do so. Here are some of the key benefits:

 Full access to files and folders without having to download them all first

* Selectively sync folders and files based on user requirements

* Optimize space usage on the Desktop App

The quote below gives you a brief overview of what a virtual file system is about.

A virtual file system (VFS) or virtual filesystem switch is an abstract layer on
top of a more concrete file system. The purpose of a VFS is to allow client
applications to access different types of concrete file systems in a uniform
way. A VFS can, for example, be used to access local and network storage
devices transparently without the client application noticing the difference.
It can be used to bridge the differences in Windows, classic Mac OS/macOS
and Unix filesystems, so that applications can access files on local file
systems of those types without having to know what type of file system they
are accessing.

— https://en.wikipedia.org/wiki/Virtual_file_system

Microsoft VFS Implementation

Background

A sync engine is a service that syncs files, typically between a remote host
and a local client. Sync engines on Windows often present those files to the
user through the Windows file system and File Explorer.

— https://docs.microsoft.com/en-us/windows/win32/cfapi/build-a-cloud-file-sync-engine

Files can exist in three states:
Full pinned file

The file has been hydrated explicitly by the user through File Explorer and is guaranteed to be
available offline.

Full file
The file has been hydrated implicitly and could be dehydrated by the system if space is needed.

23

Placeholder file
An empty representation of the file and only available if the sync service is available.

The following image demonstrates how the full pinned, full and placeholder file states are shown in
File Explorer.

Name Status
D Full Pinned.txt (]
| Fulltxt ©
| Placeholder.txt ()

Limitations and Restrictions

Limitations

A virtual file system needs a root folder all synchronization items will be stored in. The following
locations are not allowed as synchronization root:

The root of a disk like D:\

A non-NTES Filesystem

« Mounted network shares

Symbolic links or junction points

* Assigned drives

Restrictions

Similar to OneDrive as it also uses Microsoft’s virtual file system, there are some additional
restrictions which should be considered like the maximum file size, invalid file or folder names, etc.
See the Restrictions and limitations in OneDrive and SharePoint for more information.

ownCloud VFS Implementation

New Sync with VFS enabled

To set up a new synchronization with virtual file system enabled, perform the following steps:

1. Add a new synchronization by clicking the [+ Add account] button.

. ownCloud

+ &

Add account

24

https://support.microsoft.com/en-us/office/restrictions-and-limitations-in-onedrive-and-sharepoint-64883a5d-228e-48f5-b3d2-eb39e07630fa?ui=en-US&rs=en-US&ad=US#filenamepathlengths

2. Enter the server address and your credentials in the following dialogs.

3. Select the radio button [Use virtual files] and set the local folder where your synchronization
data will reside.

4. ownCloud Connection Wizard

Connect to ownCloud

(®) Use virtual files instead of downloading content immediately
() Synchronize everything from server (recommended) (3.3 GB)
Server
V| Ask for confirmation before synchronizing folders larger than | 498 MB
V| Ask for confirmation before synchronizing external storages

Choose what to sync

() Manually create folder sync connections

. (C:\Users\

Local Folder

Cancel < Back Connect...

4. When everything is done, you should see a similar screen as below, showing that the setup
completed successfully.

. ownCloud — [

+ o O

Add account Activity Settings Quit ownCloud

a Connected to https:// Account _

3.3 GBof 13 GB in use IEG——]

A ownCloud
oo
Synchronizing VirtualFiles with local folder

)

Add Folder Sync Connection

Hide

5. After the first sync, your synchronization folder will show your items with the Placeholder icon.

25

-~/ 5nm-|

File Home Share
Pi i Copy Paste
Clipboard

O]

Name

Tl Ne
i Easy

New
folder

Date modified
3.08.2021 15:18

2021 15:18
2021 15:18

.\/ v
Properties
pv '@ History .= vert selection

Open Select

Type

File folder
File folder

File folder

File folder

File folder

d File folder

03.08.2021 15:24 File folder

16.04.2020 14:57 File folder
02.10.2018 16:52 PDF Document 4801 KB

U O B I B

|
|
n
n
n
[|
|
2 ownCloud Manual.pdf

9items |

6. When opening a file, the file gets downloaded and its synchronization icon changes to Full.

Convert Full Sync to VFS
If you have full synchronization enabled, you can change to a virtual file system at any time.

1. Open your existing synchronization, click the [...] button and Enable virtual file support.

@ ownCloud

Add account Activity Settings Quit ownCloud
ﬂ_ Connected to Account _

2,775 GB of 2,793 GB in use

A ownCloud ase
- o Synchronizing with local folder Open folder

Force sync now

L'

» - Pause sync

LA Remove folder sync connection
b

N Enable virtual file support...

»

L

Hide

2. Your local files will get replaced by placeholders, thus freeing up the space previously occupied.

Convert VFS to Full Sync

You can also change the synchronization setting from virtual file system to full sync.

1. Open your existing synchronization, click the [...] button and Disable virtual file support.

26

@ ownCloud

Add account Activity Settings Quit ownCloud

ﬂ_ Connected to https:/} Account _

3.3 GB of 13 GB in use [IGEG——]

A ownCloud
o Synchronizing VirtualFiles with local folder Open folder

Add Folder Sync Connection

Force sync now

Pause sync

Remove folder sync connection

Disable virtual file support...

Hide

2. A notification window will ask you to confirm before completing the conversion.

@ Disable virtual file support? X

This action will disable virtual file support. As a consequence contents of folders that are currently
marked as ‘available online only’ will be downloaded.

The only advantage of disabling virtual file support is that the selective sync feature will become
available again.

This action will abort any currently running synchronization.

Disable support Cancel

3. When done, your files will be fully downloaded, which you can tell by the sync icons, see the
example image below. Depending on the quantity and size of the files, this may take a while.

-~ Em=|
File | Home Share

= c = B open
e ” . B :

& B edit
4 e viove \ € ew Properties)
i ¢ p' B History BB Invert selection

Select none

Open Select

Name Status Date modified Type

04.08.2021 11:07 File folder
04.08.2021 11:09 File folder
04.08.2021 11:12 File folder
04.08.2021 11:07 File folder
File folder
File folder
File folder
16.04.2020 14:57 File folder
2 ownCloud Manual.pdf 02.10.2018 16:52 PDF Document 4801 KB

9items |

27

Manage VFS from Windows Explorer

You can manage individual files or complete folders in the Explorer window by right-clicking on
them. This opens a drop-down menu of actions that can be performed on a specific file or folder.
The following example shows this on files, but it can be applied on folders too.

Create a Local Copy

1. To create a Full Pinned file (have a local copy of it), use the action [Always keep on this
device].

Open
- ‘l m- ” - Print
File Home g Always keep on this device

il New item ~ . % Open ~
Share with Skype A e B it

New Properties

Share with Skype folder - B History

Open with New Open
Give access to

ownCloud

Name Date modified Type

[Send to 3.08.2021 15:18 File folder

B Cut 21 15:18 File folder
[| Copy 08.2021 15:18 File folder
[| A 202115 File folder
[| . 05.11.2019 23:21 File folder
[| Rename 03.08.2021 15:18 File folder
B 2021 15:24 File folder
] Properties 16.04.2020 14:57 File folder
2 ownCloud Manual.pdf 02.10.2018 16:52 PDF Document 4801 KB

9items | 1item selected 4,68 MB | Available when online |
The state of the file will change to synchronizing.

File Home Share View
+» B

Pin to Quick
access

Clipboard
Ol

Name Status

TR R R R RN

|
|
n
n
n
|
n
|

ownCloud Manual.pdf

When the local copy has been created, the state (icon) changes to Full Pinned.

28

T R Martin Mattel > ownCloud > otomo.at

NETLE Status

|
n
n
n
n
n
n
2

&

ownCloud Manual.pdf

Free up Space

1. To free up the space the file occupied, use the action [Free up space].

Open
Print

Always keep on this device
&= ” |- H - Free up space
file Hlon Share with Skype

‘ Share with Skype
1-Zip

Py P CrCsHA

Cliph == Scan with Microsoft Defender...
& Share
Ol

Open with
Name Mit PDF-XChange Editor &ffnen

- Give access to

Check Out...
SmartSVN

*‘ WinMerge
ownCloud

Restore previous versions

u
|
|
u
n
u
|
g

ownCloud Man Send to

Cut

9items | 1item sg Copy

2. When done, Explorer will show the file in Placeholder state.

30

Home

+ B

Pin to Quick

Name

|
|
n
n
n
[|
|
2 ownCloud Manual.pdf

9items |

Status

-
-
-
-
-
-
-
-
-

(|| - & New item ~ B«
i Easy B cdic
New Properties .
folder < s History

Date modified

08.2021 15:18 File folder
08.2021 15:18 File folder
3.08.2021 15:18 File folder
3.08.2021 15:18 File folder
05.11.2019 23:21 File folder
08.2021 15:18 File folder
08.2021 15:24 File folder
16.04.2020 14:57 File folder
02.10.2018 16 PDF Document

4801 KB

Filename Considerations

Introduction

When using the Desktop App, depending on the operating system (OS) you are using, file and folder
names can have different restrictions. Creating files and folders with allowed names on one OS,
may have issues or even can’t be synced because of different rules in another OS. This page gives
you a brief overview of limitations of different OS for file and folder names.

0 This is not an ownCloud rule but an OS dependency

Here are some rules of thumb

1. Do not use any of the mentioned characters or words in any OS when using the

Desktop App.
2. When the Desktop App is on Linux/Unix and the target mount to sync on is on
(r) SMB, file and folder names on Linux/Unix must comply with the Windows
- rules for successful syncing.

3. When the Desktop App is on Linux/Unix and the target mount to sync on is on
SMB and you want to just rename the file with different casings, rename the
file to a total different name, let it sync and then rename it again to the name
that you want.

Forbidden Printable ASCII Characters

Linux/Unix
/ (forward slash)

Windows

< (less than)

> (greater than)

: (colon - sometimes works, but is actually NTFS Alternate Data Streams)
" (double quote)

/ (forward slash)

\ (backslash)

| (vertical bar or pipe)

? (question mark)

* (asterisk)

Non-Printable Characters

If your files are created via a program, do not use non-printable characters. See the Wikipedia
"Control code chart" section for more information on ASCII control characters.

31

https://en.wikipedia.org/wiki/ASCII#Control_code_chart
https://en.wikipedia.org/wiki/ASCII#Control_code_chart

Linux/Unix
0 (NULL byte)

o While it is legal under Linux/Unix file systems to create files with control
characters in the filename, they might be inaccessible and/or unsyncable.

Windows
0-31 (ASCII control characters)

Reserved File Names

The following file names are reserved:

Windows

CON, PRN, AUX, NUL cOom1, COmM2, cOomM3, COm4, cCOm5, COMb6, COM7, COM8, COM9, LPT1, LPT2, LPT3,
LPT4, LPT5, LPT6, LPT7, LPT8, LPT9

Other Rules

Linux/Unix

When the Desktop App is on Linux/Unix and the target mount to sync on is on SMB, you cannot
have the same file or folder name but with different casings. A cross icon will be shown that
indicates that the file can’t be synced. Files on Linux/Unix must comply with the Windows rules
for successful syncing.

Windows

Filenames cannot end in a space or dot

Examples and Pitfalls

1. When creating a file in Linux/Unix like my-filename. (see the dot at the end) or my-filename.LPT1
(see the reserved name LPT1), you can sync the file to your ownCloud if the mount target is
Linux/Unix. When a Windows user tries to sync these files, Windows rejects the file. Comparing
the file list in both environments shows that one side has more files than the other. There will
be no notification as this is an OS dependency.

2. When renaming an existing file in Linux/Unix by just changing the casing like owncloud -
own(Cloud, you might get issues on the windows sync side as for Windows the file looks the same.

32

Manage Synchronisation Conflicts

Introduction

The ownCloud Desktop App uploads local changes and downloads remote changes. When a file has
changed on the local and on the remote side between synchronization runs, the Desktop App will
be unable to resolve the situation on its own. It will create a conflict file with the local version,
downloads the remote version and notifies the user that a conflict occurred which needs attention.

Example Situation

Imagine there is a file called mydata.txt your synchronized folder. It has not changed for a while
and contains the text "contents” locally and remotely. Now, nearly at the same time you update it
locally to say "local contents" while the file on the server gets updated to contain "remote contents"
by someone else.

When attempting to upload your local changes the Desktop App will notice that the server version
has also changed. It creates a conflict, and you will now have two files on your local machine:

* mydata.txt containing "remote contents"

* mydata (conflicted copy 2018-04-10 093612).txt containing "local contents"

In this situation the file mydata.txt has the remote changes (and will continue to be updated with
further remote changes when they happen), but your local adjustments have not been sent to the
server (unless the server enables conflict uploading, see below).

The Desktop App notifies you of this situation via system notifications, the system tray icon and a
yellow "unresolved conflicts" badge in the account settings window. Clicking this badge shows a list
that includes the unresolved conflicts and clicking one of them opens an explorer window pointing
at the relevant file.

To resolve this conflict, open both files, compare the differences and copy your local changes from
the "conflicted copy" file into the base file where applicable. In this example you might change
mydata.txt to say "local and remote contents” and delete the file with "conflicted copy" in its name.
With that, the conflict is resolved.

Uploading Conflicts (experimental)

By default, the conflict file (the file with "conflicted copy" in its name that contains your local
conflicting changes) is not uploaded to the server. The idea is that you, the author of the changes,
are the best person for resolving the conflict and showing the conflict to other users might create
confusion.

However, in some scenarios it makes a lot of sense to upload these conflicting changes such that
local work can become visible even if the conflict won’t be resolved immediately.

In the future there might be a server-wide switch for this behavior. For now, it can already be

33

tested by setting the environment variable: OWNCLOUD_UPLOAD_CONFLICT_FILES = 1.

34

Automatic Updating of the Desktop App

Introduction

The Automatic Updater ensures that you always have the latest features and bug fixes for your
ownCloud Desktop App. The Automatic Updater updates only on Mac OS X and Windows
computers; Linux users only need to use their normal package managers. However, on Linux
systems the Updater will check for updates and notify you when a new version is available.

Basic Workflow

The following sections describe how to use the Automatic Updater on different operating systems.

Windows

The ownCloud Desktop App checks for updates and downloads them when available. You can view

the update status under Settings » General » Updates in the ownCloud Desktop App.

If an update is available, and has been successfully downloaded, the ownCloud Desktop App starts a
silent update prior to its next launch and then restarts itself. Should the silent update fail, the
Desktop App offers a manual download.

0 Administrative privileges are required to perform the update.

Mac OS X

If a new update is available, the ownCloud Desktop App initializes a pop-up dialog to alert you of
the update and requesting that you update to the latest version. Due to their use of the Sparkle
frameworks, this is the default process for Mac OS X applications.

Linux

Linux distributions provide their own update tools. The ownCloud Desktop App use the Linux
operating system do not perform any updates on their own. The client will inform you (Settings >

General » Updates) when an update is available.

Preventing Automatic Updates

In controlled environments, such as companies or universities, you might not want to enable the
auto-update mechanism, as it interferes with controlled deployment tools and policies. To address
this case, it is possible to disable the auto-updater entirely. The following sections describe how to
disable the auto-update mechanism for different operating systems.

Preventing Automatic Updates in Windows Environments

Users may disable automatic updates by adding this line to the [General] section of their

35

owncloud.cfq files:

owncloud.cfg is usually located in C:\Users\<USERNAME>\AppData\Roaming\ownCloud\owncloud.cfqg.
skipUpdateCheck=true

Windows administrators have more options for preventing automatic updates in Windows
environments by using one of two methods. The first method allows users to override the
automatic update check mechanism, whereas the second method prevents any manual overrides.

To prevent automatic updates, but allow manual overrides:

1. Edit these Registry keys:

a. (32-bit-Windows) HKEY_LOCAL_MACHINE\Software\ownCloud\ownCloud
b. (64-bit-Windows) HKEY_ LOCAL_MACHINE\Software\Wow6432Node\ownCloud\ownCloud

2. Add the key skipUpdateCheck (of type DWORD).

3. Specify a value of 1 to the machine.

To manually override this key, use the same value in HKEY_CURRENT_USER. To prevent automatic
updates and disallow manual overrides:

o This is the preferred method of controlling the updater behavior using Group
Policies.

1. Edit this Registry key:
HKEY_LOCAL_MACHINE\Software\Policies\ownCloud\ownCloud

2. Add the key skipUpdateCheck (of type DWORD).
3. Specify a value of 1 to the machine.
Enterprise branded Desktop Apps (Building Branded ownCloud Clients) have
o different key names, which are set in ownBrander using the Application Vendor

and Application Name fields.

Your key names look like this:

HKEY_LOCAL_MACHINE\Software\Policies\myCompanyName\myAppName

Preventing Automatic Updates in Mac OS X Environments

You can disable the automatic update mechanism, in the Mac OS X operating system, by copying the

36

https://doc.owncloud.com/branded_clients/

file owncloud.app/Contents/Resources/deny_autoupdate_com.owncloud.desktopclient.plist to
/Library/Preferences/com.owncloud.desktopclient.plist.

Preventing Automatic Updates in Linux Environments

Because the Linux Desktop App does not provide automatic updating functionality, there is no need
to remove the automatic-update check. However, if you want to disable it, edit your Desktop App
configuration file: $HOME/.config/ownCloud/owncloud.cfg. Add this line to the [General] section:

skipUpdateCheck=true

37

Removing the Desktop App

Introduction

This page describes the necessary steps to remove the Desktop App.

Removing the Binary

Follow the procedures of your operating system about how to remove the Desktop App binary.

When using an AppIlmage, just delete the AppImage file.

Removing the Configuration File

When you remove the Desktop App — the configuration file remains on your system. If you then
decide to install the client again, you won’t need to re-enter the connection information.

In case you want a clean removal of the Desktop App, you manually have to delete the
configuration file. The location of the configuration file is operating system dependent and can be
found in the Configuration File description.

Windows Navigation Sidebar

If you have removed the Desktop App but still have the ownCloud shortcut or symbol in the
Windows Navigation Side Bar, here is how you to remove it:

Open regedit. (press the Windows Key and type regedit)

Search (CTL+F) for the name of the Desktop App, in this case owncloud.

Press F3 for next search result.

Look for the key System.IsPinnedToNameSpaceTree.

SR A A

Right-click on the key name, change, set to 0 instead of 1.
You have to do this twice. Once for the x64 and x32 system settings.

Once this is done, you don’t need a reboot, just open and close your explorer — the sidebar is clean.

38

advanced_usage/configuration_file.pdf

Desktop Frequently Asked Questions (FAQ)

Introduction

Here you can find some of the most frequently asked questions about the ownCloud Desktop App.

Usage

Some Files Are Continuously Uploaded to the Server, Even When They Are
Not Modified

It is possible that another program is changing the modification date of the file. If the file has an
.eml extension (Windows Mail, Windows Live Mail), the Microsoft Indexer automatically and
continually changes the file. To solve this issue, you can:

* Remove the extension from the indexer (Indexing Options » Advanced > File Types)

* Uninstall Windows Mail, Windows Live Mail. Note that when reinstalling, the issue reappears
again. See Windows indexer changes modification dates of .eml files for more information.

* Remove at your own risk the corresponding key for .eml files in the registry at
\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\PropertySystem\PropertyHandle
rs

Syncing Stops When Attempting to Sync Deeper Than 100 Sub-Directories

The Desktop App has been intentionally limited to sync no deeper than 100 sub-directories. The
hard limit exists to guard against bugs with cycles like symbolic link loops. When a deeply nested
directory is excluded from synchronization it will be listed with other ignored files and directories
in the "Not synced" tab of the "Activity" pane.

My Sync Folder Displays a Different Quota Than the Web Interface

When other users share data with you, it’'s downloaded to the sync folder and counted as space
used by the Desktop App, although it doesn’t affect your quota for storage usage. There are more
factors taken into account when calculating the quota status. For more information, see the Storage
Quotas in the User Manual.

Major Configuration Changes

I Want to Move My Local Sync Folder

The ownCloud Desktop App does not provide a way to change the local sync folder directly.
However, it can be done in two ways:

1. Copy the folder and avoid a full re-sync:

a. Stop the Desktop App and edit the localPath= line in the configuration file according your

39

http://petersteier.wordpress.com/2011/10/22/windows-indexer-changes-modification-dates-of-eml-files/
https://doc.owncloud.com/server/next/user_manual/files/webgui/quota.html
https://doc.owncloud.com/server/next/user_manual/files/webgui/quota.html
advanced_usage/configuration_file.pdf#location-of-the-configuration-file

needs.

b. Copy (or move) all your data from the current to the new location manually and start the
Desktop App.

2. Create a new sync connection with a new location:

40

a. Remove the existing connection which syncs to the old directory.

To do so, in the Desktop App Ul, which you can see below, click the drop-down menu

Account » Remove.

% ownCloud

+

b 0 N

Activity ~ General Network

msetter

& Connected to https:) - =l as msetter. Account

. Add new
51 GB in use L "
og oul
ownCloud
- syncing selected files in your account with e
ownCloud

» [¢| B Documents (35 KB}

» = InstantUpload (394 KB)
3 # Photos (663 KB)
»
»

[Shared (51 GB)
9 salesKickoff 2015 (272 MB)

Close

This will display a "Confirm Account Removal" dialog window. If you’re sure, click
[Remove connection].

Confirm Account Removal

Do you really want to remove the connection to the account
msetter - s

Note: This will not delete any files.

Remove connection Cancel

b. Add a new connection which syncs to the desired directory.

Click the drop-down menu Account » Add new.

This opens the ownCloud Connection Wizard, which you can see below, but with an extra
option. This option provides the ability to either keep the existing data (synced by the
previous connection) or to start a clean sync (erasing the existing data).

Be careful before choosing the "Start a clean sync" option. The old sync
folder may contain a considerable amount of data, ranging into the
gigabytes or terabytes. If it does, after the Desktop App creates the new
connection, it will have to download all of that information again.

Instead, first move or copy the old local sync folder, containing a copy of
the existing files, to the new location. Then, when creating the new
connection choose "keep existing data" instead. The ownCloud Desktop App
will check the files in the newly-added sync folder and find that they match

what is on the server and not need to download anything.

*. ownCloud Connection Wizard o x

Connect to ownCloud 'a\

Setup local folder options ‘. b

ocownClou r::|

e Sync everything from server (51 GB)

Choose what to sync
Server

i=§g fhome/matthew/ownCloud

e Keep local data
Local Folder L=y

Start a clean sync (Erases the local folder!)

Warning: The local folder is not empty. Pick a resolution!

Skip folders configuration Connect...

Make your choice and click [Connect...] This will then lead you through the Connection
Wizard, just like when you set up the previous sync connection, but giving you the
opportunity to choose a new sync directory.

I Want to Change My Server URL

Since changing server URLs is a potentially dangerous operation the ownCloud Desktop App does
not provide a user interface for this change. Typically, server URL changes should be implemented
by serving a permanent redirect to the new location on the old URL. The Desktop App will then
permanently update the server URL the next time it queries the old url.

For situations where arranging for a redirect is impossible, url changes can be done by editing the
config file. Before doing so make sure that the new url does indeed point to the same server, with
the same users and the same data. Then go through these steps:

Shut down the ownCloud Desktop App.

Locate the configuration file

Open it with a text editor.

Find your old server URL and adjust it.

SR

Save the file and start the ownCloud Desktop App again.

Error Messages

Warning Message for Unsupported Versions

Keeping software up to date is crucial for file integrity and security - if software is outdated, there
can be unfixed bugs. That’s why you should always upgrade your software when there is a new
version.

The ownCloud Desktop App talks to a server, e.g. the ownCloud server, so you do not only have to
upgrade your Desktop App when there is a new version for it, also the server has to be kept up-to-

41

advanced_usage/configuration_file.pdf#location-of-the-configuration-file

date by your sysadmin. Starting with version 2.5.0, the Desktop App will show a warning message if
you connect to an outdated or unsupported server:

admin

localhost Activity ~ General Network

Connected to as admin. The server version 9.1.8.2- is unsupported!
Account

Proceed at your own risk.

4,6 MB in use

ownCloud Testpilot Edition
Synchronizing with local folder
testpilotcloud

New files are being created as virtual files.

Only ownCloud 10.0.0 or Higher Is Supported

If you encounter such a message, you should ask your administrator to upgrade ownCloud to a
secure version because earlier versions are not maintained anymore. An important feature of
the ownCloud Desktop App is checksumming - each time you download or upload a file, the
Desktop App and the server both check if the file was corrupted during the sync. This way you
can be sure that you don’t lose any files.

There are servers out there which don’t have checksumming implemented on their side, or
which are not tested by ownCloud’s QA team. They can’t ensure file integrity, they have potential
security issues, and we can’t guarantee that they are compatible with the ownCloud Desktop

App.

We Care About Your Data and Want It to Be Safe

That’s why you see this warning message, so you can evaluate your data security. Don’t worry —
you can still use the Desktop App with an unsupported server, but do so at your own risk.

Multiple Accounts Sharing the Folder

B cwnCloud - O x
mm Aktvitat Einstellungen ownCloud beenden
@& verbunden mit https: /jdemo.owndoud.org/ als demo. Benutzerkonto.,
7,1 MB wird verwendet
A ownCloud
o Local folder: ownCloud

oud/.

supported.

ding it again.

Ordner-Synchronisation hinzufiigen

Desktop App discovered multiple sync journals (SQLite database files) in the folder. That indicates
that multiple Desktop Apps are using the same folder as a sync root. Under certain conditions it
could also mean that there is an old .sync#HASH.db or .sync_#HASH.db in the folder.

Resolve:

Such a file will have an old change date and usually can be removed.

42

Folder Is Used in a Folder Sync Connection

Connect to ownCloud

(® Use virtual files instead of downloading content immediately

(O synchronize everything from server (7.1MB)
Server

Ask for confirmation before synchronising folders larger than | 500 > | MB
Ask for confirmation before synchronising external storages
Choose what to sync

on B3 Error X

The folder C:hUsers\gabi\ownCloud is used in a folder sync connection! Please
pick another one!

)

‘Warning: The local folder is not empty. Pick a resologon!
Local Folder (@) Keep local data

() Start a dean sync (Crreate a backup and erases the local folder!)

= y o 0

demo

Add account PRRRPR Activity Settings Quit ownCloud
& connected to hitps: /idemo.owndoud.oral as demo. Account..
7.1MB
nuse u Add Folder Sync Cennection x
A OWIMN ik 2 lacal folder on your computer to sync es]
Local fg
o |C:\Users\gab\\ownc\oud| Choose...

Add Folder Sync Conn|

‘Warning: The folder C:\Users\gabi\ownCloud is used in a folder sync connection! Please pick
another one!

Cancel < Back Next =

Similar to the above case, the Desktop App discovered one or more .sync_journal.db files in the
directory. That means the folder is either already used by a different Desktop App for syncing or we
again have an old SQLite database file in that folder. This can also happen if a user tries to import
an old folder.

Resolve:

Such a file will have an old change date and usually can be removed.

Parent Folder Managed by Another Desktop App

43

B cwnCloud - O x

demo
Add account demo.onndoud.org ACEVitY Settings Quit ownCloud

& Connected to https: /idemo.owndoud.ora/ as fest Account.

7.1MB in use

A ownCloud
8 Local folder: OneDrive\MySyncRoot

The folder is used by a different dient OneDrive

Add Folder Sync Connection

This error can only happen with native Windows VFS. The Desktop App discovered that the folder
is part of a subtree that is managed by another Desktop App, for example testpilotcloud. The
difference to the next error is that we can’t be sure it’s a different Desktop App or an orphaned sync
root.

Both errors are windows only. In the future we will try to prevent the situation leading to this.
Resolve:

Pick another sync folder.

Folder Used by Different Desktop App

B cwnCloud — a x
Konto hinzufiigen demo Aktivitst Einstelungen ownCloud beenden
demo.owndoud.org
& verbunden mit https: //demo.owndoud.com/ als demo. Benutzerkonto.,
7,1 MB wird verwendet
A ownCloud
e Local folder: testpilotdoud\Documents
C:\Jsers\gabi\testpilotdoud is managed by another sync dient
QOrdner-Synchronisation hinzufiigen

This error can only happen with native Windows VFS. Desktop App discovered that the folder is
part of a subtree that is managed by another Desktop App, for example OneDrive.

Resolve:

Pick another sync folder.

Warning About Changes in Synchronized Folders Not Being Tracked
Reliably

On Linux, when the synchronized folder contains a high number of subfolders, the operating
system may not allow for enough inotify watches to monitor the changes in all of them.

In this case the Desktop App will not be able to immediately start the synchronization process when

44

a file in one of the unmonitored folders changes. Instead, the Desktop App will show the warning
and manually scan folders for changes at a regular interval (two hours by default).

This problem can be solved by setting the fs.inotify.max_user_watches sysctl to a higher value like
524288 permanently in the config file /etc/sysctl.conf or temporarily with the following command:

echo 524288 > /proc/sys/fs/inotify/max_user_watches.

45

Advanced Usage

In this section, you find information about advanced usage.

Command Line Options

Introduction

Depending on your operating system and how you have installed the Desktop App, you can start the
ownCloud Desktop App from the command line by typing owncloud, owncloud.exe or by the
Applmage file name. You may need to change to the directory of the binary first. When starting
owncloud manually, you can add options to this command.

List Options
To get the list of options, run the following example command:

owncloud -h
or
owncloud --help

Use Options

Option Description

--Llogwindow Opens a window displaying log output.

-s --showsettings Show the settings dialog while starting

-q --quit Quit the running instance

--logfile <filename> Write log output to the file specified. To write to stdout, specify - as

the filename.

--logdir <name> Writes each synchronization log output in a new file in the
specified directory.

--logexpire <hours> Removes logs older than the value specified (in hours).
This command is used with --1logdir.

--logflush Clears (flushes) the log file after each write action.

--logdebug Also output debug-level messages in the log equivalent to setting
the environment variable QT_LOGGING_RULES = "qt.
=true;.debug=true".

--confdir <dirname> Uses the specified configuration directory.

Configuration File

46

Introduction

The ownCloud Desktop App uses a configuration file. It has several sections for particular settings.
You will find more sections in the configuration file than described here. Do not change any of
those settings except support advises you to do so.

Location of the Configuration File

The location of the configuration file depends on the operating system used. You can locate this
configuration file as follows:

System Location

Linux $HOME/ . config/ownCloud/owncloud.cfg
Microsoft Windows %APPDATA%\ownCloud\owncloud.cfg
macOS $HOME/Library/Preferences/ownCloud/owncloud.cfg

The configuration file contains settings using the Microsoft Windows .ini file format. You can
overwrite changes using the ownCloud configuration dialog.

g Use caution when making changes to the ownCloud Desktop App configuration
file. Incorrect settings can produce unintended results.

Section [ownCloud]

Variable Default Meaning

remotePolllnterval 30000 Specifies the poll time for the remote repository in
milliseconds.

forceSyncInterval 7200000 The duration of no activity after which a synchronization

run shall be triggered automatically.

fulllocalDiscoveryInterv 3600000 The interval after which the next synchronization will
al perform a full local discovery.

notificationRefreshInter 300000 Specifies the default interval of checking for new server
val

notifications in milliseconds.

Section [General]

Variable Default Meaning

chunkSize 10000000 Specifies the initial chunk size of uploaded files in bytes.
(or 10 MB) The Desktop App will dynamically adjust this size within
the maximum and minimum bounds (see below).

maxChunkSize 100000000 Specifies the maximum chunk size of uploaded files in
(or 100 MB) bytes.

47

https://en.wikipedia.org/wiki/INI_file

Variable

minChunkSize

Default

1000000
(or 1 MB)

targetChunkUploadDuratio fgpoo

n

(1 minute)

promptDeleteAllFiles true

crashReporter

timeout

moveToTrash

true
300

false

showExperimentalOptions false

Section [Proxy]

Variable

host

port

type

Default
127.0.0.1

8080
2

Meaning

Specifies the minimum chunk size of uploaded files in
bytes.

Target duration in milliseconds for chunk uploads. The
Desktop App adjusts the chunk size until each chunk
upload takes approximately this long. Set to 0 to disable
dynamic chunk sizing.

If a UI prompt should ask for confirmation if it was
detected that all files and folders were deleted.

Whether to show the crash reporter when a crash occurs.
The timeout for network connections in seconds.

If non-locally deleted files should be moved to trash
instead of deleting them completely. This option only
works on linux

Whether to show experimental options that are still
undergoing testing in the user interface. Turning this on
does not enable experimental behavior on its own. It
does enable user interface options that can be used to opt
in to experimental features.

Meaning
The address of the proxy server.
The port where the proxy is listening.

* @ for System Proxy
*1 for SOCKSS5 Proxy
* 2 for No Proxy

* 3 for HTTP(S) Proxy

Environment Variables

Introduction

The behavior of the client can also be controlled using environment variables.

48

The value of the environment variables override the values in the configuration

file.

Most environment variables only exist for debugging or testing. They are not
officially supported and may change from version to version. If you end up relying
on a setting only available through an environment variable, please create a bug

report.

Available Environment Variables

Setting

OWNCLOUD_CHUNK_SIZE

OWNCLOUD_MAX_CHUNK_SIZE

OWNCLOUD_MIN_CHUNK_SIZE

OWNCLOUD_TARGET_CHUNK_UP
LOAD_DURATION

OWNCLOUD_CHUNKING_NG

OWNCLOUD_NO_TUS

OWNCLOUD_TIMEOUT

OWNCLOUD_CRITICAL_FREE_S

PACE_BYTES

OWNCLOUD_FREE_SPACE_BYTE

S

OWNCLOUD_MAX_PARALLEL
OWNCLOUD_BLACKLIST_TIME_

MIN

OWNCLOUD_BLACKLIST_TIME_

MAX

OWNCLOUD_HTTP2_ENABLED

OWNCLOUD_MINIMAL_TRAY_ME

NU

OWNCLOUD_TRAY _UPDATE _WHI

LE_VISIBLE

OWNCLOUD_FORCE_TRAY _SHOW

_HIDE

Default

10000000
(or 10 MB)

100000000
(or 100 MB)

1000000
(or 1 MB)

60000

depend on
server
capability

300

50*1000*100

0 bytes

250*1000*10

00 bytes

6
25

24*60*60
(or one day)

depend on Qt

version

unset

unset

Description

Specifies the initial chunk size of uploaded files in bytes.
The client will dynamically adjust this size within the
maximum and minimum bounds (see below). To disable
chunking completely, set OWNCLOUD_CHUNK_SIZE=0 .

Specifies the maximum chunk size of uploaded files in
bytes.

Specifies the minimum chunk size of uploaded files in
bytes.

Target duration in milliseconds for chunk uploads. The
client adjusts the chunk size until each chunk upload
takes approximately this long. Set to 0 to disable dynamic
chunk sizing.

Force-enable ("1") or force-disable ("0") the NG chunking
algorithm.

Set to any value to disable uploads using the tus protocol
The timeout for network connections in seconds.

The minimum disk space needed for operation. A fatal
error is raised if less free space is available.

Downloads that would reduce the free space below this
value are skipped. More information available under the
"Low Disk Space" section.

Maximum number of parallel jobs.

Minimum timeout, in seconds, for blacklisted files.

Maximum timeout, in seconds, for blacklisted files.

Force-enable ("1") or force-disable ("0") HTTP2 support.
Note that HTTP2 use also depends on whether the server
supports it.

If set a minimal tray menu is used. Helpful if a platform’s
tray has problematic behavior.

Set to "1" to allow the tray menu to be updated while it’s
visible to the user.

Set to "1" to reestablish the tray icon every time the menu
changes.

49

Setting

OWNCLOUD_FORCE _TRAY_FAKE
_DOUBLE_CLICK
OWNCLOUD_FORCE_TRAY_MANU
AL_VISIBILITY
OWNCLOUD_FORCE_TRAY_NO_A
BOUT_TO_SHOW

OWNCLOUD_FULL_LOCAL_DISC
OVERY_INTERVAL

OWNCLOUD_SQLITE_JOURNAL_
MODE

OWNCLOUD_SQLITE_LOCKING_
MODE

OWNCLOUD_SQLITE_TEMP_STO
RE

OWNCLOUD_DISABLE_CHECKSU
M_COMPUTATIONS

OWNCLOUD_DISABLE_CHECKSU
M_UPLOAD

OWNCLOUD_CONTENT_CHECKSU
M_TYPE

OWNCLOUD_UPLOAD_CONFLICT
_FILES

QT_LOGGING_RULES

OWNCLOUD_OVERRIDE_SERVER
_URL

Default

unset

unset

unset

3600000
(1 hour)

depends on
filesystem

EXCLUSIVE

unset

unset

unset

SHA1

unset

unset

unset

Description

Set to "1" if single tray clicks sometimes get recognized as
double clicks.

Set to "1" if the tray menu is flickering while opened.

Set to "1" if the tray menu sometimes contains stale
entries.

Maximum time in milliseconds that fast local discovery is
allowed for after a full local discovery. Set to 0 to always
require full local discovery. Set to -1 to never require full
local discovery.

Set a specific sqlite journal mode.

Set a specific sqlite locking mode.

Set the given temp_store on the sqlite database.

Set to disable all file checksum computations.

Set to disable computing checksums for uploaded files.

Select the file checksumming algorithm. "Adler32",
"MD5", "SHA1", "SHA256", "SHA3-256" are valid, but not
all have server support.

Set to "1" to enable uploading conflict files to the server.

Set to "sync.httplogger=true" to enable verbose http
logging. See also troubleshooting.adoc for more.

Set to override a previously configured/branded server
URL

The Command Line Client

Introduction

The ownCloud Client packages contain a command line client, owncloudemd, that can be used to
synchronize ownCloud files to client machines.

owncloudemd performs a single sync run and then exits the synchronization process. In this manner,
owncloudemd processes the differences between client and server directories and propagates the files
to bring both repositories to the same state. Contrary to the GUI-based client, owncloudcmd does not
repeat synchronizations on its own. It also does not monitor for file system changes.

To invoke owncloudemd, you must provide the local and the remote repository URL using the

50

following command:

owncloudemd [OPTIONS...] sourcedir owncloudurl.

sourcedir is the local directory and owncloudurl is the server URL. Other command line switches
supported by owncloudemd include the following:

Switch Description

--user, -u [user] Use user as the login name.

--password, -p [password] Use password as the password.

-n Use netrc (5) for login.

--non-interactive Do not prompt for questions.

--silent, -s Inhibits verbose log output.

--trust Trust any SSL certificate, including invalid ones.
--httpproxy Uses server as HTTP proxy.

http://[user@pass:]<server>:<port>

--davpath [path] Overrides the WebDAV Path with path

--exclude [file] Exclude list file.

--unsyncedfolders [file] File containing the list of un-synced remote folders

(selective sync)

--max-sync-retries [n] Retries maximum n times (defaults to 3)

-h Sync hidden files,do not ignore them.
Credential Handling

owncloudemd requires the user to specify the username and password using the standard URL
pattern, for example:

$ owncloudemd /home/user/my_sync_folder
https://carla:secret@server/owncloud/remote.php/webdav/

To synchronize the ownCloud directory Music to the local directory media/music, through a proxy
listening on port 8080, and on a gateway machine using IP address 192.168.178.1, the command line
would be:

$ owncloudemd --httpproxy http://192.168.178.1:8080 \
$HOME /media/music \
https://server/owncloud/remote.php/webdav/Music.

owncloudemd will prompt for the username and password, unless they have been specified on the
command line or -n has been passed.

31

Exclude List

owncloudemd requires access to an exclude list file. It must either be installed along with owncloudcmd
and thus be available in a system location, be placed next to the binary as sync-exclude.lst or be
explicitly specified with the --exclude switch.

Low Disk Space

Introduction

When disk space is low, the ownCloud Desktop App will be unable to synchronize all files. This
section describes its behavior in a low disk space situation as well as the adjustable environment
variables that influence it.

Cases

Issue Adjustable Environment Variable

Synchronization of a folder aborts entirely if the OWNCLOUD_CRITICAL_FREE_SPACE_BYTES
remaining disk space falls below 50 MB.

Downloads that would reduce the free disk OWNCLOUD_FREE_SPACE_BYTES
space below 250 MB will be skipped or aborted.

The download will be retried regularly and

other synchronization is unaffected.

32

Appendices

In this section, you find supporting information.

Appendix Building the Desktop App

Introduction

This section explains how to build the ownCloud Desktop App from source for all major platforms.
You should read this section if you want to develop for the Desktop App. Build instructions are
subject to change as development proceeds.

o Please check the version for which you want to build.

These instructions are updated to work with the latest version of the ownCloud Desktop App.

Getting the Source Code

The generic build instructions pull the latest code directly from GitHub, and work on Linux, Mac OS
X, and Windows.

Linux

For the published Desktop Apps we link against QT5 dependencies from our own repositories so
that we can have the same versions on all distributions. This chapter shows you how to build the
Desktop App yourself with this setup. If you want to use the QT5 dependencies from your system,
see the next chapter.

You may wish to use source packages for your Linux distribution, as these give you the exact
sources from which the binary packages are built. These are hosted on the ownCloud repository
from OBS. Go to the Index of repositories to see all the Linux client repositories.

To get the .deb source packages, add the source repository for your Debian or
Ubuntu version, as in the following example for Debian 9, run the examples below

as root:
echo 'deb
http://download.opensuse.org/repositories/isv:/ownCloud:/desktop/Debian
o 9.0/ /" >> /etc/apt/sources.list.d/owncloud-client.list

echo 'deb-src
http://download.opensuse.org/repositories/isv:/ownCloud:/desktop/Debian
9.0/ /" >> /etc/apt/sources.list.d/owncloud-client.list

The above registers the source repository of the released Desktop App. There is also -

33

https://owncloud.org/download/#owncloud-desktop-client
http://software.opensuse.org/download/package?project=isv:ownCloud:desktop&package=owncloud-client
http://software.opensuse.org/download/package?project=isv:ownCloud:desktop&package=owncloud-client
http://download.opensuse.org/repositories/isv:/ownCloud:/desktop/

/desktop:/testing/:+- and e.g. ---/desktop:/daily:/2.7/-:- for beta versions or daily snapshots.

Install the dependencies using the following commands for your specific Linux distribution. Make
sure the repositories for source packages are enabled. These are:

Distribution Installation Instructions

Debian/Ubuntu apt update; apt build-dep owncloud-client
openSUSE/SLES zypper ref; zypper si -d owncloud-client
Fedora/CentOS/RHEL yum install yum-utils; yum-builddep owncloud-client

Follow the generic build instructions, starting with step 2.

Linux with System Dependencies

Build sources from a GitHub checkout with dependencies provided by your Linux distribution.
While this allows more freedom for development, it does not exactly represent what we ship as
packages. See above for how to recreate packages from source.

To get the source dependencies on Debian and Ubuntu, run the following
command:

o sudo apt install gtdeclarative5-dev libinotifytools-dev \
qtSkeychain-dev python3-sphinx \
libsqlite3-dev

Follow the generic build instructions, starting with step 1.

macOS

In addition to needing Xcode (along with the command line tools), developing in the macOS
environment requires extra dependencies. You can install these dependencies through MacPorts or
Homebrew. These dependencies are required only on the build machine, because non-standard libs
are deployed in the app bundle.

The tested and preferred way to develop in this environment is through the use of HomeBrew. The
ownCloud team has its own repository containing non-standard recipes. To set up your build
environment for development using HomeBrew:

1. Install Xcode.

2. Install Xcode command line tools using
xcode-select --install

3. Install Homebrew using

54

http://www.macports.org
https://docs.brew.sh
https://docs.brew.sh
https://docs.brew.sh
https://developer.apple.com/xcode
https://github.com/Homebrew/install

/bin/bash -¢ "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

4. Add the ownCloud repository using the command
brew tap owncloud/owncloud
5. Install a Qt5 version, ideally from 5.10.1, using the command
brew install qt5
6. Install any missing dependencies, using the command:
brew install $(brew deps owncloud-client)
7. Install qtkeychain by running
git clone https://github.com/frankosterfeld/qtkeychain.git
Make sure you make the same install prefix as later while building the Desktop App e.g.
-DCMAKE_INSTALL_PREFIX=/Path/to/client/../install

8. For compilation of the Desktop App, follow the generic build instructions.
9. Install the Packages package creation tool.

10. In the build directory, run
admin/osx/create_mac.sh <CMAKE_INSTALL_DIR> <build dir> <installer sign identity>

If you have a developer signing certificate, you can specify its Common Name as a third
parameter (use quotes) to have the package signed automatically.

Contrary to earlier versions, version 1.7 and later are packaged as a pkg

installer. Do not call make package at any time when compiling for OS X, as this
will build a disk image, which will not work correctly.

Windows Development Build with KDE Craft

If you want to test some changes, you can build the ownCloud Desktop App natively on Windows
using KDE Craft. You can also use it to build unsupported and unoptimized installers.

55

http://s.sudre.free.fr/Software/Packages/about.html
https://community.kde.org/Craft

Install KDE Craft

To install KDE Craft, Python 2.7 or Python 3.6+, and PowerShell 5.0+ must be installed. You can find
the full installation guide in the KDE Community Wiki.

O If you want to use Microsoft Visual Studio, naturally, that must be installed as well.
w

When the dependencies are installed, install KDE Craft using the following lines in PowerShell:

Set-ExecutionPolicy -Scope CurrentUser RemoteSigned
iex ((new-object net.webclient).DownloadString
("https://raw.githubusercontent.com/KDE/craft/master/setup/install_craft.ps1'))

The first command allows running scripts from remote sources. The second command starts
installing KDE Craft. You are asked where you want to put the main folder, called CraftRoot, which
will contain all source, build, and install folders. Please choose a disk with sufficient free space.

Last but not least, you need to choose the compiler you want to use. The official builds only
supports Microsoft Visual Studio 2019. However, if you’re feeling adventurous, you can also try to
use Mingw-w64. In contrast to Visual Studio, which you need to install in advance, KDE Craft can
install Mingw-w64 for you.

O Unless you need 32bit builds, you should stick to the default of x64 builds.
w
Setup KDE Craft

After you install KDE Craft, there are two steps left before the ownCloud Desktop App can be
compiled. These are:

1. Launch the KDE Craft Environment
2. Build the Desktop App
Launch the KDE Craft Environment

To launch the KDE Craft environment, you need to run the following command in PowerShell. This
provides you with a shell with all the environment variables set that you need to work with KDE
Craft.

C:\CraftRoot\craft\craftenv.ps

(2 . . .
O This needs to be done every time you want to work with Craft.
w

o We’re assuming that you installed KDE Craft in the default path of C:\CraftRoot. If
you have installed it somewhere else, please adjust the path as necessary.

36

https://www.python.org/download/releases/2.7/
https://www.python.org/downloads/release/python-360/
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-windows-powershell?view=powershell-6
https://community.kde.org/Guidelines_and_HOWTOs/Build_from_source/Windows
https://visualstudio.microsoft.com/en/downloads/
https://www.mingw-w64.org/docs/overview/

Setup the ownCloud repository

The last step before we can begin, is adding the ownCloud repository. It provides you with
additional dependencies and tools, which are not available from the standard KDE repository.

craft --add-blueprint-repository https://qgithub.com/owncloud/craft-blueprints-
owncloud.git

7 .
O You only need to do this once.
-
Build The Desktop App

Finally, we can build the Desktop App with the following command:

craft owncloud-client

This installs all required dependencies and builds the ownCloud Desktop App from the master git
branch. If you want to build a different branch, first install all dependencies and then clone the
source code from git, like this:

craft --install-deps owncloud-client
craft --fetch owncloud-client

You can find the git checkout in C:\CraftRoot\downloads\git\owncloud\owncloud-client. There you
can use the usual git commands to switch branches and remotes, e.g., to build the 2.10 stable
branch you can use craft with --set version parameter:

git checkout 2.10
craft --set version=2.10 owncloud-client

Afterwards you can build the Desktop App like this:

craft --configure --make --install
craft owncloud-client

Run the Desktop App

Neither craft owncloud-client nor craft --configure --make --install make the ownCloud Desktop
App available in your PATH, they only install to the so-called image directory. This is so KDE Craft
knows which files belong to which package. In order to run the Desktop App, you first need to
merge the image directory to the regular KDE Craft root (C:\CraftRoot). Afterwards, you can run
owncloud.exe from your shell.

craft --qmerge owncloud-client

57

owncloud.exe

Package the Desktop App (Unsupported)

Although this is not officially supported, it is, generally, possible to build an installer with:

craft nsis
craft --package owncloud-client

Now you should have a file called: owncloud-client-master-§{COMMIT_HASH}-windows-${COMPILER}.exe
in C:\CraftRoot\tmp.

o This is not supported, optimised, nor regularly tested! Fully supported Windows
installers are currently only provided by ownBrander.

Generic Build Instructions
To build the most up-to-date version of the Desktop App:

1. Clone the latest versions of the Desktop App from Git as follows:

git clone git://github.com/owncloud/client.qgit
cd client

Note master this default, but you can also check out a tag like v2.5.4

git checkout master
git submodule init
git submodule update

2. Create the build directory:

mkdir client-build
cd client-build

3. Configure the Desktop App build:

cmake -DCMAKE_PREFIX_PATH=/opt/ownCloud/qt-5.12.4
-DCMAKE _INSTALL_PREFIX=/Users/path/to/client/../install/ ..

For Linux builds (using QTS5 libraries via build-dep) a typical setting is

-DCMAKE _PREFIX_PATH=/opt/ownCloud/qt-5.12.4/

38

http://git-scm.com

However, the version number may vary. For Linux builds using system dependencies
-DCMAKE_PREFIX_PATH is not needed. You must use absolute paths for the include and library
directories.

On Mac OS X, you need to specify -DCMAKE_INSTALL_PREFIX=target, where target is a private
location, i.e. in parallel to your build dir by specifying ../install.

gtkeychain must be compiled with the same prefix e.g.,
-DCMAKE_INSTALL_PREFIX=/Users/path/to/client/../install/
4. Call
make

The ownCloud binary will appear in the bin directory.

5. (Optional) Call make install to install the Desktop App to the /usr/local/bin directory (or as per
CMAKE_INSTALL_PREFIX).
The following are known CMake parameters:

o QTKEYCHAIN_LIBRARY=/path/to/qtkeychain.dylib
-DQTKEYCHAIN_INCLUDE_DIR=/path/to/qtkeychain/ Used for stored credentials. When compiling
with Qt5, the library is called qt5keychain.dylib. You need to compile QtKeychain with the
same Qt version. If you install QtKeychain into the CMAKE_PREFIX PATH then you don’t
need to specify the path manually.

o WITH_DOC=TRUE: Creates doc and man pages through running make; also adds install
statements, providing the ability to install using make install.

o CMAKE_PREFIX_PATH=/path/to/Qt5.12.4/5.12.4/yourarch/1lib/cmake/: Builds using that Qt
version.

o CMAKE_INSTALL_PREFIX=path: Set an install prefix. This is mandatory on Mac OS.

6. Optional: Run a Desktop App that was installed in a custom CMAKE_INSTALL_PREFIX may not
pick up the correct libraries automatically. You can use LD_LIBRARY_PATH to help find the
libraries like this:

LD_LIBRARY_PATH=/opt/ownCloud/qt-5.12.4/11b/x86_64-1inux-
gnu/:/Users/path/to/client/../install/1ib/x86_64-1inux-gnu/
/Users/path/to/client/../install/bin/owncloud

Compiling via ownBrander

If you don’t want to go through the trouble of doing all the compiling work manually, you can use
ownBrander to create installer images for all platforms.

39

https://doc.owncloud.com/branded_clients/

Appendix History and Architecture

Introduction

ownCloud provides Desktop Apps to synchronize the contents of local directories from computers,
tablets, and handheld devices to the ownCloud server.

Synchronization is accomplished using csync, a bidirectional file synchronizing tool that provides
both a command line client and a library. A special module for csync was written to synchronize
with the ownCloud built-in WebDAV server.

The ownCloud Desktop App software is written in C++ using the Qt Framework As a result, the
ownCloud Desktop App runs on Linux, Windows, and MacOS.

The Synchronization Process

The process of synchronization keeps files in two separate repositories the same. When
synchronized:

« If a file is added to one repository it is copied to the other synchronized repository.

* When a file is changed in one repository, the change is propagated to any other synchronized
repository.

o If a file is deleted in one repository, it is deleted in any other.

It is important to note that the ownCloud synchronization process does not use a typical
client/server system where the server is always master. This is a major difference between the
ownCloud synchronization process and other systems like a file backup, where only changes to files
or folders and the addition of new files are propagated, but these files and folders are never deleted
unless explicitly deleted in the backup.

During synchronization, the ownCloud Desktop App checks both repositories for changes
frequently. This process is referred to as a sync run. In between sync runs, the local repository is
monitored by a file system monitoring process that starts a sync run immediately if something was
edited, added, or removed.

Synchronization by Time versus ETag

Until the release of ownCloud 4.5 and ownCloud Desktop App 1.1, the ownCloud synchronization
process employed a single file property —the file modification time—to decide which file was
newer and needed to be synchronized to the other repository.

The modification timestamp is part of the file’s metadata. It is available on every relevant filesystem
and is the typical indicator for a file change. Modification timestamps do not require special action
to create, and have a general meaning. One design goal of csync is to not require a special server
component. This design goal is why csync was chosen as the backend component.

To compare the modification times of two files from different systems, csync must operate on the
same base. Before ownCloud Desktop App version. 1.1.0, csync required both device repositories to

60

http://www.csync.org
http://www.qt-project.org

run on the exact same time. This requirement was achieved through the use of enterprise standard
NTP time synchronization on all machines.

Because this timing strategy is rather fragile without the use of NTP, ownCloud 4.5 introduced a
unique number (for each file?) that changes whenever the file changes. Although this number is a
unique value, it is not a hash of the file. Instead, it is a randomly chosen number, that is transmitted
in the Etag field. Because the file number changes if the file changes, its use is guaranteed to
determine if one of the files has changed and, thereby, launching a synchronization process.

ownCloud Desktop App release 1.1 and later requires file ID capabilities on the
o ownCloud server. Servers that run with release earlier than 4.5.0 do not support
using the file ID functionality.

Before the 1.3.0 release of the Desktop App, the synchronization process might create false conflict
files if time deviates. Original and changed files conflict only in their timestamp, but not in their
content. This behavior was changed to employ a binary check if files differ.

Like files, directories also hold a unique ID that changes whenever one of the contained files or
directories is modified. Because this is a recursive process, it significantly reduces the effort
required for a synchronization cycle, because the Desktop App only analyzes directories with a
modified ID.

The following table outlines the different synchronization methods used, depending on
server/client combination:

Table 1. Compatibility Table

Server Version Desktop App Version Sync Methods
4.0.x or earlier 1.0.5 or earlier Time Stamp

4.0.x or earlier 1.1 or later n/a (incompatible)
4.5 or later 1.0.5 or earlier Time Stamp

4.5 or later 1.1 or later File ID, Time Stamp

We strongly recommend using ownCloud Server release 4.5 or later when using ownCloud Desktop
App 1.1 or later. Using an incompatible time stamp-based synchronization mechanism can lead to
data loss in rare cases, especially when multiple Desktop Apps are involved and one utilizes a non-
synchronized NTP time.

Comparison and Conflict Cases

As mentioned above, during a sync run the Desktop App must first detect if one of the two
repositories have changed files. On the local repository, the Desktop App traverses the file tree and
compares the modification time of each file with an expected value stored in its database. If the
value is not the same, the Desktop App determines that the file has been modified in the local
repository.

o On the local side, the modification time is a good attribute to use for detecting

61

http://en.wikipedia.org/wiki/Network_Time_Protocol
http://en.wikipedia.org/wiki/HTTP_ETag

changes, because the value does not depend on time shifts and such.

For the remote (that is, ownCloud server) repository, the Desktop App compares the ETag of each
file with its expected value. Again, the expected ETag value is queried from the Desktop App
database. If the ETag is the same, the file has not changed and no synchronization occurs.

In the event a file has changed on both the local and the remote repository since the last sync run, it
can not easily be decided which version of the file is the one that should be used. However, changes
to any side will not be lost. Instead, a conflict case is created. The Desktop App resolves this conflict
by renaming the local file, appending a conflict label and timestamp, and saving the remote file
under the original file name.

Example: Assume there is a conflict in message.txt because its contents have changed both locally
and remotely since the last sync run. The local file with the local changes will be renamed to
message. (conflicted copy 2016-01-01 153110).txt and the remote file will be downloaded and
saved as message.txt.

Conflict files are always created on the Desktop App and never on the server.

Checksum Algorithm Negotiation

In ownCloud 10.0 we implemented a checksum feature which checks the file integrity on upload
and download by computing a checksum after the file transfer finishes. The Desktop App queries
the server capabilities after login to decide which checksum algorithm to use. Currently, SHA1 is
hard-coded in the official server release and can’t be changed by the end-user. Note that the server
additionally also supports MD5 and Adler-32, but the Desktop App will always use the checksum
algorithm announced in the capabilities:

GET http://localhost:8000/0cs/v1.php/cloud/capabilities?format=json

"ocs": {

"meta":{
"status":"ok",
"statuscode":100,
"message”:"0K",

"totalitems":"",
"itemsperpage":""
H
"data":{

"version":{
"major":10,
"minor":0,
"micro":0,

"string":"10.0.0 beta",
"edition":"Community"

}

n

apabilities":{

62

"core":{
"pollinterval":60,

"webdav-root":"remote.php/webdav"

b

"daV":{
"chunking":"1.0"

b

"files_sharing":{
"api_enabled":true,

"public":{
"enabled":true,
"password": {

"enforced":false

+
"expire_date":{
"enabled":false

}

end _mail":false,
"upload":true

H

"user":{
"send_mail":false

iy

"resharing":true,
"group_sharing":true,
"federation":{
"outgoing":true,
"incoming":true
}
1
"checksums":{
"supportedTypes":[
"SHAT"

1,
"preferredUploadType": "SHA1"
s
"files":{

"bigfilechunking":true,

"blacklisted files":[

".htaccess"

1

"undelete":true,

"versioning":true

63

Upload

A checksum is calculated with the previously negotiated algorithm by the Desktop App and sent
along with the file in an HTTP Header: 0C-Checksum: [algorithm]:[checksum].

2 O %

admin -
localhost:B080 LIS General Network

t::j Sync Protocol | “i* Mot Synced

List of ignored or erroneous files
Time File Folder Action

1 30.03.17 09:56:22 tes..txt ow...ud The item is not synced because of previous errors: Error ...hecksum does not match the one received from the client.)

Copy

| Close |

During file upload, the server computes SHA1, MD5, and Adler-32 checksums and compares one of
them to the checksum supplied by the Desktop App.

On mismatch, the server returns HTTP Status code 400 (Bad Request) thus signaling the Desktop
App that the upload failed. The server then discards the upload, and the Desktop App blacklists the
file:

2017-03-30 09:33:05 httr Lh h /T nin/test file.txt

Request : Detail

[m:Auto]

64

<?xml version='1.0"' encoding="utf-8'?>
<d:error xmlns:d="DAV:" xmlns:s="http://sabredav.org/ns">
<s:exception>Sabre\DAV\Exception\BadRequest</s:exception>
<s:message>The computed checksum does not match the one received from the
client.</s:message>
</d:error>

The Desktop App retries the upload using exponential back-off. On success, (matching checksum)
the computed checksums are stored by the server in oc_filecache alongside the file.

Chunked Upload

Mostly same as above. The checksum of the full file is sent with every chunk of the file. But the
server only compares the checksum after receiving the checksum sent with the last chunk.

Download

The server sends the checksum in an HTTP header with the file. (same format as above) If no
checksum is found in oc_filecache (freshly mounted external storage) it is computed and stored in
oc_filecache on the first download. The checksum is then provided on all subsequent downloads
but not on the first.

Ignored Files

The ownCloud Desktop App supports the ability to exclude or ignore certain files from the
synchronization process. Some system-wide file patterns that are used to exclude or ignore files are
included with the Desktop App by default and the ownCloud Desktop App provides the ability to
add custom patterns.

By default, the ownCloud Desktop App ignores the following files:

* Files matched by one of the patterns defined in the Ignored Files Editor.

* Files starting with .sync*.db*, .sync_*.db*, .csync_journal.db*, .owncloudsync.log*, as these files
are reserved for journaling.

* Files with a name longer than 254 characters.

* The file Desktop.ini in the root of a synced folder.

* Files matching the pattern _conflict- unless conflict file uploading is enabled.

* Files matching the pattern (conflicted copy unless conflict file uploading is enabled.

* Windows only: Files containing characters that do not work on typical Windows filesystems (\,
/ I : I ? I * I " I > I < I |)'

* Windows only: Files with a trailing space or dot.

* Windows only: Filenames that are reserved on Windows.

If a pattern selected using a checkbox in the Ignored Files Editor, or if a line in the exclude file
starts with the character] directly followed by the file pattern, files matching the pattern are

65

navigating.pdf#using-the-ignored-files-editor

considered.
fleeting meta data.

These files are ignored and removed by the Desktop App if found in the synchronized folder. This is
suitable for meta files created by some applications that have no sustainable meaning.

If a pattern ends with the forward slash (/) character, only directories are matched. The pattern is
only applied for directory components of filenames selected using the checkbox.

To match filenames against the exclude patterns, the UNIX standard C library function fnmatch is
used. This process checks the filename against the specified pattern using standard shell wildcard
pattern matching. For more information, please refer to the pattern matching documentation.

The path that is checked is the relative path under the sync root directory.

Pattern and File Match Examples:.

Pattern File Matches

~§* ~$f00, ~$example.doc
f17p flip, flap

moo/ map/moo/, moo/

The Sync Journal

The Desktop App stores the ETag number in a per-directory database, called the journal. This
database is a hidden file contained in the directory to be synchronized.

If the journal database is removed, the ownCloud Desktop App CSync backend rebuilds the
database by comparing the files and their modification times. This process ensures that both server
and Desktop App are synchronized using the appropriate NTP time before restarting the Desktop
App following a database removal.

Custom WebDAYV Properties

In the communication between Desktop App and server a couple of custom WebDAV properties
were introduced. They are either needed for sync functionality or help have a positive effect on
synchronization performance.

This chapter describes additional XML elements which the server returns in response to a
successful PROPFIND request on a file or directory. The elements are returned in the namespace oc.

Server Side Permissions

The XML element <oc:permissions> represents the permission- and sharing state of the item. It is a
list of characters, and each of the chars has a meaning as outlined in the table below:

66

http://pubs.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html#tag_02_13_01

Code Resource Description

S File or Folder is shared.

R File or Folder can share (includes re-share)
M File or Folder is mounted (like on Dropbox, Samba, etc.)
w File can write file.

C Folder can create file in folder.

K Folder can create folder (mkdir)

D File or Folder can delete file or folder.

N File or Folder can rename file or folder.

\Y File or Folder can move file or folder.
Example:

<oc:permissions>RDNVCK</oc:permissions>

File- or Directory Size

The XML element <oc:size> represents the file- or directory size in bytes. For directories, the size of
the whole file tree underneath the directory is accumulated.

Example:

<oc:size>2429176697</oc:size>

FileID

The XML element <oc:id> represents the so-called file ID. It is a non-volatile string id that stays
constant as long as the file exists. It is not changed if the file changes or is renamed or moved.

Example:

<oc:id>000000200c5cfybqqizm</oc:id>

Appendix Troubleshooting

Introduction
The following two general issues can result in failed synchronization:

» The server setup is incorrect.

* The Desktop App contains a bug.

67

When reporting bugs, it is helpful if you first determine what part of the system is causing the issue.

Identifying Basic Functionality Problems

Performing a general ownCloud Server test

The first step in troubleshooting synchronization issues is to verify that you can log on to the
ownCloud web application. To verify connectivity to the ownCloud server try logging in via your
Web browser. If you are not prompted for your username and password, or if a red warning box
appears on the page, your server setup requires modification. Please verify that your server
installation is working correctly.

Ensure the WebDAV API is working

If all Desktop Apps fail to connect to the ownCloud Server, but access using the Web interface
functions properly, the problem is often a misconfiguration of the WebDAV API. The ownCloud
Desktop App uses the built-in WebDAV access of the server content. Verify that you can log on to
ownCloud’s WebDAV server. To verify connectivity with the ownCloud WebDAV server, open a
browser window and enter the address to the ownCloud WebDAV server. For example, if your
ownCloud instance is installed at https://yourserver.com/owncloud, your WebDAV server address
is https://yourserver.com/owncloud/remote.php/webdav. If you are prompted for your username
and password but, after providing the correct credentials, authentication fails, please ensure
that your authentication backend is configured properly.

Use a WebDAV command line tool to test

A more sophisticated test method for troubleshooting synchronization issues is to use a WebDAV
command line client and log into the ownCloud WebDAV server. One such command line
client—called cadaver —is available for Linux distributions. You can use this application to
further verify that the WebDAV server is running properly using PROPFIND calls. As an example,
after installing the cadaver app, you can issue the propget command to obtain various properties
pertaining to the current directory and also verify WebDAV server connection.

CSync Unknown Error

If you see this error message stop your Desktop App, delete the ._sync_xxxxxxx.db file, and then
restart your Desktop App. There is a hidden ._sync_xxxxxxx.db file inside the folder of every
account configured on your Desktop App.

o Please note that this will also erase some of your settings about which files to
download.

See https://github.com/owncloud/client/issues/5226 for more discussion of this issue.

Isolating Other Issues

Other issues can affect synchronization of your ownCloud files:

« If you find that the results of the synchronizations are unreliable, please ensure that the folder

to which you are synchronizing is not shared with other synchronization applications.

* Synchronizing the same directory with ownCloud and other synchronization software such as

68

https://github.com/owncloud/client/issues/5226

Unison, rsync, Microsoft Windows Offline Folders, or other cloud services such as Dropbox or
Microsoft SkyDrive is not supported and should not be attempted. In the worst case, it is
possible that synchronizing folders or files using ownCloud and other synchronization software
or services can result in data loss.

* If you find that only specific files are not synchronized, the synchronization protocol might be
having an effect. Some files are automatically ignored because they are system files, other files
might be ignored because their filename contains characters that are not supported on certain
file systems. For more detailed information see the Ignored Files section.

 If you are operating your own server, and use the local storage backend (the default), make sure
that ownCloud has exclusive access to the directory.

The data directory on the server is exclusive to ownCloud and must not be
modified manually.

 If you are using a different file backend on the server, you can try to exclude a
A bug in the backend by reverting to the built-in backend.

* If you are experiencing slow upload/download speed or similar performance
issues be aware that those could be caused by on-access virus scanning
solutions, either on the server (like the files_antivirus app) or the Desktop App.

Log Files

Effectively debugging software requires as much relevant information as can be obtained. To assist
the ownCloud support personnel, please try to provide as many relevant logs as possible. Log
output can help with tracking down problems and, if you report a bug, log output can help to
resolve an issue more quickly.

The Desktop App log file is often the most helpful log to provide.

Obtaining the Desktop App Log File

There are several ways to produce log files. The most commonly useful is enabling logging to a
temporary directory, described first.

Desktop App log files contain file and folder names, metadata, server URLs and
o other private information. Only upload them if you are comfortable sharing the
information. Logs are often essential for tracking down a problem though, so
please consider providing them to developers privately.
Logging to a Temporary Directory
1. Open the ownCloud Desktop App.
2. Press[F12] or [Ctrl-L] or [Cmd+L] on your keyboard.

The Log Output window opens.

69

architecture.pdf#ignored-files
https://github.com/owncloud/files_antivirus

Log Output

The client can write debug logs to a temporary folder. These logs are very helpful
for diagnosing problems.

Since log files can get large, the client will start a new one for each sync run and
compress older ones. It will also delete log files after a couple of hours to avoid
consuming too much disk space.

If enabled, logs will be written to /tmp/ownCloud-logdir

(W] Enable logging to temporary folder)

This setting persists across client restarts.
Note that using any logging command line options will override this setting.

Open folder

@ Close

3. Enable the [Enable logging to temporary folder] checkbox.
4. Later, to find the log files, click the [Open folder] button.

5. Select the logs for the time frame in which the issue occurred.
0 That the choice to enable logging will be persisted across Desktop App restarts.

Saving Files Directly

The ownCloud Desktop App allows you to save log files directly to a custom file or directory. This is
a useful option for easily reproducible problems, as well as for cases where you want logs to be
saved to a different location.

To save log files to a file or a directory:

1. To save to a file, start the Desktop App using the --logfile <file> command, where <file> is the
filename to which you want to save the file.

2. To save to a directory, start the Desktop App using the --logdir <dir> command, where <dir> is
an existing directory.

When using the --logdir command, each sync run creates a new file. To limit the amount of data
that accumulates over time, you can specify the --logexpire <hours> command. When combined
with the --logdir command, the Desktop App automatically erases saved log data in the directory
that is older than the specified number of hours.

Adding the --logdebug flag increases the verbosity of the generated log files.

As an example, to define a test where you keep log data for two days, you can issue the following
command:

owncloud --logdir /tmp/owncloud_logs --logexpire 48

70

Logging in the Console

If the ownCloud Desktop App isn’t able to start and immediately crashes the first two options are
not available. Therefore, it might be necessary to start the ownCloud Desktop App using the
command line in order to see the error message

On Linux and Mac simply open the terminal and run:

owncloud --logfile - --logflush

On Windows open a PowerShell and run the following command:

& 'C:\Program Files\ownCloud\owncloud.exe' --logfile - --logflush | Write-Host

Make sure to copy the whole command and adjust the path to your owncloud.exe, if you have chosen
to install the Desktop App in a different path.

To further increase the verbosity of the output you can also combine these commands with the
--logdebug argument.

Control Log Content

Thanks to the Qt framework, logging can be controlled at run-time through the
QT_LOGGING_RULES environment variable.

Exclude log item categories

QT_LOGGING_RULES="gui.socketapi=false;sync.database*=false' \
/PATH/TO/CLIENT \
--logdebug --logfile <file>

Add HTTP logging entries

QT_LOGGING_RULES="sync.httplogger=true' \
/PATH/TO/CLIENT \
--logdebug --logfile <file>

Only show specific log item categories

QT_LOGGING_RULES='*=false;sync.httplogger=true' \
/PATH/TO/CLIENT \
--logdebug --logfile <file>

71

ownCloud Server Log File

The ownCloud server also maintains an ownCloud specific log file. This log file must be enabled
through the ownCloud Administration page. On that page, you can adjust the log level. We
recommend that when setting the log file level that you set it to a verbose level like Debug or Info.

You can view the server log file using the web interface or you can open it directly from the file
system in the ownCloud server data directory.

Need more information on this. How is the log file accessed? Need to explore procedural steps in
access and in saving this file, similar to how the log file is managed for the Desktop App. Perhaps it
is detailed in the Admin Guide and a link should be provided from here. I will look into that when I
begin heavily editing the Admin Guide.

Webserver Log Files

It can be helpful to view your webserver’s error log file to isolate any ownCloud-related problems.
For Apache on Linug, the error logs are typically located in the /var/log/apache? directory. Some
helpful files include the following:

* error_log— Maintains errors associated with PHP code.

» access_log— Typically records all requests handled by the server; very useful as a debugging

tool because the log line contains information specific to each request and its result.

You can find more information about Apache logging at http://httpd.apache.org/docs/current/
logs.html

Core Dumps

On Mac OS X and Linux systems, and in the unlikely event the Desktop App software crashes, the
Desktop App is able to write a core dump file. Obtaining a core dump file can assist ownCloud
Customer Support tremendously in the debugging process.

To enable the writing of core dump files, you must define the OWNCLOUD_CORE_DUMP environment
variable on the system.

For example:
OWNCLOUD_CORE _DUMP=1 owncloud

This command starts the Desktop App with core dumping enabled and saves the files in the current
working directory.

Core dump files can be fairly large. Before enabling core dumps on your system,

o ensure that you have enough disk space to accommodate these files. Also, due to
their size, we strongly recommend that you properly compress any core dump
files prior to sending them to ownCloud Customer Support.

72

http://httpd.apache.org/docs/current/logs.html
http://httpd.apache.org/docs/current/logs.html

GUI Testing the Desktop App

Introduction

This document explains how to run GUI tests for the Desktop App locally in your system. To run GUI
tests, the Squish GUI Test Automation Tool for all kinds of cross-platform desktop, mobile,
embedded and web applications is used.

Prerequisites

Before we can actually run the test, we will need to make a Desktop App build and install and
configure Squish first.

o Before running tests, you need to make sure that you have disabled oauth2 and
openidconnect in ownCloud Server.

Building the Desktop App

To be able to run tests, you need to build the Desktop App from the latest master.

Prepare Tests
There are two ways to run tests:

 Using Squish IDE

» Using Docker

o You can use docker or Squish IDE to run the tests but if you want to add new test
steps use Squish IDE or any other IDE.
Using Squish IDE
* Install Squish IDE
* Configure Squish
Install Squish IDE

After building the ownCloud Desktop App, install and configure Squish. To install Squish, follow
these steps:

1. Download the latest version of Squish from froglogic to a location of your choice.

2. Depending upon the version and system you are using, you will get a file like squish-6.6.2-
qt512x-1inux64.run.

3. Make the downloaded file executable by running the following example command:

sudo chmod +x ./squish-6.6.2-qt512x-1inux64.run

73

appendices/building.pdf
https://www.froglogic.com/squish/download/

4. Execute the file:
sudo ./squish-6.6.2-qt512x-1inux64.run

5. You will be asked for a license key. When asked, enter your existing license/url of the license
server or get a free trial license

6. After you have entered the license key, Squish opens.

Configure Squish

After installing Squish, follow these steps to configure it:

1. Close Squish if opened.
2. Download the PythonChanger.py script and save it in your squish installation folder.

3. Run the downloaded script.
sudo python3 PythonChanger.py --force

Some necessary steps before running tests:

1. Clone the Desktop App from GitHub
2. Copy test/qui/config.sample.ini to test/suite_oc-desktop/config.ini

3. Edit test/qui/config.ini and set BACKEND_HOST= to the URL of your ownCloud server, e.g.
BACKEND_HOST=http://localhost/owncloud-core

o BACKEND_HOST can be any server, but it is required that the password for the
user admin is set to admin.

4. Start Squish

5. Open the existing test-suite via: File » Open Test Suite > test/gui

6. Go to Edit > Server Settings » Manage AUTs > Mapped AUTs

7. Click [Add] and select the compiled binary, e.g.: client/client-build/bin/owncloud

8. Close any running Desktop Apps by clicking [Quit ownCloud] in the settings page

9. Run the AUT (Application under Test) to check if everything works properly via Run » Lauch

AUT (the Desktop App settings window should appear)

If there are problems with starting Squish, please check the log file
o ~/.squish/squishlibraryx.log.x. Also make sure that the ~/squish-for-qt-
6.x.x/etc/paths.ini is user-readable.

74

https://www.froglogic.com/squish/free-trial/
https://kb.froglogic.com/squish/howto/using-external-python-interpreter-squish-6-6/PythonChanger.py
https://github.com/owncloud/client/

Using Docker

You can also use the Squish docker image to run tests. Proceed with the following steps:

1. Copy server.ini file from test/qui/drone to a new folder called local
2. Change AUT/owncloud value to "/app/client-build/bin"

3. Pull the docker image with the following command:

sudo docker pull owncloudci/squish

Run Tests

* Run Tests Using Squish

* Run Tests Using Docker

o Before running middleware, install yarn following the instructions from here and
clone middleware from here.

Run Tests Using Squish

¢ Start the owncloud-test-middleware

* Quit the Desktop App if you have opened it earlier and make sure that Desktop App is not
running in the background.

* Click the play button for a test-case or scenario.

Run Tests Using Docker

o Start the owncloud-test-middleware

* Run the Squish docker image using the following command:

docker run --rm --network=host -e LICENSEKEY='YOUR_SQUISH LICENSE' -e

MIDDLEWARE _URL="http://localhost:3000/"' -e BACKEND_HOST="http://localhost/owncloud-
server/"' -e SERVER_INI='/app/test/qui/local/server.ini' -e CLIENT_REPO='/app/' -e
SQUISH_PARAMETERS="--retry 1" -v ${PWD}:/app owncloudci/squish:qt512

Create New Steps

* The language used for the tests is basically the same as in other repos. See how to write
acceptance tests for more information.

 Steps that have to go through the test-middleware are named the same way they are named in
the middleware but have additionally on the server either at the end or in the middle of the
sentence.

75

https://hub.docker.com/r/owncloudci/squish
https://classic.yarnpkg.com/en/docs/install/#debian-stable
https://github.com/owncloud/owncloud-test-middleware
https://github.com/owncloud/owncloud-test-middleware
https://bdd.tips/#chapter=9
https://github.com/owncloud/owncloud-test-middleware
https://doc.owncloud.com/server/developer_manual/testing/acceptance-tests.html#how-to-write-acceptance-tests
https://doc.owncloud.com/server/developer_manual/testing/acceptance-tests.html#how-to-write-acceptance-tests
https://github.com/owncloud/owncloud-test-middleware/tree/main/src/stepDefinitions

Object Identification

See object mapping and identification for more details.

Release Notes

Changelog for the Desktop App

ownCloud provides a full changelog with a summary and details for each release of the Desktop
App. Click the following link to access it at GitHub.

76

https://www.froglogic.com/squish/features/object-map-object-identification-tools/
https://github.com/owncloud/client/blob/master/CHANGELOG.md

	ownCloud Desktop Client Manual
	Table of Contents
	Introduction
	Improvements and New Features

	Installing the Desktop App
	Introduction
	System Requirements and Installation
	Customizing the Windows Installation
	Installation Wizard

	Using the Desktop App
	Introduction
	Used App Icons
	Systray Icon
	File Manager Overlay Icons
	Sharing From Your Desktop
	Activity Window
	Settings Window

	Using the Virtual Filesystem
	Introduction
	Microsoft VFS Implementation
	ownCloud VFS Implementation

	Filename Considerations
	Introduction
	Forbidden Printable ASCII Characters
	Non-Printable Characters
	Reserved File Names
	Other Rules
	Examples and Pitfalls

	Manage Synchronisation Conflicts
	Introduction
	Example Situation
	Uploading Conflicts (experimental)

	Automatic Updating of the Desktop App
	Introduction
	Basic Workflow
	Preventing Automatic Updates

	Removing the Desktop App
	Introduction
	Removing the Binary
	Removing the Configuration File
	Windows Navigation Sidebar

	Desktop Frequently Asked Questions (FAQ)
	Introduction
	Usage
	Major Configuration Changes
	Error Messages

	Advanced Usage
	Command Line Options
	Configuration File
	Environment Variables
	The Command Line Client
	Low Disk Space

	Appendices
	Appendix Building the Desktop App
	Appendix History and Architecture
	Appendix Troubleshooting
	GUI Testing the Desktop App
	Release Notes

